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Analytical Formulation of the Jacobian Matrix for Non-linear Calculation
of the Forced Response of Turbine Blade Assemblies with Wedge

Friction Dampers.

Borrajo, J.M.; Zucca S.; Gola, M.M.
Department of Mechanical Engineering — Politecrdc®orino
Corso Duca degli Abruzzi 24, 10129 Torino — ITALY

Abstract

A fundamental issue in turbomachinery design isdyreamical stress assessment of turbine blades.
In order to reduce stress peaks in the turbineesladl engine orders corresponding to blade natural
frequencies, friction dampers are employed. Bladpaonse calculation requires the solution of a set
of nonlinear equations originated by the introductof friction damping.

Such a set of nonlinear equations is solved ugiagterative numerical Newton-Raphson method.
However, calculation of the Jacobian matrix of thgstem using classical numerical finite
difference schemes makes frequency domain solh@milptively expensive for structures with
many contact points. Large computation time resutisn the evaluation of partial derivatives of
the nonlinear equations with respect to the disgrtamnts.

In this work a methodology to compute efficienthetJacobian matrix of a dynamic system having
wedge dampers is presented. It is exact and coehpkmalytical.

The proposed methods have been successfully agpli@deal intermediate pressure turbine (IPT)
blade under cyclic symmetry boundary conditionshwiinderplatform wedge dampers. Its
implementation showed to be very effective, andvadid to achieve relevant time savings without

loss of precision.
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1. Introduction

Service failure of turbo-engine blades in manyanses can be attributed to high cyclic fatigue,
HCF, caused by large resonant stress. Blades bjected to forced vibrations caused by variation
of the flow of air drawn through compressor andoie stages in space and time, blade hub,
meshing of gear teeth, foreign object ingestioan, et

Commonly the frequency spectrum of the externaloger forces has components which excite
dominant cantilevered-blade modes of the systensiwguresonances, manifesting in a sharp
increase of response amplitude.

Nowadays, in order to avoid such failures, desigmfiequently include friction dampers to increase
blade damping and reduce vibratory stresses. Tinedunction of friction dampers originates the
nonlinearities in the system that turns the praaticof its dynamic response very difficult.

Friction damping has been largely studied in therdiure. It has long been recognized to be an
effective and simple mean of increasing the medahrdamping level of turbine bladed disk
systems [1-3]. Application of friction damping fttade vibration control was first studied for
blade-to-ground and blade-to-blade (shroud) configions [4,5]. Whatever configuration is
chosen, damper kinematic model plays an importaletin friction force calculation, since friction
is due to relative displacements of mating sudace

Currently, a widespread damper type is the so @¢alleerplatform wedge damper, it is a simple
metallic piece located at the blade roots. In aaraging engine, centrifugal force acting on the
damper lifts it gradually and, at a certain speeflilly engages the platform at the ad-hoc designe
cavity. Damper operating principle is based ondbecept that relative motion between adjacent
blades takes place during vibration causing redattamper/blade displacements. They dissipate
vibratory energy at the damper/blade interfacesfrmtion and consequently blade resonant
amplitudes decrease.

Wedge dampers represent an extremely difficult daseause the direct coupling of the two
inclined interfaces leads to complex contact kinigresaThis aspect was studied in detail by Yang
and Menq [6], and Sanliturk, Ewins and Stanbridge Pue to the complexity of the damper
behaviour some simplifying assumptions have beedemia order to reduce the difficulty of the
problem. The main assumption is that damper antfiopha surfaces remain parallel and in contact

at all times, i.e. damper rolling is not permitted.



Damper effect on the dynamical behaviour of thecsure is estimated by means of nonlinear
forced response calculation of the blade includimgion dampers. It can be formulated both in
frequency and time domain. However, frequency domathods are preferable for calculating the
steady-state vibration amplitude, instead of threatlitime integration, because they are much less
time consuming [3].

The Harmonic Balance Method (HBM) is a well-knowrethod to study nonlinear vibration
problems in frequency domain. By means of HBM, #ystem response is supposed to be
harmonic, and then the cyclic friction forces appraximated by the first term of their Fourier
series [8]. As a result, the set of differentiali@gons obtained by FEM models are transformed in a
set of nonlinear algebraic equations in the freqyelomain.

Iterative numerical techniques are necessary ierdi@ solve the resulting nonlinear system. The
most employed solution technique is the Newton-RaphMethod (NRM). It guarantees quadratic
convergence rate when the starting estimate i€ ¢tmthe solution [9].

The most time consuming operation of the NRM is ¢hkeulation of the Jacobian matrix, whose
terms are the partial derivatives of the nonlifeactions with respect to the unknowns. According
to the classical approach, a finite difference sohés implemented to evaluate the Jacobian of the
nonlinear system. Usually, partial derivatives approximated by discrete incremental ratios. The
main problems of this approach are the uncertamtihe choice of the finite increment and the
quite long time necessary for the computation @& tionlinear forces in the calculation of the
incremental ratio.

A more efficient solving method governing the noehr equations is needed. The optimization of
the evaluation of Jacobian matrix is crucial fog #ffective analysis of large systems, specialty fo
the analysis of mistuned assemblies. In [10], largleulation times of the NRM are reduced by
means of an analytical approach used to evaluaeJ#tobian of the system. The method is
proposed for a friction element characterized byl@Gmb friction law, 1D relative displacement
and variable normal load. By means of the prop@ggmoach, no NRM finite difference scheme is
necessary, and large systems can be effectivadyestu

As far as we are aware, no study has still beemedaout to optimize the calculation procedure of
the Jacobian matrix of a system with underplatferedge dampers, characterized by the kinematic
model developed by [6,7].

In this work, the method proposed in [10] is exthdo structures with wedge dampers and an
exact and complete analytical procedure to be eyedldn the forced response calculations is

developed. It is applied to calculate the frequenesponse of a real IPT blade under cyclic



symmetry boundary conditions. Excellent resultderms of accuracy and calculation time have

been achieved in comparison with numerical NRM.

2. Non-linear forced response calculation
Dynamical equilibrium equation of a structure whtistion dampers are

M Q(t)+Ccm(t)+K m(t) =F,(t)-F,(Q,1), (1)
with
M: mass matrix
C: structural damping matrix
K: stiffness matrix
Q(t): system degrees of freedom (dofs)
Fe(t): external excitation
Fq(Q,1): contact forces acting on the damper.
They are nonlinear because damper forces depedsplacements of contact points.
Steady-state forced response of the system of Eqis(usually computed by means of the
Harmonic Balance Method (HBM) ([1]-[3]). Accordinth HBM, given a harmonic external
excitation, the damper forces and the system respa@me assumed as harmonic with angular
frequency equal to that of the excitation. Harmooaefficients of damper contact forces are
evaluated by Fourier expansion of their time histrTherefore HBM allows to express the forced

response of a frictionally damped structure bytaogeomplex equations in the frequency domain:

Q=Q.-RIK(Q) 2)
where:
Q: total response of system dofs.
Qe response of system dofs due to external forces.
“R: receptance matrix.
“Fq( Q): First term of Fourier expansion coefficientre{Q,t)

Since contact forces depend only on contact pagpiacements, vecto® can be divided and only
the sub-system

X=X, =Ry [F(X) 3
can be computed for contact force evaluation, with
~ X: contact dofs.
~ Xe: response of contact dofs due to external forces.

“Rq: square receptance sub-matrix corresponding ttacbdofs



Once contact forces are computed solving equaByntlie forced response of the system can be
calculated by means of equation (2).
The subsystem of complex equations (3) may be foemed into the equivalent system of real
eguations:

X=X, -R, [F,(X) 4

{X (2r—1)} — D(Y(r)) {xe(Zr—l)} — D(Ze(r)) {Fd (2r-1) (X)} _ Dé:de (Z)
X (2n D(Y(r)) xe(Zr) D(Xe(r)) Fd(2r) (X) O Fd(r) (X)
{Rd (2F1,25-1) R, (2r,25—1)} _ l:D (ﬁd(r,s)) - D(ﬁd(m)):l

R R B ORyy) ORugs)

Therefore roots of equation (4) are roots of equiaB).

with:

d (2r-129) d (2r,2s)
Solution of equation (4) can be computed using avRaphson Method (NRM). It is an iterative
procedure that generates a sequence of approxgsoktions, converging towards the roots of the
system. The approximate solution at thi step is estimated with the following iterative
relationship:
X () = x (1) _ j(n)7t [F (X (n-l)) (5)

whereX™ is the response vector at tifiteration, and andJ are:

r(Xy = x - x _+R, O, (X))
_ar (x ™y :

X

q

g

Pq

whereJ® is the Jacobian of the system at tffdteration and (X™?) the residual vector at tHe-

1)™ iteration. Its terms are the partial derivativdstiee nonlinear functions of the system with
respect to the unknowns. They can be evaluated meatlg by means of a finite difference

scheme. The main problem due to such a numerioakedure is that it is time consuming and that
calculation time increases remarkably with the nendf contact dofs.

In [10], Petrov and Ewins have recently proposedaliarnative method which demonstrated
excellent performance with respect to speed, acguaad stability of computation. It is completely
analytical and was successfully applied to a sirfgldion element characterised by Coulomb
friction law, 1D relative displacement and variablermal load. Namely, Jacobian matrix is

evaluated analytically as follows:

(n-1) _ (n-1) (n-1)
J<n>:ar(g<x ) - AX xe+Rg>EFd(X>)(x ):|+Rd£ng( ) ©)

wherel is the identity matrix.



In a general case, time history of contact foresemade of several parts. Each part corresponds to a
clear-defined damper state. So, Fourier expansefficients of the nonlinear contact force can be
obtained as a sum of contributions given by eachqgiahe hysteresis cycle. Consider the real part
of the first order Fourier expansion coefficientzontact forces:

tl(J)(X)

F.(X)= ZF“)(X)— DZ jF‘”(x t) [Cosgt)dt 7)

I 9%
with
to¥: transition time at the beginning of state
t,9): transition time at the end of state
Derivatives of Fourier expansion coefficients ohtaxt forces are:
47 (x)

aF (X) ZGF (’)(X) Dza?({ j F,% (X,t) Gosgt) dt (8)
] i t(J)(x)

Since transition times depend on displaceminisquation (8) becomes:

oF.(X) _w dt,"” (X) ) (i) iy At (X) ) 5 M
— = = —  1TF X, t [cos(ut -—— = [F Xt [Cos(wt
rvi HEZ{ ax, g (Xt ) [Cos@t, ) ax, 4 (Xt ) [Cos@wt, )

i j

6 (x) (0 ©

N j oF, " (X,t)
0X

o (X) i

[Cost) dt}
Because of periodicity and continuity of contaattsFy4(X,t) it is

dt (1) X ) ) ) dt (1) X . ) )
Z|: 1dx( ) [H:d(n(x,tl(]))m:os@tl(]))_ de( ) [H:d(')(X,tO(’))E:OS@tO(’)) =0 (10)
J i i

In conclusion

OF (X) :QDZtl 9 9F, 0 (x 1)
o0X. Vi4 oX.

[Cosgwt) dt (11)

j t(J)(X) i

and, in the same way, for the imaginary pafiX)

£ (X) A= ()
M:—ﬁ’az | 9Fs 50 ity (12)

oX. Vi o0X

i i, (x) i
According to equations (11) and (12), analyticahfalation of the Jacobian matrix is possible if
derivatives of Fourier expansion coefficients ofitaxt forces can be performed analytically.

To the best of our knowledge, a similar study fa tase of wedge dampers has not been done yet.
In the next sections, the analytical formulationegjuations (11) and (12) will be deduced for a

general case of wedge dampers.



Of course, the method described in this sectiomalgl for any damper configuration (blade-to-
blade, blade-to ground and underplatform dampgisgn a kinematic relationship which links

relative displacements to absolute displacementsmifact points.

3. Wedge damper model
The wedge damper model adopted here closely foltbatsdeveloped by [6]. Since the real damper

behavior is quite complicated, the model impliesiesimplifying assumptions:

- damper flexibility and inertia effects are negligib

- damper and platform surfaces remain in contacll atree.

- damper rolling is not considered.

- damper displacement takes place onxtyelane.

- the blade motion is harmonic.
The theoretical formulation of the wedge damperiomis based on the model where relative
blade/damper motion is deduced by using absoluteomof both blade platforms.
Underplatform instantaneous motion can be expregseah u-v coordinate frame, an oblique
coordinate frame defined along the inclined danspefaces (see Figure 1).
As a consequence of the continuous contact betwasrper and platforms, they can be used to
characterize damper motion as follows:

Xy=Ug+V, (13)
Xq: vector of damper displacement.
Ur: vector of absolute displacement of right platfalongu direction.
V. : vector of absolute displacement of left platfalongv direction.
Hence, subscripts 1 and 2 denote left and rightpganmterface, while L and R denote left and right
structure interface, respectively, as showed infe@.
Thus, the relative motions of the blade platfornithwespect to the damper can be expressed as:
u=(X_ - Xg)Bin(a)+ (Y, -Y,)2oda)

= (X, - X))~ (¥, ~¥,) teod) e
with:
u: relative displacement of the left platform wittsspect to the damper.
v: relative displacement of the right platform wigspect to the damper.
X. and Y: horizontal and vertical absolute displacemereftfplatform blade.

Xr and Yg: horizontal and vertical absolute displacemerrigiit platform blade.



Tangential load$; andF, and normal loadsl; andN, act over both the damper sides, as shown in
Figure 1. The induced friction forces are completHaracterized by the relative motion between
the contact surfaces.
At any time, horizontal and vertical damper equilim equations must be satisfied:

F,sin(a) + N, coda) - F,sin(B) - N, codB) =0

F cos(a) - lein(a) +F, cos(B) - stin(B) +CF =0 (15)
where CF represents the centrifugal force acting on theparoriginated by the disk rotation.
Each interface is modelled with a one-dimensiomaltibn element, as shown in Figure 1b. It
consists of a flexible element of stiffnekg, and a contact element with friction coefficigntThis
permits to write the expression of the tangentaitact force at each damper side valid for any
instant as:

F =k, [u-w) F, =k, l{v—-w,). (16)

Friction elements are coupled by damper equilibrieguations. The coupling causes a complex
stick-slip mechanism in which the stick-slip motioh the interfaces interact with each other. It
results in nine possible coupled damper statesPEENN, PE, EP, NE, EN, PN and NP. The first
character identifies the left contact state whetkasecond corresponds to the right contact d$fate.
corresponds to the stick state, P to the positipeasd N to the negative slip of the contact point

Each state is characterised by a set of equaiiouigtail:

- State E:
F=F,+k,[ and W =0 fordamper side 1
F,=F,+k,¥ and Ww,=0 for damper side 2,
with F1o andF, depending on initial conditions of the stick state
- State P:
F,=pIN, and W >0 for damper side 1
F,=pIN, and W,>0 fordamper side 2
- State N:

F,=-pIN, and W <O fordamper side 1
F,=-uIN, and W, <0 for damper side 2.

Due to coupling of the two damper sides, 32 diffiéteansitions can be identified. In general, stick

to-slip transition occurs when the friction foraaches the slipping value; contrarily, slip-toistic



transition occurs when the contact point invegsmtion. Detailed description of transition criger
can be found in [6].

4. Definition of Jacobian matrix of underplatform dampers

Equation (6) states that in order to define theobd@m matrix in a complete analytical form,
analytical derivatives of Fourier expansion coédints of the contact forces with respect to the
contact absolute displacement must be evaluated.
Once derivatives are obtained, Jacobian matrixbeaevaluated through equation (6) and used in
equation (5) in the iterative NRM solver.
As previously noted, Jacobian matrix may be exgess:

J™ =1+R, H (17)
with | identity matrix,R, receptance ankl a real 8x8 matrix containing the partial derivagvof

the Fourier coefficients of the contact forces widlspect to the absolute contact displacements
=9
oX

contact forces an& includes real and imaginary part of harmonic altsoldisplacements of

H (X(”‘l)). Here,F4 includes real and imaginary part of first ordeufter coefficients of the

contact points, both written in tkxey structure coordinate system shown in Figure 2.

The tangential forces over each damper side aapatirectionsu-v different fromx-y and they
depend on the relative displacemeam@ndyv. Besides the total contact forces<iy are obtained as
linear superposition of both tangential and norowmaitact forces.

As a consequence, the procedure to obtain thexnthiis made of four consecutive steps:

1 - Calculate derivatives of Fourier expansion fioeits of tangential contact forces with respect
to relative displacementsandv.

2 - Convert terms obtained at step 1 in derivativel respect to the absolute displacemeqtdy
means of damper kinematical relationships (14).

3 - Calculate derivatives of Fourier expansion fioehts of normal contact forces by means of
damper equilibrium equations (15).

4 - Write terms obtained at step 2 and 3 in stmgcttoordinate system-y by trigonometry

relationships.

4.1. Derivatives of Fourier coefficients of tangential forces with respect to u and v.

According to what stated in section 2, in the catevedge dampers, derivatives of Fourier

coefficients of tangential forces with respecteatative displacements are



af (x) W ¢ of (X, t) (%) w o (Mo (x, 1)
Gos@t)dt =S —c 2 = Zd %Y gosqt)dt (18
[{ i Eosdt =3 me HDZ ]jm 5 Tosnd (19

and

of(x) - af,(x1) AN | w0 (x,t)

o) _ _ q a2 Bint)dt = >~ = - =) j =4 2 @inet)dt  (19)

a)ﬂ n 0 a)ﬂ i a)ﬂ T j t(J)(X) a)g
with fa(x,t) = {Fa(x.t), Fax,)} T, fe = {OCFy), OCF)} ", fs = {O(C F), O( F2)} " andx = {O(u),
O(u), O(v), O(V)} " and T = 270w,
The analytical expression of tangential forces depmn the damper states. In detail:
- StateEE
F, =k, [[u. cosfut) —ug sin(ut)| + Fy,

. : (20)
F, = ky v cost) - v sin@)] + F,

- State PE or NE

F=—H — (F, +CF 0)
sFule : (21)

F, =k, v, cost) — vssin(t)] + F,,
where the upper sign holds for PE and the lower saig\E.
- StateEP or EN
o [[uc cosgt) - ugsin(ut)] + F

22
F,=——H" (F,+CF za) (22)
STuLE
where the upper sign holds for EP and the lower &g EN.
- State PP, PN, NP or NN
_ _Hpcatpy(s—p,0)ch o
L (5K O)(S-H,0) -
1 2 2 (23)

- u]}J'ZCb + “2(8 B “l C)Ca CF
(S=H.C)(S—H,C) — M,

with py=p andp,=p at PP uy=p andp=-p at PN,u;=-p andpo=p at NP,p;=-p andp=-p at NN,

2

and withc = cos@+ /), s = sin@+p), ca=coqa), ch=coqf), sa=sin(a), sb=sin(p). In all the above
equations, it isic = [1(u), us = 0(u), vc = 0(V), vs = (V).

As a consequence, tfi&term of equations (18) and (19) depends on thepdasstate, as shown in
Table 1, where terms corresponding to the lefteatigl forceF; are listed, with

t(])(x) t(j)(X)
' W'
= J'cos@t)dt lg=— .[sm(cot)dt,

t (J)(X) to(i)(x)

10



ol o ol ol o
loe =— jcosz(wt)dt, |l =— jsinz(oot)dt, les =— jcosw)@in(ui)dt

to(j)(X) to(j)(x) to(j)(X)
The procedure adopted to obtain the expressiomabie 1 is described for the PE/NE state.

The starting point is Eg. (21)
+
F = (F, + CFLth)

ST pule ,
F, =ky Etlvc cos(wt) - vssin((ot)] +Fy

therefore, if the expression of Is replaced in the first equation, &d F, are

_ tu + U )
F, = = /JE:(FZO +CF Dtb)+ ST U K, [ﬁvC COS(ut) — Vg sm(a)t)] (24)

F, =k, [V, cost) - vg sin(at)] + F,,

Derivatives of the first term of the Fourier seradd-;, as expressed in Eq. (24), with respect to the

real and imaginary part of relative displacemenasdv give the relationships listed in Table 1.
Terms corresponding to the right damper foFgecan be deduced from Table 1 by replacing
subscriptl with subscript 2 and switching variahleandv. In detail terms corresponding to state
EE will be in the first column of the resulting tapthose corresponding to state PE/NE in the third
column, those corresponding to state EP/EN in ¢eersd column. Fourth columns does not change
at all.
In order to define explicitly the terms listed imfile 1, the derivatives d¥o with respect to
relative displacements andv must be evaluated. The analytical expressiorr@f and Fa?
depends on the sequence of the damper states.
To obtain the expression &%, andFx” for each damper state the following procedure rbast
applied:
1. write the continuity equations of contact forég¢t) andF,(t) at each transition time, as shown
below for the transition between tfjel)" and thg™ state:
(D) (¢ i1y = £ (D) (4
ety
2. Replace both the left and right side terms of equg5) with the corresponding state equation
chosen among equations (20)-(23).
3. Solve the resulting linear system of 2N equatidesng N the total number of damper states
forming the periodic hysteresis cycle, with!’ andF," as unknownsj & [1:N]).
The analytical evaluation of all possitite,”’ andFx” cannot be included in this paper. However,

an exhaustive resume can be found in [11].

11



The sixteen analytical expressions of the deriestidefined at equations (18) and (19) can be

assembled in a matrix defined as follows:

|

of4(x)
ox

}z

OF

OF

OF

OF,

Ouc
oF¢

Oug
oF

ov.
oF¢

ovg
oF

Ouc
0F,¢

Oug
0F,¢

ov.
0F,c

ovg
0F,c

OUc
0F ¢

Oug
0F,¢

ov.
oF,¢

ovg
oF,¢

Ouc

oug

ov.

ovg

4.2. Derivatives of Fourier coefficients of contact forces with respect to X.

In this section, steps 2-4 of the procedure degittesection 4 are described in details.

(26)

At step 2, derivatives contained in matriafg{x)/0x] of equation (26) must be converted in

derivatives with respect to absolute displacem&nidefined as:

X ={0(X0), O(Xv), O(YL), O(YL), O(XR), O(Xr), O(YR), O(YR) }".

Such a conversion can be simply performed by me&dsemper kinematics equations (14), post-

multiplying matrix pf4(x)/0x] with a kinematics matrifg:

P00 8] [n )=

0Xx

sa 0 ca
0 sa O
sb 0 -cb
0 sb O

0

ca
0
-cb

-sa 0 -ca O
0 -sa 0 -ca
-sb 0O cb O
0O -sb 0O «cb

(27)

At step 3, derivatives of Fourier expansion coéfits of normal contact forces must be calculated

by means of damper equilibrium equations (15).

At step 4, terms obtained at steps 2 and 3 mustriigen in structure coordinate systeay by

means of trigopnometry.

Both operations are performed by pre-multiplyingtmia[ofq(X)/0X] with matrix Ag, defined

below:

12



sa+caE 0 ca 0
S S
0 -sa caE 0 _a
S S
ca—saE 0 _= 0
S S
C sa
0 —-ca+sa— 0 —
oF, (X) of 4 (X) :
O R R (S E I s . ¢ |
—? 0 —-sh-ch— 0
0 C—b 0 sh+cb-=
S
_® 0 ch-shS 0
S S
0 0 0 -ch+sps
L S i

The matrixH obtained at the end of this 4-step procedure @auitectly used for the iterative
solution of damped systems, such as experimentaipseusually designed for the characterisation
of the underplatform damper.

To solve dynamical systems with underplatform dammpender cyclic symmetry boundary

conditions a further step is necessary.

4.3. Wedge damper in cyclic symmetric structure.

As shown in [12-14], the whole dynamic behaviouraofotationally periodic structure, like blade
assemblies, may be deduced from the dynamics ahgesperiodic sector subject to cyclic
symmetry boundary conditions, as shown in Figure 3.
When the single periodic sector of the cyclic syrtrioestructure includes underplatform dampers,
a further transformation of matrixH], defined in the previous section, is necessargriter to
express derivatives of Fourier expansion coeffisiesf contact forces acting on the sector with
respect to absolute displacements of the sectdacopoints.
Applying the technique of complex propagation canstto represent the wave propagation on
rotationally periodic structures developed by Therfie2,13] for linear systems and extended by
Petrov [14] to non-linear systems , forces thatdhdamper transmits to the structure are related to
forces acting on thi" blade by:

R _ _ _ 29)
F, =F, @ =|[0(F,) cos@) + O(F,)sin(¢)] + i - O(F,)sin(g) + (F, ) cos@))|

with ¢ the interblade phase angle, defined by:

13



and withNg the number of turbine blades alB@ the engine order.
Similar relationships link the absolute displacetsest the nodes of the structure in contact with
thek™ damper to the absolute displacements of the coptacts of thek" blade.

B _ _ _ (30)

X, =X, & =[0(X,)cos@) - O(X, )sin(@)| +i 4O (X, )sin(g) + I(X, ) cos@)]
Relationships expressed by equations (29) and ¢3@) be resumed in a cyclic symmetric
transformation matriX\sc. Finally, matrix H]sc for the fundamental sector under cyclic symmetry

is obtained doing:

‘codd) -sin(d) O 0 0000

sin(p) codd) O 0 0000

0 0 codd) -sinf¢) 0 0 0 O

e T . | o 0 sin(@) codp) 0 0 0 O

Hle=lA ] dHldAc with [Ac]=| 0 0 5 10 0 oG

0 0 0 0 0100

0 0 0 0 0010

0 0 0 0O 000 1

5. Application to a real IPT blade

The proposed method is applied to the forced respaalculation of a real intermediate pressure
turbine (IPT) blade under cyclic symmetry boundaonditions subjected to B6engine order
excitation which affects the blade's third bendimgde (3F). The number of blades is 100.
Structural model is obtained via standard finiengnt formulation in a commercial FEM software.
The Component Mode Synthesis CMS (Craig-Bamptob]) [tondensation was used, keeping
contact nodes and the first fourteen modal cootdma

Damper geometry corresponds to the family of undéigom wedge dampers having flat faces with
base anglest and 3 equal to 60° and 30°, respectively. The parameatérthe system and the
friction interface are all given in consistent gystof units.

The number of contact points along the damper sglpsogressively increased from 1 up to 4, in
order to test the efficiency of the proposed Arieaft Method (AM) and to compare it to the
classical Newton Raphson Method (NRM), based omitefdifference scheme. A wide range of
damper masses is studied.
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In order to select the N contact points over edallébplatform the following procedure is adopted
(Figure 4):

1. the contact area is divided into N equally spaasdoss disposed along the longitudinal axis

of the system (axis z).

2. For each sector, the contact point is taken imtlgzlle of the sector.
In Figure 5 the amplitude corresponding to the ®1& bending mode is plotted against the
excitation angular frequency for 4-contact-poinhfaguration. The abscissa axis is normalised to
the resonance angular frequerwy of the linear blade without friction dampers. Laftd right
peaks correspond to the linear cases, whilst atlnetes represent responses for intermediate values
of damper mass (centrifugal force). Damper massiimalised to the optimal value.
Results for blade response are equivalent for lnetthods; it confirms the correctness of the
analytical expressions used to compute the Jacabatnx of the system and implemented in the
numerical code. According to the solving methoddysifferent number of iterations are performed
to achieve the required tolerance. In Figure 6paesentative example of the number of iterations
required to calculate the solution for the optirdamper mass is shown for both methods. The
analytical method proved to be more stable andno €quation roots with fewer iteration than
numerical NRM.
The excellent efficiency obtained by the analyticedthod is due not only to the lesser number of
iterations but also the higher speed at which #reycomputed. In Table 2 calculation times for 4
contact point configuration obtained with propogdd and those for classical NRM are listed.
They are normalized with total calculation timersipey the classical NRM.
Proposed method showed to be more efficient tharNtRM for any number of contact points. In
detall, its benefit becomes higher as the numbeaoatact points increases, as shown in Figure 7,
where total elapsed time spent on the calculatibfrRFs versus number of contact points is
represented for both methods. Calculation timesnarenalized in order to have the unit value in
case of 1 contact point computed with the numei&iM.
Calculation time for the analytical method growsehrly with the number of contact points with a
slope much smaller than that of the numerical NRM.
The linear growth of calculation times with respextthe number of contact points observed in
Figure 7 cannot be a priori extended also to systeharacterized by a larger number of contact
points.
In detail, at the generic'niteration, the following quantities are computgilen a starting vector
XL

1. the vector of Fourier coefficients of contact faég(X"™?)

15



.0 (n-1) - L . . i
2. the matnx% containing derivatives of Fourier coefficients ahtact forcegq(X"™?)

with respect tX.
3. the vector of residuals(x ")
4. the Jacobian matrig™
5. the vectorx™ = X (™) — g0 3 (x ("))
The number of operations necessary to performIstd step 2 grows linearly with the number of

contact DOFs.
In steps 3, 4 and 5, the most time consuming ojperé the computation of terid™” because it

needs the solution of the linear systeff” l](X(”‘l)). For example if direct methods such as the

Cholesky factorization are employed, the numbesparations increases proportionally to the cube
of the number of contact DOFs.

In conclusion, since the methodology describechia paper only affects step 2, time savings per
iteration due to its implementation increase liheavith the number of contact DOFs, but total
calculation time in case of a very large numbecaitact DOFs may manifest a non-linear growth

with respect to the number of contact DOFs.

6. Conclusions

In this paper an analytical method for the forcesbonse calculation of dynamical systems having
wedge dampers by means of iterative Newton-Rapksbhame has been formulated. The method
allows to evaluate analytically the Jacobian matfithe system at each step. It is exact, completel
analytical and optimizes the calculation of deiiives of nonlinear contact force Fourier expansion
coefficients with respect to structure absolut@lkdisements.

The proposed method is inspired to the method deeel by Petrov and Ewins ([10]) for a
particular friction damper configuration and haeextended to a wedge damper model. It is
applicable to any type of structures, includingsiiaharacterized by cyclic symmetry boundary
conditions.

The numerical code POLI-Damper in which the proceduas been included, can be integrated
with some of the most popular standard finite elencedes.

The method has been successfully applied to contpetdorced response of a real intermediate
pressure turbine blade under cyclic symmetry boyndanditions with underplatform wedge
dampers.
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It has been compared to the classical numericaltble®aphson Method based on finite different

scheme within a large range of damper masses. G@opahows that the proposed method allows
up to about 80% of time savings with respect todlssical Newton-Raphson scheme without loss
of precision.

The total amount of time savings grows as the nundfecontact points increases. As a

consequence, it looks promising for being emplogled in forced response calculation of mistuned
blade assemblies with wedge dampers, where cyghurgetry boundary conditions cannot be

applied and the whole assembly must be analyzed.
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Figure 3. Scheme of a cyclic symmetric blade as$erihe fundamental sector, made of one blade

and one damper, is drawn in continuous line.
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Figure 4. Contact point selection on blade platform
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Figure 5. FRF of 8 bending mode for 4-contact-point configuration.
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Table 1. Expressions for the derivatives of Fouwmefficients of tangential forces on the left

damper interface with respect to relative displaeeis

PP,
PN,
State EE PE/NE EP/EN NP
NN
() () () ()
i aFlO |:IC-i_deCC i“‘ ﬁﬂc aFlO |:IC-i_deCC O
ouc ou. STFUlt du. du.
dug | dug °© ¢ sFult dug ° dug © ¢
(i) =0 =) =0)
a(;:lc 6610 Dc __—'-“[]:|:?) 20 Dc+deCCj| ‘310 DC 0
Ve Ve S+H C Ve
oF. () 1= +u [oFY 1=
a\ic av10 He SFULEL av20 He =KgOes axjo He 0
S S S S
aFl(Sj) _ al:1((1)) |:|] — k |:|| + U @.Fég)) DI _ aFl((;) DI — k |:|] O
U, ou, o ¢ sFult ou. ° ou, ° ¢
(i) (J) - j) (J)
OFY | R o Tu O 1, %0 ko | o
Oug oug STUlE dug oug
(J) () - ) (J)
a;:ls _ ?;:10 []S j ulj: |:aFéo D]S + kd Dcs:| _ aaFlO DIS 0
Ve Ve S+H c Ve
oF. ) F1=0) Tu [orD E=0)
1S _ 10 []S — 20 D]S _ kd DISS — 10 DIS 0
0vg 0vg STFulE| dvg ovg

Table 2. Normalized calculation times for 4-cotfaaint configuration.

Normalized
damper 0.25 0.5 0.65| 0.75 1 15 2.5 4 A 75TOT
mass
NRM 3,8% | 3,9%| 44% 48% 21,7% 215% 22,1% 15,7% %?2,2100%
AM 0,5% | 0,5%| 0,6% 1,0% 5,79 5,4016 500 3,2% 1,093%
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