
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Operational and Performance Issues of a CBQ router / Risso, FULVIO GIOVANNI OTTAVIO; Gevros, P.. - In:
COMPUTER COMMUNICATION REVIEW. - ISSN 0146-4833. - 29:(1999), pp. 47-58.

Original

Operational and Performance Issues of a CBQ router

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1405287 since:

ACM

Operational and Performance Issues of a CBQ router

Fulvio Risso�and Panos Gevros
Department of Computer Science,

University College London,
Gower Street WC1E 6BT,

London, U.K.
ff.risso, p.gevrosg@cs.ucl.ac.uk

Abstract

The use of scheduling mechanisms like Class Based Queueing
(CBQ) is expected to play a key role in next generation multiser-
vice IP networks. In this paper we attempt an experimental evalu-
ation of ALTQ/CBQ demonstrating its sensitivity to a wide range
of parameters and link layer driver design issues. We pay attention
to several CBQ internal parameters that affect performance drasti-
cally and particularly to “borrowing”, a key feature for flexible and
efficient link sharing. We are also investigating cases where the
link sharing rules are violated, explaining and correcting these ef-
fects wheneverpossible. Finally we evaluateCBQ performance and
make suggestions for effective deployment in real networks.

1 Introduction

Internet resource management requires mechanisms that control the
allocation of resources on a per hop as well as on an end-to-end (per
flow) basis. In this paper we focus on Class Based Queuing (CBQ),
a “per hop” mechanism, investigating the implications of its deploy-
ment in real networks and its effects on the performance of end-to-
end transport.

CBQ is a strong candidate as a building block for introduc-
ing new Internet service models (from standardised Integrated Ser-
vices [1] to newly proposed Differentiated Services [2, 3]) because
it can provide:

� per “entity” traffic isolation, with flexibility in defining “the
entity” and therefore the degree of aggregation (per flow, per
user, etc.)

� degrees of freedom for introducing a wide range of policies
(based on services, protocol and network address information)

� bottleneck link sharing

However there is a substantial level of complexity involved in
the deployment of resource management mechanisms. Their de-
ployment is still at an early stage, their effects on end-to-end perfor-
mance are not always straightforward and usually investigated only
by simulations. This work is an experimental approach that focuses
on the analysis of a CBQ implementation on a real network.

The paper is organised as follows: Section 2 presents an
overview of the CBQ mechanism and the ALTQ implementation.
Section 3 discusses the experiments and the methodology. Section 4
analyses the effects of the network driver architecture on the CBQ

�F.Risso is with Dipartimento di Automatica e Informatica, Politecnico di Torino,
Italy (risso@polito.it). At the time of this work he was visiting University College Lon-
don.

performance. Section 5 shows how well CBQ satisfies the link shar-
ing goals in presence of various traffic mixes and CBQ configura-
tions. Section 6 attempts to characterise the CBQ performance in
terms of link utilisation, forwarding ability, link sharing precision.
Section 7 analyses some practical networking issues (fragmentation
and interaction between CBQ and RSVP) related to the deployment
of CBQ for providing integrated services. Section 8 summarises the
results and presents directions for future work.

2 An Overview of CBQ

Class Based Queueing [4] is a scheduling mechanism that provides
link sharing between agencies that are using the same physical link.
This is an improvement over the use of dedicated pipes for each
agency because link sharing guarantees that any excess bandwidth
resulting from an agency that is not fully utilising its share is re-
distributed to the other agencies (according to their relative alloca-
tions), improving link utilisation. With the CBQ’s hierarchical link
sharing capabilities, each agency can assign its own bandwidth to
different kinds of traffic allocating the right share to each one. In
this case the advantages of the hierarchical link sharing become ev-
ident: the unused bandwidth of an agency’s class is distributed first
to its leaf classes instead of being shared with other agencies.

CBQ operation is based on the interaction between a general
scheduler and a link sharing scheduler. The general scheduler
guarantees the appropriate service to each leaf class, distributing the
bandwidth according to their allocations. The link sharing sched-
uler distributes the excess bandwidth according to the link sharing
structure.

The general scheduler can be anything ranging from simple
Packet Round Robin (PRR) to the more sophisticated Weighted
Round Robin (WRR). The link sharing scheduler is more complex,
because it has to take into account the throughput of each class. The
link sharing scheduler estimates the class’ use of the output link
bandwidth and marks a class as underlimit (if it is transmitting at
a lower rate than its allocation), at limit (if its rate is equal to its
allocation), or overlimit otherwise. The mechanism for deciding
which leaf class is allowed to send is complex and involves check-
ing the status of every class (leaf or not) in the hierarchy. The result-
ing overhead can be prohibitively high, therefore approximations of
the link sharing scheduler have been proposed. These proposals do
not guarantee to respect exactly the link sharing guidelines, but they
provide definitely lower complexity in managing the CBQ parame-
ters.

2.1 ALTQ/CBQ Implementation

Alternate Queueing ALTQ [5, 6] framework provides a range of
queueing schemes for realizing resource sharing and quality of ser-
vice in the BSD networking code. It is available for FreeBSD [7]
and includes Weighted Fair Queueing [8] and CBQ schedulers,
buffer management algorithms like RED [9] and RIO [10] for Diff-
Serv [2] networks.

The ALTQ/CBQ implementation provides by default fixed al-
location to each class so that when a class is not fully utilising its
bandwidth the excess bandwidth cannot be redistributed to other
classes and is simply wasted. To allow the redistribution among
the link sharing hierarchy, the administrator explicitly specifies the
borrow option for each class, indicating whether the class is al-
lowed to “borrow” bandwidth from its parent.

The ALTQ/CBQ implementation uses WRR or PRR for gen-
eral scheduler and a modified Top-level Link Sharing (instead of
the Formal Link Sharing Guidelines) algorithm for the link shar-
ing scheduler. The WRR scheduler computes its allocation so that a
number of bytes equal to the number of classes times the maximum
packet length (determined by the link layer MTU) can be transmit-
ted in each round. This value is calculated assuming that all classes
have the same share, therefore classes with higher allocations can
send more than one packet each round. A class stops sending pack-
ets when it finishes its slot or when it becomes overlimit.

The Top-level Link Sharing scheduler allows one class to bor-
row only up to level N , where N is set by a heuristic; the higher N
is, the greater the chance of the leaf class to borrow. When the par-
ent’s leaf class is also overlimit, a large value of N allows the class
to borrow from higher level ancestors up to a levelN . However the
parameter N is unique in the CBQ scheduler that means that it can-
not be customly defined for different branches but this keeps com-
plexity low.

ALTQ modifies the original heuristic with these new rules:

1. if a packet arrives for a not-overlimit class, set N to the depth
of the class

2. if N is i and a packet arrives for an overlimit class with an
underlimit ancestor at a lower level than i (say j), then set N
to j

3. at scheduling a packet, if there are no underlimit classesdue to
the current N level, increase N by 1 and then try to schedule
again

4. if no packet can be sent, set N to the maximum level allowed
in the system (32), so that next round the chances to send a
packet are maximised.

In general a class can borrow only if its parent is underlimit
or if it has an underlimit ancestor and this can lead to a non-
work-conserving behaviour under certain conditions. Non-work-
conserving service can be avoided with the efficient option, so
that the first overlimit class encounteredwill be able to send a packet
even if all its ancestors in the link sharing structure are overlimit.

3 Environment and Methodology

The experiments were carried out with FreeBSD [7] based PC
routers1 with the ALTQ kernel2 and a kernel clock of 500 Hz. The
machines ranged from an Intel Pentium 166MHz to AMD K6-350

1Running FreeBSD 2.2.8-RELEASE.
2ALTQ-1.1.3.

PVC2

tcpdump

cbqstat

21 3 4

S1

S2

RCVR

ttcp

PVC3

PVC1

Figure 1: Network topology used in the experiments.

and were equipped with Adaptec ATM cards3. We used ATM PVCs
(AAL5, LLC/SNAP encapsulation) with rate configured by soft-
ware. The topology of our experiments is shown in Figure 1 and
involved test with machines in the UCL local testbed, at the Essex
University and at the NASA Goddard Space Flight Center (NASA-
GSFC). We have tested all combinations of link MTU, bandwidth
and delay for the network configurations shown in Tables 1, 2
and 3. The round trip delays on all PVCs were tested with ping
(1.5 KBytes packet size).

We used ttcp [11] and netperf [12] for generating TCP
and UDP traffic. TCP had the default maximum window size of
16 Kbytes. The traces of the flows were collected at the router input
and output interfaces usingtcpdump [13] and the CBQ accounting
information given by the cbqstat utility [6].

The experiments were repeated several times in order to en-
sure the statistical validity of the results and average values are
presented where appropriate. The experiments were performed in
a completely controlled environment with no other traffic present
on the links and the results were almost identical, therefore the
figures show typical traces. Data were analysed off line after the
end of each experiment to obtain “bytes transferred-over-time” and
“throughput-over-time” graphs.

Small
Class
25%

Big
Class
75%

Root
Class
100%

Medium
Class
30%

Big
Class
50%

Root
Class
100%

Small
Class
20%

Link sharing hierarchy:
hierarchy (a)

Link sharing hierarchy:
hierarchy (b)

Figure 2: Link sharing hierarchies used in the experiments.

4 CBQ and network driver issues

This section presents some ALTQ implementation details
and their effect on CBQ operations. Figure 3 shows how
ALTQ/CBQ fits into the networking part of the BSD code.

3Adaptec ANA-59x0. The routerhad two ATM cards because of a knownlimitation
of this version of ALTQ that requires a single PVC on the card where ALTQ/CBQ is
running.

Table 1: Link MTU (Kbytes)

PVC1 PVC2 PVC3
test-a 9.18 9.18 9.18
test-b 1.5 1.5 9.18
test-c 1.5 1.5 1.5

Table 2: Link Bandwidth (Mbit/sec)

PVC1 PVC2 PVC3
3 3 2

45 45 10

Table 3: Round Trip Delays (msec)

PVC1 PVC2 PVC3 Location
9 9 9 UCL local testbed
9 9 25 UCL - ESSEX
9 9 94 UCL - NASA

The packet processing is done by the classic BSD network-
ing routines (if input(), ip input(), ip forward(),
ip output(), if output()) [14] up to the point where the
packet has to be treated by the interface specific output routine
(atm output() for our experiments).

When CBQ is applied to an output interface, the packet does not
follow the standard processing path (from the if output() di-
rectly to the interface card), but it is examined by the classifier and
is enqueued in the appropriate CBQ queue (cbq enqueue()).
From this point the processing is driver-specific: for example Fig-
ure 4 shows the sequence of the function calls for ATM output pro-
cessing.

The following operations are specific to the ATM driver used
in our experiments. The function that actually sends a frame
out (en start()) calls cbq dequeue() which selects the first
non-empty queue that must receive service (according to the cur-
rent scheduling discipline) and dequeues the packet at its head. The
ATM driver first “places” the packet in one of its software buffers4

, then the packet is transferred (in DMA mode, if possible) to the
ATM card memory (en txdma()) and then transmitted on the
physical link (as shown in Figure 3) on a FIFO basis according to
the contents of the hardware buffer. The ALTQ ATM driver sets the
software buffer to 20 KBytes and the hardware one to 32 KBytes.

4.1 The ATM driver output function

The ATM driver used in these experiments is a clone of the original
BSD ATM driver [15] appropriately modified to support ALTQ.

In the original ALTQ ATM driver code the en start() rou-
tine (that is used for dequeuingpackets from the CBQ buffers) loops
as long as there are packets waiting in the CBQ queues and there is
enough space in the ATM software buffer. This routine is also called
when an ATM receiver interrupt has been serviced (i.e. when a new
packet arrives at the router). This behaviourhas undesirable side ef-
fects on CBQ operation. In fact, the en start() routine runs at
higher priority level (splimp) than other kernel code preventing

4We use the term software buffer, although this is not a “proper” buffer: when a
packet needs to be transferred (DMAd) to the ATM card, there must be no more than
N mbuf bytes already waiting to be transferred. This valueN is called “buffer size”.

ATM card

IP input

IP output

CBQ enqueue
(classifier)

CBQ class
queues

CBQ dequeue

ATM software buffer

IP Forwarding

ATM hardware buffer

data

Ethernet card

ATM card

data

O
th

er
 C

B
Q

 in
st

an
ce

Ethernet card

data

data

ATM output

C
ar

d
sp

ec
io

fic

ATM inputEth input

Eth output

CBQ code

BPFilter

BPFilter

Figure 3: Packet processing in ALTQ.

atm_output()

en_start()

cbq_enqueue()

en_txdma()

ip_output()

cbq_classify()

cbq_dequeue()

en_txlaunch()

(*ifp->if_altqenque)()

(*ifp->if_altqenque)()

(*ifp->if_output)()

(*ifp->if_start)()

bpf_mtap()

altq_extractflow()

rmc_queue_packet()

_rmc_addq()

_rmc_dropq()

rmc_dequeue_next()

rmc_wrr_dequeue_next()

rmc_update_class_util()

ifnet struct function pointers

splimp()

interrupt priority level

altq_extractflow()

splx()

Figure 4: Functions calls for packet output.

302000

304000

306000

308000

310000

312000

314000

316000

318000

320000

51865.6 51865.6 51865.6 51865.6 51865.7 51865.7 51865.7 51865.7

da
ta

 tr
an

sf
er

re
d

(K
B

yt
es

)

time (s)

Kernel without the ATM driver modification

(A) (B)

(C) (D)

(E)

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

(12)
(13)

(14)
(15)
(16)

TCP input trace
TCP output trace
UDP output trace

Figure 5: CBQ Link output pattern with the unmodified ATM
driver.

the kernel from being able to refill the CBQ queues with new pack-
ets when the ATM driver is executed.

We modified the ATM driver by removing both the loop in the
en start() and the call to this function upon new packet arrival.

The comparison between Figure 5 (the original driver) and Fig-
ure 6 (the modified one) shows that the modification improves CBQ
behaviour significantly. The output pattern in the first graph is
burstier and more important the link-sharing guidelines are not re-
spected. In fact, Figure 5 shows that TCP packet (C) enters the
router when the TCP queue is empty (previous packet, (A), has al-
ready been forwarded, point (B)). Instead of serving packet (C), the
original driver shows a burst of 16 UDP packets (sent from the UDP
queue) followed by a long period where only TCP packets are being
served, until point (E) where a UDP packet is sent again.

With the modified version of the ATM driver the service pat-
terns on the output link are clearly improved as is evident from Fig-
ure 6, achieving correct link sharing at finer granularity (smaller
time scale) and better approximation of fluid flow behaviour. There
are no more long bursts of UDP packets: between the TCP arrival
(point (C)) and its retransmission (point (L)) there are only 6 UDP
packets to be served (points (D) to (I)).

Unless otherwise specified, all the experiments presented in this
paper were done with this slightly modified version of the BSD
ATM driver.

4.2 The effect of the ATM output buffer

The two ATM output buffers affect the operation of the CBQ mech-
anism and have the main responsibility for undesired delays in the
forwarding process since the delays incurred in other kernel routines
(i.e. ip input(), ip output()) are negligible.

Figures 6 and 7 show the link output pattern when the ATM soft-
ware buffer (the number of mbuf bytes waiting to be transmitted on
the PVC) has its default value (20 Kbytes), and when it is reduced
to 2 KBytes. The CBQ class configuration is the one in Figure 2a,
with one TCP flow in the “Big Class” and one UDP in the “Small
Class” and all the PVCs configured with an MTU of 1500 bytes.
The packet traces were obtained using tcpdump [13], and there-
fore do not account for the time spent in the ATM hardware buffer
because bpf [16] marks a packet as transmitted when it leaves the
ATM software buffer (Figures 3,4).

In Figures 6 and 7 the TCP class queue (at the time correspond-
ing to point (C)) is indeed empty, because the last TCP packet re-
ceived at the input interface (point (A)) has already been transmitted

335000

340000

345000

350000

355000

360000

67479.2 67479.2 67479.3 67479.4 67479.4

da
ta

 tr
an

sf
er

re
d

(K
B

yt
es

)

time (s)

Buffer influence on CBQ behaviour: the 20KB case

(A) (B)

(C)
(D)

(E)

(F)

(G)

(H)

(I)

(L)

TCP input trace
TCP output trace
UDP output trace

Figure 6: CBQ Link output pattern, modified ATM driver, ATM
output buffer 20Kbytes.

890000

895000

900000

905000

910000

915000

920000

71820.1 71820.1 71820.2 71820.2 71820.3 71820.3

da
ta

 tr
an

sf
er

re
d

(K
B

yt
es

)

time (s)

Buffer influence on CBQ behaviour: the 2KB case

(A) (B)

(C)

(D)
(E)

(F)

TCP input trace
TCP output trace
UDP output trace

Figure 7: CBQ Link output pattern, modified ATM driver, ATM
output buffer 2Kbytes.

260000

280000

300000

320000

340000

360000

380000

400000

420000

440000

460000

63778.2 63778.3 63778.4 63778.5 63778.6 63778.7 63778.8 63778.9

da
ta

 tr
an

sf
er

re
d

(B
yt

es
)

time (s)

CBQ output pattern
Router output pattern

Figure 8: Scheduler and Router output pattern.

(at point (B)). The TCP class is also eligible for service because it
has not been serviced recently; before point (A) mainly UDP pack-
ets were being serviced so that the TCP class cannot be overlimit.
In these conditions, the CBQ scheduler serves immediately the TCP
packet, moving it to the software buffer. If this has a non-negligible
size (for example when it is 20 KBytes) there can still be a signif-
icant number of UDP packets waiting in there. The output pattern
(captured by tcpdump) shows that even if the TCP class queue is
empty when packet (C) arrives, a fairly large number of UDP pack-
ets (points (D) to (I)) is transmitted on the output link before point
(L), when the TCP packet is eventually transmitted.

From the trace of the 2 KBytes ATM output buffer it can be seen
that no more than two UDP packets (points (D) and (E)) are trans-
mitted between the arrival of a TCP packet in an empty queue and
its transmission. In fact, the additional level of buffering inserted by
the ATM output buffers can be seen equivalent to that of a 2000 Km
T3 (45 Mbps) link, that can have a non-negligible impact on perfor-
mance.

Another effect of the per PVC output buffer is that the CBQ
scheduler appears to be dequeuing packets at a higher speed than
the output link bandwidth assigned to the root class. The trace
in Figure 8 shows the same flow captured at the router after the
CBQ scheduler and on the machine at the other end of the CBQ
link (PVC3): the CBQ scheduler tends to serve packets faster than
the output link capacity in short time intervals. Since the link
sharing scheduler marks a class as overlimit by comparing the ex-
pected packet completion time and the actual packet completion
time (where the latter is calculated according to the time a packet
leaves the CBQ scheduler), the class is wrongly marked as over-
limit and is being regulated. This will be discussed in detail in Sec-
tion 6.1.

5 Link Sharing Goals

The key issue for CBQ is to allocate to each class its nominal band-
width. In this section we examine to what extent ALTQ/CBQ is able
to achieve its link sharing goals, especially when it allows borrow-
ing between the classes. We have performed tests with TCP and
UDP classes, identified cases where the results of bandwidth shar-
ing were in fact different from those expectedand showedhow these
undesirable effects can be avoided.

5.1 UDP Classes

In the first experimental scenario the CBQ router is configured with
the link sharing hierarchy shown in Figure 2b and the source ma-
chines are generating three UDP flows (one for each class). In this
case all classes have permanent backlog.

The leftmost part of Figure 9 shows CBQ behaviour when the
leaf classes are not allowed to borrow from the root class. A leaf
class can send until it has consumed its round-robin allocation or it
has become overlimit, then the scheduler starts serving the next leaf
class. The link sharing goal is thereby achieved by the cooperation
of the link sharing scheduler and the general scheduler.

When borrowing is allowed (in the rightmost part of Figure 9) a
class can become overlimit and still continue to send packets. When
it finishes its WRR allocation the scheduler checks if other classes
have packets in queue and are allowed to send (i.e. they are not
suspended). Since all classes have enough backlog, the link sharing
rules are guaranteed by the Weighted Round Robin mechanism. In
both cases (borrow activated or not) the link sharing hierarchy rules
are perfectly respected.

However the graph in Figure 9 shows that there is not precise
rate control: the bandwidth allocations for the three classes are not

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

(borrow off) (borrow on)

One UDP flow with 50% share
One UDP flow with 30% share
One UDP flow with 20% share

Figure 9: Link sharing among UDP flows with sufficient backlog.

R

S1
TCP

CBQ

S2
UDP

R

S1
TCP

CBQ

S2
UDP

Borrow off

Borrow on

TCP queue

UDP queue

TCP queue

UDP queue

Figure 10: Different distribution of TCP packets when enabling
borrow.

exactly respected according to the link sharing structure and precise
bandwidth control cannot be achieved. Moreover, especially when
borrowing is enabled, a class cannot use the entire bandwidth of its
parent even if there is no competition by other classes; this will be
better explained in Section 6.1.

5.2 TCP and UDP Classes

The second experimental scenario uses the link sharing hierarchy in
Figure 2a with one TCP flow and one UDP flow per class, allocat-
ing them 75% and 25% of the output link bandwidth. The results in
Figure 11 show that the link sharing rules are respected when there
is no borrowing but they are less straightforward when borrowing
is enabled (Figures 12 and 13).

When the leaf classesare not allowed to borrow, they cannot use
more than their bandwidth allocation and whenever they exceed this
value they quickly become suspended. This prevents a large num-
ber of packets from accumulating in the ATM output buffers.

When borrowing is allowed CBQ tends to serve packets at a
higher speed than the output link bandwidth when examined in suf-
ficiently small time intervals (Figure 8) because of the presence of
the ATM output buffer.

The first effect of these buffers is that their size can cause non-
negligible queueing delay and have serious impact on the perfor-

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

Test (a)

packets 8K

MTU 9.18K

Test (b)

packets 1.5K

MTU 9.18K

Test (c)

packets 1.5K

MTU 1.5K

Test (c-sb)

packets 1.5K

MTU 1.5K

ATM 2-16K buffers

No-Borrow case
One TCP flow with 75% class share
One UDP flow with 25% class share

Figure 11: TCP and UDP classes, one flow per class: no borrow.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

Test (a)

packets 8K

MTU 9.18K

Test (b)

packets 1.5K

MTU 9.18K

Test (c)

packets 1.5K

MTU 1.5K

Borrow case: standard kernel
One TCP flow with 75% class share
One UDP flow with 25% class share

Figure 12: TCP and UDP classes, one flow per class: borrow.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

Test (a)

packets 8K

MTU 9.18K

Test (b)

packets 1.5K

MTU 9.18K

Test (c)

packets 1.5K

MTU 1.5K

Borrow case: small buffers (2-16KB) kernel
One TCP flow with 75% class share
One UDP flow with 25% class share

Figure 13: TCP and UDP classes, one flow per class: borrow with
small ATM output buffer.

mance of transport protocols like TCP especially in the case when
they account for a large fraction of the end-to-end bandwidth de-
lay product. TCP’s throughput5 is affected by the Round Trip Time
(RTT) which in turn depends on the queueing, transmission and
propagation delay of the links in the end-to-end path.

The second effect is the different distribution of packets in the
CBQ and ATM queues with and without borrow. This is shown in
Figure 10 assuming that the TCP connection can have a maximum
of seven packets “in flight”. When borrowing is not allowed the
TCP connection is able to create enough backlog in its CBQ class
queue. On the other hand when borrow is allowed the packets of the
TCP connection are mainly queued at the ATM output buffer. The
WRR mechanism is not able to fulfill the class allocation because
its queue has not enough backlog, therefore the class cannot fully
exploit its allocated bandwidth.

Figure 10 shows that the WRR mechanism is not able to fulfill
its allocation for the TCP class (three TCP and one UDP packeteach
round) and the TCP connection is penalised. This is confirmed in
Figure 12-test (b): the class WRR allocation is large because it is
computed taking into account the large MTU (9.18 KBytes) of the
CBQ link (PVC3), and the TCP throughput is the worst of all three
tests.

Reducing the ATM output buffers clearly improves the perfor-
mance of the TCP flow. Figure 13 shows the same tests as Fig-
ure 12 when the ATM driver has been built with smaller size output
buffers: the “software” buffer reduced to 2 KBytes and the hard-
ware one to 16 KBytes. In all tests the competing flows adhere to
the link sharing rules; the lower TCP throughput observed in test (a)
is a known problem of TCP with 16 Kbytes limited maximum win-
dow size and large MSS due to the large (9.18 Kbytes) ATM MTU
which reduces TCP essentially to a “stop-and-wait” protocol [17].

5.3 TCP Classes

The third experimental scenario uses the class hierarchy in Fig-
ure 2b with one TCP flow per class and the results are shown in
Figure 14. The class bandwidth allocations are observed only when
borrowing is not allowed; otherwise the TCP flows share equally the
bandwidth between them. The main buffering point in this case is
the ATM output buffer and not the CBQ class queues; the situation
is exactly the same as the one described in the previous section. The
ATM output buffers first increase the connection RTT, then provide
insufficient backlog (Figure 10) in the input queues so that the WRR
mechanism is unable to differentiate the service among the classes
(i.e. the bigger classes cannot fully exploit their WRR allocation).
In fact, the link share was respected when the test was repeated with
the small buffer kernel configuration (2+16 KBytes).

5.4 TCP and Link Sharing with Borrow

The lesson learnt from the above experiments was that CBQ with
borrow is able to provide the correct share among different classes
when all the classes have adequate backlog. Obviously, having a
smaller ATM output buffer helps significantly since a large ATM
output buffer can become the main queueing point in the system
defeating the link sharing rules. The presence of the driver output
buffers affects especially those flows with small bandwidth-delay
product (like the experiments in the local testbed because of the
small delays), because it inserts a non-negligible delay on the end
to end path.

Figure 15 shows results from the experiments in the wide area
(UCL-NASA). The standard buffer case shows that the TCP/UDP

5The maximum throughput for a TCP connection is bounded by
Maximum window

RTT
.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

(borrow off) (borrow on)

One TCP flow with 50% share
One TCP flow with 30% share
One TCP flow with 20% share

Figure 14: One TCP flow per class: behaviour with and without
borrow.

600

700

800

900

1000

1100

1200

1300

1400

1500

0 10 20 30 40 50 60 70 80 90

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

----- Kernel with reduced ATM buffers ----- ---- Kernel with standard ATM buffers ----

TCP with 75% share

UDP with 25% share TCP with 25% share

TCP with 75% share

UDP with 25% share

TCP with 25% share

Figure 15: Long distance path: performance with reduced and stan-
dard ATM buffers.

ratio is worse than the local tests, while in the TCP/TCP test both
flows share the bandwidth equally between them. The small buffer
case shows that the situation has improved; the TCP in the “big”
class gets more service than the flow in the “small” class but the re-
sult is still not as expected. The TCP flow, that in the local area ob-
tains the correct service (in presence of small buffers) is no longer
able to do this because of its inability to provide enough backlog
due to the high bandwidth-delay product of this path.

The best way to achieve correct link sharing with TCP flows
is to avoid the limitations of the maximum TCP window size (us-
ing the appropriate socket option SO SNDBUF, SO RECVBUF)
or to ensure sufficient degree of flow aggregation in each class.
Both methods aim to increase the maximum number of packets “in
flight”, by creating enough backlog in the CBQ class queues (as op-
posed to the link layer buffers) and thus making WRR differentia-
tion possible.

Figure 16a shows the CBQ behaviour with 5 TCP connections
in each class when borrowing is permitted and in this case all the
classes get the right share. Figure 16b shows the corresponding
queue length variation over time: there is now enough backlog that
permits the WRR mechanism to fully exploit the allotment of each
class.

When using RED at the CBQ class queues it is important that
its min thresh parameter is chosen in such a way that the queue
length (backlog) in bytes is not smaller than the WRR allocation
for that class. Otherwise the WRR may not be able to send the ap-
propriate amount of data in each round to sustain the class’ link
share. ALTQ/CBQ allows RED drop policy in its queues but it does
not allow configuration of the RED parameters simultaneously with
CBQ. Howeverwhen the experiments involving TCP were repeated
with RED, they did not show any change in the class share.

Another cause of the CBQ delay is the WRR scheduler itself,
because the service time depends mainly on the number of classes
configured into the system: the more classes there are, the larger the
delay “guaranteed” to each class. Therefore an arriving packet can
be forced to wait longer before being serviced despite the allocation,
increasing the RTT and affecting performance.

6 Performance

This section evaluates ALTQ/CBQ performance in terms of link
utilisation, maximum obtainable throughput and sensitivity to the
average packet size within a class.

Tests in this section are done with another modification of the
ALTQ standard kernel. In fact, ALTQ/CBQ implementation main-
tains two global variables (Figure 17):

� ifd->now[qo] is the actual finish time of the last packet in
the head of queueqo (i.e when the CBQ scheduler dequeues
the packet and passes it to the ATM driver).

� ifd->ifnow is the expected finish time for a packet in the
head of queue qo according to the output link speed.

ALTQ uses the second one to compute the wake up time of a
class that has been suspended, while other CBQ implementations
(ns-2 simulator, for example) and the CBQ original paper itself sug-
gest to use the first one. We used ifd->now[qo] instead of
ifd->ifnow to compute the suspension time for a class that is
overlimit. All tests in this section (unless otherwise specified) were
done with this modification; moreover we show the improvement
of the modified kernel over the original one.

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

K
bp

s)

time (s)

5 TCP flows with 75% class share
5 TCP flows with 25% class share

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

qu
eu

e
le

ng
ht

 (
#p

ac
ke

ts
)

time (s)

5 TCP flows with 75% class share
5 TCP flows with 25% class share

Figure 16: Five TCP flows per class: class shares are respected even
with borrow.

6.1 Link Utilisation

As was pointed out in Section 5.1, CBQ is unable to guarantee the
full utilisation of the output link even when the borrowing is al-
lowed.

Lets assume to have a single UDP flow and that the output rate is
smaller than the input rate. If there is enough space available in the
output buffers CBQ dequeues a packet moving it into the software
buffer. For a transitive period CBQ is able to dequeue packets at a
higher rate than its output link bandwidth.

In such a situation, the gap between the variables
ifd->now[qo] and ifd->ifnow (Section 6) increases
progressively: the former increases according to the input link
speed (a packet is served as soon as it arrives at the router), the
latter increases according to the “true” output link speed. When the
gap between them exceeds a certain threshold, ALTQ/CBQ resets
ifd->ifnow to the ifd->now[qo] value (i.e the “real”
system time), in order to prevent the gap from becoming too big.
This does not come for free: becoming ifd->ifnow smaller
and being this a global variable, it seems that the last packet left
the CBQ scheduler very quickly, even faster than the rate allocated
to the parent class. This makes the parent class to appear to be
overlimit and the leaf class gets suspended. It is important to
notice that this does not mean that the router stops sending packets,
because the buffers are able to sustain the output link until they are
emptied.

The class suspension time depends on the class bandwidth
share: the smallest the class allocation, the longest the suspension
time. If the bandwidth share is small enough, the buffers are emp-

ifd->now(qo_)

Real rate

ifd->ifnow_

Ideal rate

Suspension time

time

time

Figure 17: CBQ: actual and expected finishing time.

1000

1200

1400

1600

1800

2000

2.0 2.4 3.0 4.0 6.0 10.0 20.0

th
ro

ug
hp

ut
 (

K
bp

s)

input link bandwidth (Mbit/s)

One TCP in 25% class
One UDP in 25% class (kernel timer 100 Hz, old kernel)
One UDP in 75% class (kernel timer 100 Hz, old kernel)

One UDP in 25% class
One UDP in 75% class

One UDP in 25% class (kernel timer 100 Hz)
One UDP in 75% class (kernel timer 100 Hz)

Figure 18: Maximum throughput obtainable by UDP and TCP
within different classes.

tied before the suspension is resumed: the output link becomes idle
and the throughput drops. As the bandwidth mismatch between in-
put and output link increases (i.e the faster the input link compared
with the output one), the more frequent becomes the need to adjust
the gap between ifd->now[qo] and ifd->ifnow . As a re-
sult, under some conditions it is not possible the full utilisation of
the output link bandwidth.

Figure 18 shows that TCP flows are not affected by this prob-
lem. In fact the number of back-to-back packets sent by TCP is
not large (limited by its window) so it is unusual that a TCP flow
gets suspended. UDP flows are affected by this problem especially
if they belong to a class with relatively small share and the kernel
timer is set to a small value (Section 6.1.1).

ALTQ implements the efficient option (settable in the con-
figuration file) to overcome this problem. This option makes the
scheduler work conserving so that it is able to send a packet from
the first overlimit (and allowed to borrow) class it encounters even
if all classes of the link sharing structure are overlimit. While the
efficient option can be used to increase link utilisation, it mag-
nifies the effect of the ATM output buffers because it keeps them
full most of the time. In fact, the same tests of Section 5.2 repeated
with the efficient option show that TCP throughput deterio-
rates even further.

The problem of poor link utilisation becomes less evident when
the ATM output buffers are smaller (for example 2 + 16 KBytes).
In this case even UDP is usually able to use the entire class band-
width independent from the class allocation. Obviously, the “effi-
cient” flag seems to be useless in this case.

time

time

100Hz clock

500Hz clock

10 msec

minumum class suspension time

packet arrival

Figure 19: The effect of kernel timer on class suspension time (min-
imum 2 clock ticks).

6.1.1 The effect of the kernel timer

The kernel is driven by an internal clock that interrupts at regular
intervals and each interrupt is called a tick (Figure 19).

The clock rate is programmable and is set at system startup time
in the hz global variable. The default value for the clock rate is
100 Hertz; a smaller value may cause degradation in system re-
sponse time but too high a value may cause too much system over-
head, therefore it should be as high as possible avoiding excessive
overhead.

When a class becomes suspended, its “wake up” time is kept in
the undertime variable and an appropriate timeout, calculated in
clock ticks, is set. As shown in Figure 19, the wake up time is set to a
minimum of two clock ticks that for a standard 100 Hz clock means
a minimum suspension time between 10 and 20 msec. A class is
usually resumed when a new packet has arrived at the router (pro-
vided that its suspension time has finished) so that the timeout is the
last resort for resuming the class when other mechanisms are not ef-
fective.

The precision of the kernel timer is important especially when
the input packet rate is low (for example because of the big packet
size), because it affects the ability to resume the suspended class at
the right time. From this point of view, the highest the clock fre-
quency, the best the precision obtained.

Figure 18 shows that the UDP flow into big class does not suffer
from this problem because a class is suspended only a few times.
Vice versa the UDP into small class has almost the ideal behaviour
with the 500 Hz kernel timer, but its throughput decrease with the
100 Hz one.

Figure 18 shows also the comparison between the results ob-
tained with the old kernel and the new one (modified suspension
time computation), both with a 100 Hz timer: the improvement of
the latter over the former is evident.

6.2 Forwarding ability

We attempt to stress the CBQ router to discover the overhead of
CBQ specific per-packet operations (classify, enqueue, schedule,
dequeue). For a given output link capacity (PVC3) we vary the of-
fered load, number of configured classes and the packet size of a
single UDP flow that we drive through the router.

Table 4: Maximum throughput for CBQ and FIFO schedulers.

IP packet size (bytes) CBQ (pps) FIFO (pps)
44 20831 24012
60 20662 23926
92 18691 21435
156 18333 20951
284 17615 19619

Table 5: Class Throughput for different number of configured
classes

Number of Classes Throughput (pkts/sec)
1 20513
5 20353
10 20245
20 19871
50 18718

100 15918

Table 4 shows that a router applying CBQ to an interface de-
creases its throughput approximately 10 to 14% compared to the
same router with standard FIFO scheduling. This result was ob-
tained when the router was forwarding one UDP flow and the CBQ
was configured with a single class.

For a given packet size the router throughput is maximised for
a certain input load. Figure 20 shows performance when changing
the offered load: when the input load is smaller than its forwarding
ability the router is able to manage all the traffic. When the offered
load (packets/sec) increases beyond a certain level the throughput
drops because the router is busy servicing interrupts from incoming
packets and can only do limited packet forwarding.

Table 5 shows the impact of the number of classes (ranging from
one up to 100) on CBQ router throughput. The test is performed
when router is forwarding one UDP flow (IP packet size 60 bytes)
and the offered load (input link capacity) was adjusted in order to
maximise throughput. When increasing the number of classes, the
CBQ router has to do an extensive search to determine which class
each packet belongs to and, due to a non-optimised classifier, the
CBQ router throughput drops significantly.

The effects are limited when CBQ has statically configured
classes because they are usually less than a hundred6. However this
can be a problem when CBQ is used as a traffic control module for
RSVP [18] becausein this case it allows arbitrarily small allocations
(the minimum bandwidth per class does no longer exist) and a large
number of classes can be created.

6.3 Packet size sensitivity

CBQ operation is highly sensitive to the packet size and link layer
MTU. Since WRR uses the output link layer MTU to calculate
each class allocation, when the average packet size is significantly
smaller than the link layer MTU each class is allowed to send more
than one packet each round. This can cause increased burstiness
that has undesirable effects on the following routers along the path.

6Present ALTQ implementation permits to have more than 100 static classes, but
the share must be an integer value. More than 100 classes means that someone has
less than 1% share, and the CBQ does not give them service unless the borrow flag is
activated.

16000

18000

20000

22000

24000

26000

28000

16000 18000 20000 22000 24000 26000 28000 30000 32000

ro
ut

er
 th

ro
ug

hp
ut

 (
pp

s)

input load (pps)

IP packet size: 60 bytes

Router with CBQ
Router without CBQ

Maximum PVC throughput

Figure 20: Throughput with different input capacity.

Figure 21 shows the traffic pattern on the output link (class hi-
erarchy of Figure 2a) when the MTU is 9.18 KBytes and the packet
size is 1.5 KBytes (configuration (b) in Table 1): even the class with
the smallest allocation can send more than one packet each round.
This problem is hardly avoidable because the WRR cannotuse other
parameters to compute its allocation.

Another problem is that the CBQ scheduler calculates several
internal parameters according to an average packet size specific for
each class, that, if not specified into the configuration file, is consid-
ered equal to the output link MTU. In presence of large configured
- real average packet size mismatch, the class throughput is signif-
icantly different from the expected value.

Figure 22 shows the throughput of a class (hierarchy of Fig-
ure 2a, borrow disabled) when sending only one UDP flow at a
time, repeated with different packet sizes. The throughput is less
than the expected value when the average packet size is smaller
than the configured one (tests with 9180 Bytes); vice versa through-
put increases when the average packet size is bigger than the im-
posed one (128 Bytes). Figure 23 shows a packet trace from the
output link when the class sends packets much smaller than the av-
erage size; after it has transmitted a certain number of packets it be-
comes suspended by the link sharing scheduler and the output link
becomes idle. Figure 22 also shows that the throughput obtained by
the old kernel (original undertime computation) is clearly less
predictable compared to the new one.

When the average packet size is far bigger than the expected
value (in Figure 22 we consider a packet of 540 Bytes when the av-
erage is set to 128) the throughput increases unexpectedly. In fact,
the parameter minidle sets a lower bound to avgidle prevent-
ing it from becoming too small, that usually happens when the class
has big packets compared to the average value. In this case, when
the class is resumed after a suspension CBQ “forgets” how much
this class has sent in the past and the class can now send a lot more
than its limit.

A partial improvement could be setting theminburst parame-
ter (i.e. the number of back to back packets allowed by the link shar-
ing scheduler before forcing a suspension) to a higher value. This
will increase the offtime parameter so that a class is allowed to
send more packets, followed by a longer suspension time. In this
way the throughputobtained by a class with larger packet sizes com-
pared to the average value is closer to the expected one. The draw-
back is an increased burstiness of the output pattern.

Average packet size can be hard to tune because of the diversity
in packet sizes for flows aggregated in the same class. For instance,
even TCP traffic that uses most frequently large packets (e.g. HTTP

420000

440000

460000

480000

500000

520000

60780 60780.1 60780.2 60780.3 60780.4 60780.5

da
ta

 tr
an

sf
er

re
d

(B
yt

es
)

time (s)

Class with 75% share: output pattern
Class with 25% share: output pattern

Figure 21: Bursts on the output link.

0

500

1000

1500

2000

2500

4124 2076 1052 540 284 156 92 60 44

th
ro

ug
hp

ut
 (

K
B

yt
es

/s
)

IP packet size (Bytes)

Class 25%: target throughput
Class 75%: target throughput

Class 75%: typical pkt_size 128 bytes (old kernel)
Class 25%: typical pkt_size 128 bytes
Class 75%: typical pkt_size 128 bytes

Class 25%: typical pkt_size 9180 bytes
Class 75%: typical pkt_size 9180 bytes

Figure 22: Throughput with different packet sizes.

downloads) does not have a typical average packet size because of
the acknowledgement packets (usually 40 bytes) or interactive ap-
plications like telnet. This is particularly true for bidirectional “vir-
tual links”, for example those used in a Virtual Private Networks
(the most likely environment for deploying CBQ), that have data
and acknowledgement packets within the same class.

Average packet size sensitivity is a well-known problem in
the CBQ scheduler [19] and depends on the computation of the
offtime parameter. This was calculated in such a way of being
able to send a maximum number of packets (of average packet size)
back to back before class suspension. Since the main parameter that
triggers a class suspension is the “number of packets” instead of the
“number of bytes”, classes with small packets are not able to use
their link share while classes with big packets get more bandwidth
than the expected value.

6.4 Bursty flows

CBQ has two parameters (maxburst and minburst), specific
for each class, that are used to adapt the CBQ behaviour to bursty
flows. They are used to calculate the maximum number of back to
back packets a class is allowed to send before having a suspension.

The first one is used when the flow starts transmitting after a
long idle period; the second is the one used when the class is con-
tinuously backlogged (steady state).

It can be easily proved that maximum throughput that a flow
can obtain decreases when its maxburst and minburst param-

0

5000

10000

15000

20000

25000

30000

60916 60917 60918 60919 60920 60921 60922 60923 60924

da
ta

 tr
an

sf
er

re
d

(B
yt

es
)

time (s)

Figure 23: Output pattern with small packets: breaks in the pipe.

Table 6: Throughput for bursty flows.

Minburst Class 75% Class 25%
(pkts) (Kb/s) (Kb/s)

2 1458 494
5 1436 484

10 1410 484
20 1400 483

eter increases. This is a problem related to the original CBQ pro-
posal [4].

The result can be seen in Table 6; when the class is configured to
support bursty flows, it is allowed to send more back to back packets
but it is not able to reach its assigned share.

7 Practical issues in CBQ deployment

This section discusses some practical issues that concern CBQ de-
ployment in real networks. There will be considered the effects of
fragmentation on end-to-end performance and the interaction of the
scheduler with the Resource reSerVation Protocol (RSVP) [18].

7.1 The effects of fragmentation

When a packet enters in the CBQ router, the classifier module
checks its network and/or transport protocol headers and places it
to the appropriate queue.

When a packet is fragmented (for instance due to a mismatch
in link layer MTUs or to a UDP packet larger than the link layer
MTU), the transport layer headers are missing from all fragments
but the first one. The classifier may not be able to classify the packet
appropriately and in this case the packet is put into the default class.

Fragmentation can prevent a flow from getting its allocated
share becausepacketsare inserted into the wrong CBQ queue. Frag-
mentation can also cause reordering problems (the first fragment of
a packet can be served after the following ones because they belong
to different queues) into the end system.

Fragmentation should generally be avoided, but when deploy-
ing advanced schedulers there are yet more reasons to do so.

Cntlload
y%

BestEffort
x%

RootClass
100%

Session2
s2%

(borrow)

Session1
s1%

(borrow)

SessionN
sN%

(borrow)

Figure 24: Link sharing configuration with RSVP.

7.2 RSVP integration

CBQ can be used as a traffic control module for RSVP in an Inte-
grated Services Network. When the RSVP daemon accepts a new
connection, CBQ creates dynamically a new class in its class hier-
archy. The CBQ daemon starts automatically when the rsvpd is ac-
tivated, loading the standard configuration file. Figure 24 shows a
typical RSVP configuration.

The manual configuration requires the creation of the Best Ef-
fort and Controlled Load classes. When the RSVP daemon accepts
a new reservation, the CBQ mechanism creates a new leaf class (un-
der Controlled Load class) and assigns it the bandwidth indicated
in the reservation message by the token rate parameter7. These leaf
classes are by default allowed to borrow from their parent class.

RSVP is well integrated inside the CBQ kernel and it uses the
classes in the same way as manually configured ones. Due to this
high integration, it is not possible to perform a fine tuning of the
CBQ parameters, particularly the packet size and priority. All the
CBQ scheduler problems already presented can affect RSVP ses-
sions as well. Moreover some of these problems that could be
avoided with the manual class configuration (for example by spec-
ifying packetsize) cannot be avoided for the dynamically cre-
ated RSVP classes and a class can get the wrong share due to a poor
choice of the average packet size.

Deploying CBQ with RSVP in a network can lead to unpre-
dictable results for end-to-end performance. For instance, if a reser-
vation is carried out for a single TCP flow, the throughput might not
be the one expected because of the limitations of the internal CBQ
mechanism.

ALTQ/CBQ with RSVP can currently support only the
Controlled-Load Service model since the Guaranteed Service is
not supported by the current RSVP implementation [20].

8 Conclusions

This paper presents an evaluation of the ALTQ/CBQ implementa-
tion in terms of capabilities and performance. The CBQ operation
is evaluated in-depth; some pathological behaviours are identified
and corrected. For the cases that are ALTQ-specific we suggested
and tested appropriate fixes demonstrating the improvement over
the original implementation.

This is the case of the ATM driver architecture, the wrong com-
putation of the suspension time and the link sharing that is not al-
ways respected (especially when the output buffers are not negligi-
ble compared to the size of the end-to-end pipe). For instance, the
limitations on the link sharing goals are more likely to occur when
borrowing is enabled, that is when the CBQ has major advantages
over the use of dedicated links.

7Peak rate is not specified in the Controlled Load service.

Other aspects are pointed out without implementing fixes (for
example the problem of the average packet size or the maximum
throughput for bursty flows) because they are inherent to the CBQ
algorithm and not a problem of the specific implementation.

Throughout the paper we make suggestions about CBQ deploy-
ment issues in a real network environment. These range from the
possibly high delay in servicing a class (despite its share) due to the
WRR scheduler, the need for enough backlog to insure the correct
link share, the warning concerning use of RED in the CBQ queues,
the precision of the rate control due to the kernel timer, the problems
with throughput and burstiness due to the average packet size used
in internal CBQ calculations. Finally, our experiments confirm that
CBQ cannot be used as a mechanism for fine grained rate control.

In our future work we plan to investigate how effective CBQ
is in a real network in terms of the Quality of Service parameters
(delay, jitter, loss, throughput) and the way these parameters are af-
fected by different configuration choices.

Acknowledgements

This work has been partially supported by CSELT (Centro Studi E
Laboratori di Telecomunicazioni), Turin (Italy). We would like to
thank Profs. Jon Crowcroft and Peter Kirstein that made this work
possible with their help and support. Our thanks also to Kenjiro
Cho, for answering our questions about the ALTQ internals.

References

[1] IETF Integrated Services Working Group (intserv).
http://www.ietf.org/html.charters/intserv-charter.html.

[2] IETF Differentiated Services Working Group (diffserv).
http://www.ietf.org/html.charters/diffserv-charter.html.

[3] Z. Wang. User-Share Differentiation (USD) Scalable band-
width allocation for differentiated services. Internet Draft,
Internet Engineering Task Force, December 1997. Work in
progress available at http://www.ietf.org/internet-drafts/draft-
wang-diff-serv-usd-00.txt.

[4] S. Floyd and V. Jacobson. Link-sharing and Resource Man-
agement Models for Packet Networks. IEEE/ACM Transac-
tions on Networking, 3(4):365–386, August 1995.

[5] Kenjiro Cho. A Framework for Alternate Queue-
ing: Towards Traffic Management by PC-UNIX
based Routers. In USENIX Annual Technical Con-
ference, New Orleans, Louisiana, 1998. available at
ftp://ftp.csl.sony.co.jp/pub/kjc/papers/altq98.ps.gz.

[6] ALTQ: Alternate Queueing for FreeBSD.
http://www.csl.sony.co.jp/person/kjc/software.html.

[7] The FreeBSD Project. http://www.freebsd.org/.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and Simula-
tion of a Fair Queueing Algorithm. In SIGCOMM Symposium
on Communications Architecturesand Protocols, pages 1–12,
Austin, Texas, September 1989. ACM.

[9] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397–413, August 1993.

[10] David D. Clark and Wenjia Fang. Explicit Allocation of Best
Effort Packet Delivery Service. IEEE/ACM Transactions on
Networking, 6(4):362–373, August 1998.

[11] ttcp, Chesapeake Computer Consultants, Inc. available from
http://www.ccci.com/tools/ttcp/.

[12] Netperf: Network Performance Measurement Tool. available
from http://www.netperf.org/.

[13] V. Jacobson, C. Leres, and S. McCanne. tcpdump. Available
from ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

[14] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated
Volume 2: The Implementation. Addison-Wesley, Reading,
Massachusetts, 1994.

[15] Charles D. Cranor. Integrating ATM
networking into BSD. available from
http://www.ccrc.wustl.edu/pub/chuck/psgz/bsdatm.ps.gz,
August 1998.

[16] S. McCanne and V. Jacobson. The BSD packet filter: A
New Architecture for User-level Packet Capture. In Winter
USENIX Technical Conference, pages 259–269, San Diego,
California, January 1993. Usenix.

[17] Kjersti Moldeklev and Per Gunningberg. How a Large ATM
MTU causes Deadlocks in TCP Data Transfers. IEEE/ACM
Transactions on Networking, 3(4), August 1995.

[18] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: a new resource ReSerVation protocol. IEEE Network,
7(5):8–18, September 1993.

[19] S. Floyd. Notes on CBQ and Guaranteed Service. available
from http://www.aciri.org/floyd/papers/guaranteed.ps, July
1995.

[20] USC/ISI RSVP Implementation. Available from
http://www.isi.edu/div7/rsvp/.

