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Electro-optical properties of semiconductor quantum dots:
Application to quantum information processing
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~Received 17 August 2001; published 18 January 2002!

A detailed analysis of the electro-optical response of single as well as coupled semiconductor quantum dots
is presented. This is based on a realistic—i.e., fully tridimensional—description of Coulomb-correlated few-
electron states, obtained via a direct-diagonalization approach. More specifically, we investigate the combined
effect of static electric fields and ultrafast sequences of multicolor laser pulses in the few-carrier, i.e., low-
excitation regime. In particular, we show how the presence of a properly tailored static field may give rise to
significant electron-hole charge separation; these field-induced dipoles, in turn, may introduce relevant exciton-
exciton couplings, which are found to induce significant—both intradot and interdot—biexcitonic splittings.
We finally show that such few-exciton systems constitute an ideal semiconductor-based hardware for anall
optical implementation of quantum information processing.

DOI: 10.1103/PhysRevB.65.075306 PACS number~s!: 03.67.Lx, 71.35.Cc, 73.21.La
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I. INTRODUCTION

In the past years increasing interest has been focuse
semiconductor nanostructures.1 This is mainly due to their
low-dimensional character, which allows one to tailor carr
quantum confinement as well as Coulomb interaction. A
result, this has allowed one to fabricate nanostructured
tems with a properly designed density-of-states which,
turn, exhibit an increased optical efficiency as well as a
duction of energy-relaxation and dephasing processes.2 For
the case of two- and one-dimensional nanostructures,
quantum wells and wires, however, we deal with a par
carrier confinement, i.e., the single-particle energy spect
is still continuous. This allows one to describe their man
body ultrafast optical response in terms of the usual me
field approaches, typical of bulk systems.3

The real scientific and technological ‘‘revolution’’ in th
field was the introduction of quasi-zero-dimensional~0D!
systems, called semiconductor quantum dots.4 Compared to
systems of higher dimensionality—such as quantum w
and wires—they have a discrete, i.e., atomiclike, ene
spectrum and, more important, they exhibit genuine fe
carrier effects. Generally speaking, going from quant
wells and wires to quantum dots~QD’s! we move from
many-electron systems to few-electron ones. This implie
radical change in the theoretical schemes5 as well as in the
experimental techniques6 used to study such quasi-0D nan
structures, often referred to assemiconductor macroatoms.
Apart from their relevance in terms of basic physics, the
novel semiconductor nanostructures have attracted gen
attention because of their technological applications: th
range from laser emitters7 to charge-storage devices,8 from
fluorescent biological markers9 to quantum information pro-
cessing devices.10

In QD’s, the flexibility typical of semiconductors in con
trolling carrier densities has been brought to its extreme:
possible to electrically inject single electrons11 or to photo-
0163-1829/2002/65~7!/075306~23!/$20.00 65 0753
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generate in a QD a single Coulomb-correlated electron-h
pair, i.e., a single exciton.12,13It is even possible to detect th
single-exciton decaying energy emission.12,13 The quantized,
atomiclike, energy structure of QD’s allows for a rich optic
spectrum and for a weak interaction of the QD system w
environmental degrees of freedom~such as phonons, plas
mons, etc.!. This latter feature implies that the quantum ev
lution of the carrier subsystem is affected by lo
decoherence.14

Moreover, their reduced spatial extension—up to fe
nanometers—leads to an increase of two-body interact
among carriers and to stronger Coulomb-correlation effec5

The latter may be used to design a variety ofsingle-electron
devices. In particular, as we shall show, they can be e
ployed to designfully optical quantum gates, as recently pro-
posed in Ref. 15. Indeed, the continuous progress in
fabrication and characterization16 let us foresee a near futur
in which it will be possible to exactly tailor the few-carrie
and optical properties of these 0D systems. In this respe
step forward has been recently made by the analysis
understanding of a single-QD excitonic emission sp
trum,13,17 that uncovered ‘‘hidden’’ symmetries in isolate
QD structures, analogous to Hund’s rules13 for real atoms.
These symmetries imply that, under suitable conditio
Coulomb correlations among excitons in the same
cancel.

The primary goal of this paper is twofold. On the on
hand, we shall present a detailed investigation of the elec
optical response of single as well as coupled QD structu
More specifically, we shall focus on the combined effect
static electric fields and ultrafast multicolor laser pulses. O
investigation will present a variety of field-induced effec
unexplored so far; in particular, we shall show how a pro
erly tailored external field can be used to induce or reinfo
exciton-exciton Coulomb coupling both in single an
coupled QD structures. On the other hand, we shall disc
the application of such field-induced few-exciton effects
©2002 The American Physical Society06-1
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BIOLATTI, D’AMICO, ZANARDI, AND ROSSI PHYSICAL REVIEW B 65 075306
design asemiconductor-based fully optical quantum info
mation processing strategy.15

The paper is organized as follows. In Sec. II we sh
introduce our theoretical approach for the analysis of
electro-optical response of QD structures. Section III p
sents a detailed investigation of the excitonic as well as b
citonic response of prototypical semiconductor macroato
and molecules in the presence of an applied static field
Sec. IV our quantum information processing strategy is d
cussed and a few simulated experiments of basic quan
information/computation~QIC! operations are presente
Finally, in Sec. V we shall summarize and draw som
conclusions.

II. THEORETICAL APPROACH

The physical system under investigation is a gas
electron-hole pairs confined in a quasi-0D semiconduc
structure, i.e., a single as well as a multiple QD. In this ca
the total Hamiltonian of our semiconductor nanostruct
can be regarded as the sum of two terms,H5H°1H8: A term
H° describing the correlated electron-hole subsystem,
free carriers plus confinement potential plus carrier-car
Coulomb interaction, and a termH8 describing the interac
tion of the carrier subsystem with coherent-light sources
environmental degrees of freedom, i.e., carrier-light p
carrier-phonon interactions.

A. Single-particle description

Let us first consider the gas of noninteracting carrie
electrons~e! and holes~h! confined within the quasi-0D
semiconductor structure. The quantum confinement can
described in terms of an effective potentialVc

e/h whose
height is dictated by the conduction/valence band disco
nuities. Since the energy region of interest is relatively clo
to the band gapegap of the semiconductors forming our he
erostructure, we shall describe the bulk band structure
terms of the usual effective-mass approximation.18 In addi-
tion, since the confinement potentialVc

e/h is a slowly varying
function on the scale of the lattice periodicity, we shall wo
within the ‘‘envelope-function’’ picture.19

Within such approximation scheme, the noninteract
carriers in our quasi-0D structure are then described by
following Schrödinger equation:

F2
\2¹ r

2

2me/h
1Vc

e/h~r !Gc i / j~r !5e i / jc i / j~r !, ~1!

where me/h is the bulk effective mass for electrons/hol
while i / j denotes the set of single-particle quantum numb
including charge as well as spin degrees of freedom.20 Here,
c i / j (r ) is the envelope function of statei ( j ), the eigenvalues
e i / j correspond to the energy levels of the carriers induced
the confinement-potential profileVc

e/h ; since the latter—for
any realistic semiconductor nanostructure—is finite, the lo
est part of the single-particle energy spectrume i / j is discrete,
while for increasing energies it evolves into a continuu
The different approaches commonly employed for the so
tion of Eq.~1! are described in Appendix A; according to th
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energy region of interest, they range from direct thre
dimensional~3D! plane-wave expansions, to factorized-sta
solutions, or to simplified two-dimensional paraboli
potential models.

B. Coulomb-correlated carrier system

Given the above single-particle representation$ i %($ j %) for
electrons~holes!—i.e., the set of 3D eigenfunctionsc i(r )
[^r u i & @c j (r )[^r u j &# and the corresponding energy leve
e i(e j )—let us now introduce the following creation an
destruction operators for electrons and holes

u i &ci
†u0&→u0&5ci u i &, u j &5dj

†u0&→u0&5dj u j &, ~2!

where u0& denotes the electron-hole vacuum state. With
such second-quantization picture, the single-particle Ham
tonian, i.e., the Hamiltonian describing the noninteract
carriers within our 0D confinement potential, can be writt
as

Hc5He1Hh5(
i

e ici
†ci1(

j
e jdj

†dj . ~3!

The carriers~electrons and holes! within our quasi-0D
nanostructure, however, interact via the two-body Coulo
potentialV(r2r 8). Due to such interaction, several correl
tion effects take place. Here, only processes conserving
total number of carriers are considered, thus Auger recom
nation and impact ionization are neglected. Such proce
are known to become important only at very high densit
and at energies high up in the band.21 In this case the Hamil-
tonian describing carrier-carrier interaction within our sing
particle i / j picture can be written as

Hcc5Hee1Hhh1Heh

5
1

2 (
i 1 ,i 2 ,i 3 ,i 4

Vi 1i 2i 3i 4
ci 1

† ci 2
† ci 3

ci 4

1
1

2 (
j 1 , j 2 , j 3 , j 4

Vj 1 j 2 j 3 j 4
dj 1

† dj 2

† dj s
dj 4

2 (
i 1 ,i 2 , j 1 , j 2

Vi 1 j 1 j 2i 2
ci 1

† dj 1

† dj 2
ci 2

, ~4!

where

Vl
18 l

28 l 2l 1
5E drE dr 8c l

18
* ~r !c l

28
* ~r 8!V~r2r 8!c l 2

~r 8!c l 1
~r !,

~5!

are the matrix elements of the Coulomb potential for t
generic two-particle transitionl 1l 2→ l 18l 28 . The first two
terms on the rhs of Eq.~4! describe the repulsive electron
electron and hole-hole interactions while the third one
scribes the attractive interaction between electrons and ho

We stress the full 3D nature of the present approach ba
on the detailed knowledge of the 3D carrier wave functionc.
The explicit evaluation of the above matrix elements for
6-2
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ELECTRO-OPTICAL PROPERTIES OF SEMICONDUCTOR . . . PHYSICAL REVIEW B65 075306
generic 3D confinement-potential profileVc
e/h , i.e., for a ge-

neric set of envelope functionsc i / j , is described in Appen-
dix B.

Combining the single-particle Hamiltonian in Eq.~3! with
the Coulomb-interaction term in Eq.~4!, we get the follow-
ing many-body Schro¨dinger equation for our Coulomb
correlated system:

H°uC&5~Hc1Hcc!uC&5EuC&. ~6!

Here, uC& denotes the interacting many-body state in o
Fock space andE the corresponding total energy.

Let us now introduce the total-number operators for el
trons and holes

Ne5(
i

ci
†ci , Nh5(

j
dj

†dj . ~7!

It is easy to show that the above global operators comm
with the carrier HamiltonianH° in Eq. ~6!. We can therefore
look for many-body statesuC& corresponding to a given
number of electrons (Ne) and holes (Nh). In particular, we
shall consider the case of intrinsic semiconductor materia18

for which Ne5Nh ; in this case the good quantum number
the total number of electron-hole pairs:N5Ne5Nh and the
Schrödinger equation~6! can be rewritten as

H°ulN&5ElN
ulN& , ~8!

whereulN& andElN
denote, respectively, thelth many-body

state and energy level corresponding toN electron-hole pairs.
For any given numberN of electron-hole pairs we thu

identify a subspace of the original Fock space, for wh
there exists a natural basis$u l N&%, given by the eigenstates o
the single-particle Hamiltonian in Eq.~3!:

Hcu l N&5e l N
u l N&. ~9!

Here,l N[ i 1 ,i 2 ,...,i N ; j 1 , j 2 ,...,j N is a compact notation fo
the set of noninteracting electron and hole single-part
quantum numbers corresponding to ourN electron-hole
pairs. Indeed, we have

u l N&[u$ i nj n%&5 )
n51

N

ci n
† dj n

† u0& ~10!

ande l N
5(n51

N (e i n
1e j n

).
The noninteracting basis set in Eq.~10! constitutes the

starting point of the direct-diagonalization approach used
the solution of the many-body Schro¨dinger equation~8!. In-
deed, we can expand the unknown many-body stateulN&
over our single-particle basis

ulN&5(
l N

Ul N

lNu l N&. ~11!

By inserting the above expansion into Eq.~8!, the latter is
transformed into the following eigenvalue problem:
07530
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(
l N8

~Hl Nl
N8

°
2ElN

d l Nl
N8
!U

l
N8

lN50, ~12!

where

Hl Nl
N8

°
5^ l NuH°u l N8 &5e l N

d l Nl
N8
1n l Nl

N8
~13!

are the matrix elements of the carrier HamiltonianH° in our
single-particle basis. They are given by a diagonal—i
noninteracting—contribution plus a nondiagonal term giv
by the matrix elements of the Coulomb-interaction Ham
tonian in Eq.~4!: Vl Nl

N8
5^ l NuHccu l N8 &. Their explicit form—

which involves the various two-body Coulomb matrix el
ments in Eq.~5!—is given in Appendix C for the excitonic
(N51) and biexcitonic (N52) case.

In the presence of Coulomb interaction, the Hamiltoni
matrix in Eq. ~13! is nondiagonal; therefore, the interactin
many-body statesulN& are, in general, a linear superpositio
of all the single-particle statesu l N& @see Eq.~11!#, whose
coefficientsUl N

lN can be regarded as elements of the unit

transformation connecting the single-particle to the intera
ing basisUl N

lN5^ l NulN&.

The numerical evaluation of our Coulomb-correlat
states is thus performed by direct diagonalization of
Hamiltonian matrix H° in Eq. ~13!, using a large—but
finite—single-particle basis set.

C. Interaction with coherent light sources

The Coulomb-correlated carrier system described so
will interact strongly with electromagnetic fields in the op
cal range. For the case of a coherent light source—the
considered in this paper—the light-matter interaction Ham
tonian in our second-quantization picture can be written

H852E~ t !(
i j

@s i j* ci
†dj

†1m i j djci #, ~14!

whereE(t) is the classical light field and

m i j 5mbulkE c i~r !c j~r !dr ~15!

is the dipole matrix element for theij transition,mbulk being
its bulk value. In the presence of a time-dependent cohe
optical excitation the quantum-mechanical evolution of o
electron-hole system will be described by the followin
time-dependent Schro¨dinger equation:

i\
d

dt
uC~ t !&5HuC~ t !&5~H°1H8!uC~ t !&. ~16!

Contrary to the carrier HamiltonianH°, the carrier-light term
H8 does not commute with the global number operators
Eq. ~7!. Indeed, the two terms in Eq.~14! describe, respec
tively, the light-induced creation and destruction of
electron-hole pair. Therefore,N is no more a good quantum
number and the many-body state at timet is, in general, a
linear superposition of all the correlatedN-pair basis states
6-3
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BIOLATTI, D’AMICO, ZANARDI, AND ROSSI PHYSICAL REVIEW B 65 075306
uC~ t !&5(
N

(
lN

alN
~ t !ulN&. ~17!

By inserting the above expansion into the time-depend
Schrödinger equation~16! we get

i\
d

dt
alN

~ t !5ElN
alN

~ t !1(
N8

(
l

N8
8

H
lNl

N8
8

8 al
N8
8 ~ t !, ~18!

where

H
lNl

N8
8

8 5^lNuH8ulN8
8 & ~19!

are the matrix elements of the light-matter Hamiltonian~14!
within our interactingN-pair basis$lN%.

It can be easily shown~see Appendix C! that the above
matrix elements are different from zero only forN85N
61; this confirms that the only possible transitions areN
→N11 or N11→N which correspond, respectively, to th
generation and destruction of Coulomb-correlated electr
hole pairs, i.e., excitons, discussed above. Moreover, we
with well precise spin selection rules: the only matrix e
ments in Eq.~19! different from zero are those conservin
the total spin of the carrier-light system. Indeed, the poss
final statesulN& depend on the spin configuration of the in
tial many-body stateulN8

8 & as well as on the polarization o
the electromagnetic fieldE(t). In particular, we are allowed
to create two excitons with opposite spin orientation~i.e.,
antiparallel-spin configuration! in the same orbital quantum
state. In contrast, due to the Pauli exclusion principle, t
excitons with the same spin orientation~i.e., parallel-spin
configuration! cannot occupy the same orbital state.

By treating Eq.~18! within the standard time-depende
perturbation-theory approach and assuming a monoc
matic light source of frequencyv, we can define the absorp
tion probability corresponding to thelN21→lN transition

PlN21→lN
~v!5

2p

\
uHlNlN21

8 u2d~ElN
2ElN21

2\v!.

~20!

It describes the many-exciton optical response of our
structure, i.e., the probability of creating a new exciton in
presence ofN21 Coulomb-correlated electron-hole pairs.

1. Excitonic absorption

As a starting point, let us consider the so-called excito
response, i.e., the optical response of our carrier system
the 0→1 transition. In this case, the initial (N50) state is the
~electron-hole! vacuum stateu0&, while the final (N51) state
ul1& corresponds to a Coulomb-correlated electron-hole p
i.e., an exciton. Combining Eqs.~10! and~11!, for N51 we
have

ul1&5(
l 1

Ul 1

l1ci 1
† dj 1

† u0&, ~21!

wherel 15 i 1 , j 1 denotes the single-particle electron-hole b
sis for N51.
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The excitonic-absorption probability is then given by E
~20! with N51:

Pl1

ex~v!5
2p

\
uHl108 u2d~El1

2\v!, ~22!

where

Hl108 5^l1uH8u0& ~23!

is the matrix element of the light-matter Hamiltonian~14! for
the 0→1 optical transition. Its explicit form is given in Ap
pendix C. The excitonic spectrum is finally obtained by su
ming the absorption probability in Eq.~22! over all possible
final statesul1&:

Aex~v!5(
l1

Pl1

ex~v!. ~24!

2. Biexcitonic absorption

Let us now come to the so-called biexcitonic respon
i.e., the optical response corresponding to the 1→2 transi-
tion. In this case, the initial (N51) state coincides with the
excitonic stateul1& in Eq. ~21!, while the final (N52) state
ul2& corresponds to two Coulomb-correlated electron-h
pairs, i.e., a biexciton. Combining again Eqs.~10! and ~11!,
for N52 we get

ul2&5(
l 2

Ul 2

l2ci 1
† dj 1

† ci 2
† dj 2

† u0&, ~25!

wherel 2[ i 1 j 1 ,i 2 j 2 denotes the single-particle electron-ho
basis forN52.

The excitonic-absorption probability is then given by E
~20! with N52:

Pl1→l2

biex ~v!5
2p

\
uHl2l1

8 u2d~El2
2El1

2\v!, ~26!

where

Hl2l1
8 5^l2uH8ul1& ~27!

is the matrix element of the light-matter Hamiltonian~14! for
the 1→2 optical transition. Its explicit form is given again i
Appendix C.

The biexcitonic spectrum is finally obtained by summi
the absorption probability in Eq.~26! over all possible final
statesul2&:

Al1

biex~v!5(
l2

Pl1→l2

biex ~v!. ~28!

We stress that, contrary to the excitonic spectrum in Eq.~24!,
the biexcitonic spectrumAbiex is a function of the initial ex-
citonic statel1 .

Equations~22! and ~26! will be employed in Sec. III to
investigate the electro-optical response of single as wel
coupled QD structures. However, for the case of ultraf
optical excitation and strong light-matter coupling, the abo
perturbation-theory picture can no longer be applied, and
6-4
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ELECTRO-OPTICAL PROPERTIES OF SEMICONDUCTOR . . . PHYSICAL REVIEW B65 075306
time evolution of our many-body stateuc(t)& can be ob-
tained by solving the time-dependent Schro¨dinger equation
in Eq. ~16!. We stress that, contrary to the many-excit
absorption probability in Eq.~20!, the number of excitons
i.e.,

N~ t !5^C~ t !uNeuC~ t !&5^C~ t !uNhuC~ t !&, ~29!

is a continuous function of time and changes according to
specific ultrafast laser-pulse sequence considered.

D. Interaction with environmental degrees of freedom

Let us finally come to the interaction of the carrier su
system with various environmental degrees of freedom, s
as phonons, plasmons, etc. They will not be treated exp
itly; instead, we shall adopt a statistical description of t
carrier subsystem in terms of its density-matrix operator

r~ t !5uC~ t !&^C~ t !u, ~30!

the overbar denoting a suitable ensemble average.22 Its time
evolution can be schematically written as

d

dt
r~ t !5

d

dt
r~ t !U

H

1
d

dt
r~ t !U

env

. ~31!

The first term describes the deterministic evolution induc
by the carrier HamiltonianH according to the well-known
Liouville–von Neumann equation

d

dt
r~ t !U

H

5
1

i\
@H,r~ t !#, ~32!

while the second one describes a nonunitary evolution,23 due
to energy-relaxation and dephasing processes. The latter
be treated within the standardT1T2 model ~see Sec. IV B!.

As for the case of the Schro¨dinger equation~16!, it is
convenient to describe the density-matrix operatorr—as
well as its time evolution—within our Coulomb-correlate
N-pair basis. By combining Eqs.~17! and ~30!, we get

rlNl
N8
8 ~ t !5alN

~ t !a
l

N8
8

* ~ t !: ~33!

the density matrix in thel representation is bilinear in th
state coefficientsaln

in Eq. ~17!.

E. The excitonic picture

As discussed in Sec. II B, the generic Coulomb-correla
N-pair stateulN& can be written as a linear combination@see
Eq. ~11!# of the noninteracting electron-hole basis states
Eq. ~10!. Such single-particle picture is used to compu
Coulomb-correlatedN-pair states and energy levels via th
exact-diagonalization approach described in Appendix
However, it is often convenient to adopt—instead of
single-particle description—an excitoniclike picture, i.e.,
quasiparticle number representation based on Coulo
coupled electron-hole pairs. The aim of this section is~I! to
show that, in general, such an excitonic description is
07530
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possible, and~II ! to identify the basic requirements need
for such a quasiparticle number representation and there
for QIC processing.

To this end, let us introduce the following set of exciton
creation operators

ul1&5Xl1

† u0&, ~34!

where, as usual,u0& denotes the electron-hole vacuum sta
andl1 is the label for the generic excitonic (N51) state. By
comparing Eq.~21! with the above definition, we can write
these excitonic operators in terms of the electron and h
operators, i.e.,

Xl1

† 5(
i j

Ui j
l1ci

†dj
† . ~35!

Moreover, in view of the unitary character of the transform
tion U, we get

ci
†dj

†5(
l1

Ui j
l1* Xl1

† . ~36!

If we now consider the explicit form of the noninteractin
basis states in Eq.~10!, the genericN-pair many-body state
~11! can formally be written as

ulN&5(
$l1%

C
$l1%
lN u$l1%& ~37!

with

u$l1%&5)
l1

Xl1

† u0&. ~38!

The expansion in Eq.~37! would suggest to define a so
of excitonic number representation in terms of theN-pair
statesu$l1%&. We stress that, in general, this is not possib
The point is that, in general,the set of states in Eq. (38) d
not constitute a basis for our N-pair Hilbert subspace. This
is intimately related to the fact that—contrary to electron a
hole creation and destruction operators—the excitonic op
tors in Eq.~35! do not obey canonic commutation relation
In general, the commutator

Cl1 ,l
18
ª@Xl1

,X
l

18
†

# ~39!

is itself an operator. This clearly prevents the introduction
number operators, and, therefore, of a genuine quasipar
number representation.

As will be discussed in Sec. IV, two basic requiremen
are needed to perform quantum information processing~i!
the tensor-product structure of the ‘‘computational spac
considered and~ii ! the SU~2! character of the raising
lowering operators acting on our computational subsyste
known as ‘‘qubits.’’ The main question is thus to study if—
and in which conditions—the Coulomb-correlated electro
hole system discussed so far may act as quantum hardw
i.e., may be used to perform quantum information proce
6-5
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ing. This requires to identify a set of independent degree
freedom, qubits, with a SU~2! character, the one of spin-1

2

systems.
As a starting point, one should then check if there exis

set of independent excitonic degrees of freedom; this co
sponds to verify that for any pair of excitonic statesl1 and
l18 the commutator of Eq.~39! is equal to zero.

Let us now discuss the tensor product structure of
computational subspace. To this end let us consider again
case of two qubitsa andb. Generally speaking, we know tha
the Hilbert space of a bipartite system isHa^ Hb , where
Ha/b are the Hilbert spaces of the individual qubits. Th
means that if$u l a&% is an orthonormal basis set forHa and
$u l b&% is an orthonormal basis set forHb , then$u l a& ^ u l b&% is
a basis set for the whole computational space. What
needs to test is the possibility of writing the many-bo
ground state—corresponding in this case to a biexcito
statel2–as the product of two independent excitonic sta
l1

a andl1
b . This corresponds to verify that

^l2u~ ul1
a&ul1

b&)51. ~40!

Provided that the above requirements are fulfilled, let
now focus on the single qubit, i.e., on one of the independ
excitonic statesl1 . In this case, we want to check that th
exciton creation/annihilation operators introduced in Eq.~34!
obey usual SU~2! commutation relations. More specificall
we are interested in defining thez-component pseudospi
operatorSl1

z as

Sl1

z
ª

1

2
Cl1 ,l1

. ~41!

In order to check that this is really az-component spin op-
erator, we should verify that its average value over o
many-body state is either plus or minus one. Deviations fr
this ideal scenario can be regarded as a measure of the
age from our computational space due to the presenc
external, i.e., noncomputational, excitonic states. In Sec
we shall show that for prototypical GaAs-based quantum-
molecules all the above requirements are well fulfilled a
our excitonic system can indeed be used as quantum h
ware.

III. ELECTRO-OPTICAL RESPONSE OF
SEMICONDUCTOR QUANTUM DOTS

In this section we shall analyze the electro-optical pro
erties, i.e., the optical response in the presence of a s
electric fieldF, of single as well as coupled QD structure
While the light-matter interaction is described by the Ham
tonianH8 in Eq. ~14!, the presence of a static fieldF can be
accounted for by adding to the confinement potentialVc

e/h in
Eq. ~1! the corresponding scalar-potential term

Vc
e/h~r !→Vc

e/h~r !6eF•r . ~42!
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Here, the6 sign refers, respectively, to electrons and hol
As discussed below, this sign difference will give rise
exciton-exciton coupling and significant field-induced ener
renormalizations.

Within the usual envelope-function picture,19 the single-
particle properties of our quasi 0D structure are described
the Schro¨dinger equation in Eq.~1!. Similar to the case of
semiconductor quantum wires,24 a quantitative analysis o
the whole single-particle spectrum requires a direct num
cal solution of Eq.~1!; this can be performed using a full
3D plane-wave expansion, as described in Ref. 25 and br
recalled in Appendix A.

If, in contrast, our interest is limited to the low-energ
range only, for most of the QD structures realized so far
carrier confinement can be described as the sum of two
tential profiles, one acting along the growth~or perpendicu-
lar! direction and one affecting the in-plane~or parallel! co-
ordinates only:

Vc
e/h~r !5V'

e/h~r'!1Vi
e/h~r i!. ~43!

As a consequence, the 3D carrier envelope functionc i / j can
be factorized according to

c i / j~r !5c i' / j'
' ~r'!c i i / j i

i
~r i! ~44!

and the single-particle spectrum is the sum of the para
and perpendicular ones:

e i / j5e i' / j'
' 1e i i / j i

i . ~45!

In this case, the original 3D problem is reduced to the so
tion of two independent Schro¨dinger equations, along th
growth direction and within the parallel plane. This can
still performed employing the plane-wave-expansion a
proach described in Appendix A.

For most of the state-of-the-art QD structures we ha
strong confinement~few nanometers! along the growth direc-
tion, while the in-plane confinement potentialVi

e/h is much
weaker. Moreover, as far as the low-energy region is c
cerned, the in-plane confinement is well described in ter
of a 2D parabolic potential. For this case the Schro¨dinger
equation within the 2D parallel subspace can be sol
analytically—also in the presence of the static fieldF ~see
Appendix A!—and thus the problem reduces to a numeri
solution of the Schro¨dinger equation along the perpendicul
direction. The analysis of the electro-optical response
semiconductor quantum dots presented in the remainde
this section is based on this parabolic-confinement mo
whose derivation and validity limits are discussed in Appe
dix A.

A. Single QD structure

Let us start our analysis by considering the case o
single QD structure in the presence of an in-plane static e
tric field: F5(F i ,F'5F,0). Within the parabolic-
confinement model previously introduced~see also Appendix
A!, the quasi-0D carrier confinement for both electrons a
holes is described by an in-plane parabolic potentialVi

e/h
6-6
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@see Eq.~A5!# plus a squarelike potentialV'
e/h corresponding

to the interface band offset along the growth direction.
As a starting point, we have considered an ideal QD str

ture characterized by the following material and confinem
parameters for electrons and holes: effective massme
50.05m° , mh50.08m° , and parabolic-confinement energ
\ve540 meV, \vh525 meV; the well width isw550 Å
and the static dielectric constant@see Eq.~B3!# has been
taken to be«0512. Within this ideal QD model, the square
like potential profile along the growth direction is charact
ized by an infinite barrier height, i.e., De/h
@\2p2/2me/hw2. By choosing the above material and co
finement parameters for electrons and holes, we deal wi
very special case for which the set of electron and h
single-particle envelope functionsce and ch coincide. In-
deed, the in-plane spatial extensiona in Eq. ~A11! is the
same for electrons and holes. Moreover, we shall disc
how this symmetry, not present in a realistic QD structu
~see below!, is related to special features in the optical r
sponse of the system~‘‘hidden symmetry’’!, as described in
Ref. 13.

Due to the strong perpendicular carrier confinement,
both electrons and holes we deal with a single localiz
state; therefore, the low-energy single-particle spectrum
simply given by a sequence of equally spaced discrete le
corresponding to the 2D parabolic confinement@see Eq.
~A12!#. This scenario is not affected by the presence of
in-plane static fieldF, which manifests itself only through a
overall redshiftDE of the single-particle spectrum, known a
Stark shift@see Eq.~A9!#.

In the absence of Coulomb interaction, both the excito
and the biexcitonic absorption spectra@see Eqs.~24! and
~28!# will exhibit optical transitions connecting the abov
single-particle energy levels. As usual, their amplitude is d
tated by the corresponding optical matrix elements, i.e.,
cillator strength, as well as by the combined state deg
eracy, i.e., joint density-of-states~DOS!.

Figures 1 and 2~b! show the excitonic-absorption spe
trum for F50 and F550 kV/cm, respectively. Moreover
the excitonic-absorption spectra are compared to the sin
particle ones, i.e., the ones evaluated in the absence of
lomb interaction, which respectively correspond to t

FIG. 1. Single-particle~dashed curve! and excitonic absorption
spectra~solid curve! in the field-free case (F50). The inset shows
how the exciton binding energyDE is reduced as the in-plane ele
tric field F increases.
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dashed curves in Figs. 1 and 2~a!. As already pointed out, in
this case the optical transitions connect the equally spa
single-particle electron and hole states.

As discussed in Appendix A, forF50 the only allowed
optical transitions are those conserving the envelope func
total angular momentum, i.e.,m52m8 @see Eq.~A20!#;
moreover, due to the special symmetry between electr
and holes previously discussed, we havene5ne8 @see Eq.
~A12!#. Their amplitude is dictated by the joint state dege
eracy, which for the single-particle case~see dashed line! is
given by (ne11). In contrast, for finite values of the in
plane static fieldF @see part~a! in Fig. 2#, the above selection
rules are relaxed~see Appendix A! and we deal with new
optical transitions corresponding tom1m8Þ0 andneÞne8 ,
not present in the field-free case. Moreover, in the prese
of the static field the spectra exhibit a significant reduction
oscillator strength. This is ascribed to a reduction of the
plane overlap between electrons and holes@see Eq.~A18!#,
due to the charge separation induced by the applied field@see
Eq. ~A8!#. This can be clearly seen in Fig. 4, where we sh
the single-particle electron and hole ground-state charge
tributions ~dashed curves! corresponding to the single
particle spectra of Fig. 2. ForF50 ~see Fig. 3! the electron
and hole parabolic-potential minima coincide and, therefo
the two charge distributions exhibit the same symmetry c
ter. In contrast, in the presence of the in-plane fieldF the two
potential minima are shifted toward different direction
This, in turn, induces an electron-hole charge separation
clearly shown in Fig. 4. Such charge displacement—wh
corresponds to the formation of an in-plane electri
dipole—is responsible for the oscillator-strength reduction
Fig. 2 previously discussed.

Let us now come to the Coulomb-correlated case~see
solid curves in Figs. 1 and 2 and Figs. 3 and 4!. In the
presence of Coulomb interaction—which for the exciton
case (N51) corresponds to electron-hole attraction—t

FIG. 2. Single-particle~a! and excitonic absorption spectra~b!
for an in-plane fieldF550 kV/cm. The excitonic spectrum in~b!—
apart from a rigid shift due to Coulomb interaction—is now com
parable to the single-particle one. Here, numbers from 1 to 4 id
tify corresponding transitions in each spectrum.
6-7
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BIOLATTI, D’AMICO, ZANARDI, AND ROSSI PHYSICAL REVIEW B 65 075306
main effect is a global redshift of the Coulomb-correlat
spectrum compared to the single-particle one. More p
cisely, for F50 we find a relatively strong redshift of th
lowest optical transition~of about 20 meV!. For higher tran-
sitions this effect is reduced, which can be understood c
sidering that high-energy states are characterized by an
creasing spatial extension and, therefore, by a larger ave
distance between electrons and holes. Moreover,
Coulomb-correlated spectrum exhibits a transfer of oscilla
strength toward low energies between quasidegenerate
cal transitions. This scenario is well established, and cha
terizes also systems of higher dimensionality, such as qu
tum wells and wires.2,24 For increasing values of the applie
field we have a progressive reduction of the excito
redshift as well as of the oscillator-strength transfer, i.e.,
the electron-hole attraction. This is confirmed by the inse
Fig. 1, where the exciton binding energy is reported a
function of the applied field.

In order to better understand the physical origin of t
field-dependent behavior, we have carried on a detailed
vestigation of the excitonic wave function projected into t
electron and hole subspaces. More precisely, by rewri
Eq. ~21! in the coordinate representation, the two-body ex
tonic wave function is given by

Cl
ex~re ,rh!5(

i j
Ui j

l c i~re!c j~rh!. ~46!

FIG. 3. Effective electron and hole charge distribution for t
ground-state exciton in the field-free case. The three curves c
spond to noninteracting~Ni! as well as to Coulomb-correlatede-h
pairs as indicated.

FIG. 4. Same as in Fig. 3 but for an in-plane fieldF
550 kV/cm.
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The square modulus ofCex will then describe the conditiona
probability of finding the electron with coordinatere and the
hole with coordinaterh . If we now integrate such quantity
over one of the two coordinates we get

f l
e~re!5E uCl

ex~re ,rh!u2drh5(
i i 8, j

Ui j
l* Ui 8 j

l c i* ~re!c i 8~re!

~47!

and

f l
h~rh!5E uCl

ex~re ,rh!u2dre5 (
i , j j 8

Ui j
l* Ui j 8

l c j* ~rh!c j 8~rh!.

~48!

The quantity f l
e/h can be regarded as an effective sing

particle probability distribution, which accounts for th
electron-hole correlation described by the excitonic wa
function in Eq.~46!. In the absence of Coulomb correlatio
the transformationU reduces to the identity (Ui j

l 5dl,i j ) and
the effective single-particle distributionsf l

e/h coincide with
the square modulus of the single-particle wave functions
electrons and holes, i.e., f i

e(re)5uc i(re)u2, f j
h(rh)

5uc j (rh)u2.
The effective charge distributions for electrons a

holes—defined, respectively, in Eqs.~47! and~48!—are plot-
ted in Figs. 3 and 4 for the ground-state-exciton case.
expected, in the presence of Coulomb correlation the cha
distribution deviates from the corresponding Coulomb-fr
case~dashed curves!. For F50 ~Fig. 3! the average distanc
between electrons and holes is very limited, which leads
strong exciton binding~see Fig. 1!. For increasing values o
the applied field~Fig. 4! we see again an increasing char
separation. However, the effect is now reduced, compare
the Coulomb-free case~see dashed curves!. This is due to the
competition between the displaced parabolic potentials
the electron-hole Coulomb attraction~see also Fig. 12 in Sec
III C !. The latter is progressively reduced due to a signific
increase of the electron-hole average distance~see again Fig.
4!. This also explains the reduction of the excitonic bindi
energy reported as inset in Fig. 1.

The analysis presented so far suggests that the behavi
the system is governed by the following three characteri
lengths.

~i! The radial extensiona of the parabolic ground state
which in this case is the same for electrons and holes@see
Eq. ~A11!#.

~ii ! The excitonic Bohr radius

aex5
\2«0

e2m
, ~49!

wherem is the reduced electron-hole mass.
~iii ! The total electron-hole displacementd5udi

h2di
eu @see

Eq. ~A8!#.
Generally speaking, whena!aex we are in the so-called

strong-confinement limit: the carrier confinement is dicta
by the single-particle parabolic potential only, which impli
that the wave function of the excitonic ground state coincid
with the product of the electron and hole single-particle wa

re-
6-8
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functions, i.e., the expansion in Eq.~46! contains just one
term. In the opposite case, called weak-confinement li
(a@aex), the excitonic wave function depends on the re
tive coordinate only and resembles the 2D hydrogen-a
solution.

For the case under investigation the situation is as
lows. In the field-free case (d50), the excitonic Bohr radius
(aex.200 Å), is of the same order of the electron and h
ground-state radial extension (a.60 Å), which implies tha
the exciton wave function deviates from the product of
corresponding single-particle states. This is confirmed by
Coulomb-correlated carrier distribution of Fig. 3, compar
to the Coulomb-free one~dashed curve!. However, we are
not very far from the ideal strong-confinement limit prev
ously discussed; Indeed, our numerical analysis has sh
that the single-particle expansion in Eq.~46! can be limited
to a relatively small number (636) of electron-hole states
For increasing values of the applied field—and, therefore
the charge displacementd—the average distance betwee
electrons and holes increases, thus reducing Coulo
correlation effects. This is confirmed by the absorption sp
tra in Fig. 2 as well as by the carrier distributions in Fig.
where the difference between Coulomb-correlated
Coulomb-free results is significantly reduced. We can the
fore conclude that the presence of an in-plane static fielF
induces a net electron-hole charge separation, which lead
a significant suppression of electron-hole Coulomb corre
tion.

Let us now move to the biexcitonic response of our id
QD system. As discussed in Sec. II C, contrary to the ex
tonic case investigated so far, the latter depends on the
configuration of both initial (N51) and final (N52)
Coulomb-correlated states. More precisely, due to the s
selection rules in the light-matter interaction Hamiltonia
we deal with two relevant cases only: the parallel- and
antiparallel-spin one.

Let us consider first the antiparallel-spin configuration.
this case both excitons can occupy the low-energy orb
state. Figure 5 shows the biexcitonic spectrum~dashed
curve! compared to the excitonic one~solid curve! for F
530 kV/cm. We can clearly identify a biexcitonic transitio
~see first peak of the dashed curve!, which is blueshifted with
respect to the ground-state excitonic transition~see first peak
of the solid curve!. This energy renormalization is known a
biexcitonic shift4

DE5El2
2El1

2El
18
. ~50!

This positive energy shift can be understood as follows:
applied field induces for both excitons the same charge s
ration ~see Fig. 4! which results in a repulsive dipole-dipol
coupling. This is confirmed by the field-dependent behav
of the biexcitonic splittingDE shown in the inset in Fig. 5.

Moreover, as shown in the inset, in the field-free case,
dot behaves as an artificial atom and the energy to add
exciton in a shell is, up to the first order in the Coulom
interaction, independent of the shell occupation.17 Indeed,
within first-order perturbation theory, whenF50 the two
excitons occupy the same spherically symmetric orb
07530
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ground state and for an ideal structure as the one we
considering, the biexcitonic splitting is exactly zero, becau
in this case the various attractive and repulsive Coulo
interactions cancel exactly.13 This can be understood as fo
lows. In the strong-confinement limit—which is not far from
the regime considered here—and for antiparallel spins,
biexcitonic splitting can be very well approximated by th
noninteracting single-particle probability distributionsf 0

e

5uc0
eu2 and f 0

h5uc0
hu2 only, i.e.,

DE5
e2

«0
E drE dr 8

D f ~r !D f ~r 8!

ur2r 8u
, ~51!

whereD f 5 f 0
e2 f 0

h is the difference between the electron a
hole single-particle probability densities. Due to the spec
symmetry of the ideal QD structure under investigation,
the field-free case we haveD f 50 and the biexcitonic split-
ting is zero as well.

As already pointed out, in the QD structure under inve
tigation we are not far from the strong confinement lim
However, since our calculation of the biexcitonic splitting
nonperturbative, we get, even in the field-free case, a non
nishingDE. This small, but not negligible biexcitonic split
ting @DE(F50)50.7 meV, see inset in Fig. 5# measures the
Coulomb-interaction contribution, underlying that the re
ground-state biexcitonic wave function has contributio
also from higher-level single-particle states. This value
compatible with the one given in Ref. 4.

We shall now show that the above field-free behavior
due to the special choice of material and confinement par
eters of the ideal QD structure investigated so far. To t
aim, let us now move to the case of a realistic semicondu
macroatom. As prototypical system let us consider a Ga
AlAs QD structure characterized by the following mater
parameters: effective massesme50.067mo and mh
50.34mo , conduction- and valence-band offsetsDe51 eV
and Dh50.58 eV, parabolic-confinement energies\ve

FIG. 5. Excitonic~solid curve! and biexcitonic optical respons
~dashed curve! for the antiparallel-spin configuration in the pre
ence of an in-plane electric fieldF530 kV/cm. The inset shows the
biexcitonic splittingDE as a function of the in-plane fieldF. Notice
that forF50, the latter becomes very small (DE50.7 meV), which
is due to the special symmetry of the QD structure consideredae

5ah ~see text!.
6-9
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530 meV and \vh524 meV, well width w550 Å, and
static dielectric constant«0512.1.

Figure 6 shows again the comparison between excito
~solid curve! and biexcitonic spectrum~dashed curve! for the
antiparallel case in the field-free case. As we can see,
trary to the result in Fig. 5, we now deal with a significa
biexcitonic splittingDE also in the absence of the in-plan
field ~see inset in Fig. 6!. Indeed, for any realistic QD struc
ture we deal with different spatial extensionsae and ah of
the electron and hole single-particle in-plane ground sta
In Fig. 7 we report the electron and hole single-parti
charge distributionsf e and f h ~solid curves! as well as their
differenceD f ~dashed curve!. As anticipated, due to the dif
ferent material and confinement parameters, the charge
tributions for electrons and holes do not coincide anymo
This, in turn, gives rise to local violations of charge neutr
ity, i.e., D f Þ0, and therefore to a nonvanishing biexciton
shift @see Eq.~51!#. We finally stress that the presence of t
in-plane static field leads to a further increase ofDE ~see
inset in Fig. 6!.

Let us now move to the parallel-spin configuration. In th
case we study the probability of creating a second excito

FIG. 6. Excitonic~solid curve! and biexcitonic optical respons
~dashed curve! of a realistic QD structure for the antiparallel-sp
configuration in the field-free case. The inset shows the biexcito
splitting DE as a function of the in-plane fieldF. Opposite to the
symmetric case previously considered~see Fig. 5!, in this more
realistic case the spatial extension for electrons and holes as w
their Coulomb matrix elements are considerably different; this is
physical origin of the positive biexcitonic shift in the field-free ca
~see text!.

FIG. 7. Effective electron and hole charge distributions for
ground-state exciton in the field-free case~solid curves! as well as
their difference~dashed curve!. Due to the realistic QD parameter
considered, the charge neutrality is violated:D f Þ0 ~see text!.
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the dot with the same spin orientation of the first one. Due
the Pauli exclusion principle, the two excitons are not
lowed to occupy the same exciton state. As already poin
out @see Eq.~28!#, the biexcitonic spectrum of the syste
depends on its initial excitonic stateul1&. In Fig. 8 we com-
pare the biexcitonic spectrum~dashed curve! with the corre-
sponding excitonic spectrum~solid curve! for the field-free
case. Here, the biexcitonic spectrum has been computed
suming, as initial stateul1&, the excitonic ground state. Le
us focus on the low-energy part of the spectrum: as expec
due to the Pauli principle, the exciton ground state is forb
den to the second exciton, which can occupy any other h
energy state. Contrary to the antiparallel case~see inset in
Fig. 6!, we now deal with a negative biexcitonic shiftDE,
i.e., the lowest biexcitonic transition~solid curve! is red-
shifted compared to the corresponding excitonic one~second
peak of the dashed curve!. As discussed in Ref. 25, suc
energy renormalization~in this case of the order of 10 meV!
can be ascribed to the attractive dipole-dipole interaction
tween the two excitons in the dot. Indeed, due to their d
ferent orbital quantum numbersl1 andl18—and thus to their
different spatial charge distributions—they exhibit significa
Coulomb coupling. Contrary to the antiparallel-spin ca
previously discussed~see inset in Fig. 6!, now the presence
of an in-plane static fieldF leads to a reduction and eventu
ally to an inversion of the biexcitonic shift~see inset in Fig.
8!. This can be understood as follows: the application of
in-plane field leads to a progressive reduction of the attr
tive, i.e., spatially antiparallel, dipole-dipole Coulomb co
pling; for high fields this is transformed into a repulsive, i.
spatially parallel, dipole-dipole interaction, and therefore t
positive biexcitonic splitting. The transition from red biexc
tonic shifts to blue ones, occurs when the displacement
duced by the electric field becomes of the same order
bigger than the excitonic Bohr radius.

B. Coupled QD structure

Let us now consider the case of a semiconductor ma
molecule, i.e., a coupled QD structure. In particular, as p
totypical system we shall investigate the GaAs/AlAs coup

ic

as
e

FIG. 8. Excitonic~solid curve! and biexcitonic optical respons
~dashed curve! of a realistic QD structure for the parallel-spin co
figuration in the field-free case. The inset shows the biexcito
splitting DE as a function of the in-plane fieldF. As can be seen
from the spectra, the latter is now negative forF50. However, it
becomes positive at high fields~see text!.
6-10
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QD structure schematically depicted in Fig. 9. The mate
and confinement parameters are the same of the rea
single-QD structure previously investigated~see Figs. 6, 8,
and 7!: effective massesme50.067m0 and mh50.34m0 ,
conduction- and valence-band offsetsDe51 eV and Dh
50.58 eV, parabolic-confinement energies\ve530 meV
and \vh524 meV, static dielectric constant«0512.1. The
squarelike carrier confinement along the growth direction
electrons and holes is schematically depicted in Fig. 9 for
semiconductor macromoleculea1b. This is tailored in such
a way to allow for an energy-selective creation/destruction
bound electron-hole pairs in dotsa andb. Indeed, the width
of wells a andb are slightly different, which corresponds t
a blueshift of about 10 meV of the single-particle optic
transitions of dotb with respect to the corresponding trans
tion in dot a. We stress that such energy shift is also pres
in the absence of interdot tunneling and Coulomb coupli
Moreover, the interdot barrier width (w;50 Å) is such to
prevent single-particle tunneling and at the same time to
low for significant interdot Coulomb coupling. We stress th
the geometrical and material parameters of the proposed
totypical structure in Fig. 9 are fully compatible with curre
QD growth and characterization technology.4,26

Let us discuss first the excitonic response of thesemicon-
ductor macromolecule(a1b) in Fig. 9. The excitonic (0
→1) optical spectrum in the presence of an in-plane elec
field F575 kV/cm is shown in Fig. 10. Here, the Coulom
correlated result~B! is compared to the Coulomb-free on
~A!. The scenario is very similar to the single-dot case p
viously investigated~see Fig. 1!: for relatively strong values
of the applied field, apart from a rigid redshift, the Coulom
correlated result is very similar to the Coulomb-free on
Here, the two lowest optical transitions correspond to
formation of direct ground-state excitons in dota and b,
respectively~see Fig. 9!. In contrast, the high-energy peak

FIG. 9. Schematic representation of the electron and hole ch
distribution as well as of the confinement potential profile in o
Coulomb-coupled QD structure. The latter is tailored in such a w
to allow for an energy-selective creation/destruction of bou
electron-hole pairs in dotsa and b. Moreover, the interdot barrie
width (w;50 Å) is such to prevent single-particle tunneling and
the same time to allow for significant interdot Coulomb coupli
~see text!.
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correspond to optical transitions involving excited states
the in-plane parabolic potential. Due to the strong in-pla
carrier confinement—compared to the relatively lar
electron-hole charge displacement—the two low-energy
citonic states are expected to closely resemble the co
sponding single-particle ones.

Let us now come to the biexcitonic response of our se
conductor macromolecule. In view of the strong-confinem
regime considered, we shall focus on the two ground-s
excitons only. Moreover, since we are primarily interested
studying interdot Coulomb coupling, we shall consider t
parallel-spin configuration.

In Fig. 11 the excitonic spectrum~solid curve! is com-
pared to the biexcitonic one~dashed curve!. The latter de-
scribes the generation of a second electron-hole pair in
presence of a previously created exciton~1→2 optical tran-

ge
r
y
d

t
FIG. 10. Excitonic response of the array unit cell (a1b) in Fig.

9 for an in-plane fieldF575 kV/cm. The Coulomb-correlated resu
in ~b! is compared to the Coulomb-free one in~a!.

FIG. 11. Excitonic ~solid curve! and biexcitonic spectrum
~dashed curve! for an in-plane fieldF575 kV/cm. Due to the well-
defined polarization of our laser source, the structure in the bie
tonic spectrum~dashed curve! corresponds to the formation of a
exciton in dotb given an exciton in dota. One obtains a similar
structure in the biexcitonic spectrum, symmetrically blueshift
with respect to the excitonic transition in dota, if one considers as
initial state an exciton in dotb. The biexcitonic shiftDE as a func-
tion of the in-plane fieldF is also reported in the inset.
6-11
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sitions!. In particular, here the previously generated exci
is assumed to be in dota. As for the single-dot case prev
ously investigated~see Fig. 6!, the crucial feature in Fig. 11
is the magnitude of the biexcitonic shift. For the QD stru
ture under investigation we get energy splittings up to 8 m
~see inset in Fig. 11!. This can be ascribed again to the i
plane static fieldF, which induces, in both dots, the exciton
dipole previously investigated~see Fig. 4!. This, in turn,
gives rise to significant interdot dipole-dipole coupling b
tween adjacent excitonic states. The microscopic natur
such exciton-exciton coupling is the same of the Forster p
cess exploited by Quiroga and Johnson27 for the generation
of entangled states in coupled QD’s.

The physical origin of the biexcitonic shiftDE is qualita-
tively described in Fig. 9, where we show the effective s
tial charge distribution of the two electrons~ea andeb! and
holes ~ha and hb! corresponding to the biexcitonic groun
state in Fig. 11. As we can see, the charge separation ind
by the static field increases significantly the average dista
between electrons and holes, thus decreasing their attra
interaction. On the other hand, the repulsive terms are b
cally field independent. This is the origin of the positiv
energy differenceDE in Fig. 11.

Let us now investigate the possibility of using such Q
molecules as quantum hardware for QIC processing. As
cussed in Sec. II E, to this end a few basic requireme
should be fulfilled. First of all, the operators for the tw
ground-state excitons in dotsa and b should commute. By
evaluating the average value~over the biexcitonic ground
state! of the commutator in Eq.~39!, this came out to be
negligibly small, thus confirming that these are indeed in
pendent degrees of freedom. Moreover, due to the relati
large interdot distance—compared to the spatial extensio
the carrier wave functions along the growth direction—t
biexcitonic ground state in Fig. 9 is expected to closely
semble the product of the two excitonic states in dotsa and
b. Indeed, for the coupled QD structure under investigat
we find that the scalar product in Eq.~40! gives a value of
0.99, very close to 1. The product structure for the bipar
system Hilbert space is therefore very well achieved. I
worth noticing that, in the case in which the two exciton
states are localized on the same dot, e.g., in the ground
first excited states, one gets a smaller value of about 0.9.
is a clear indication that the tensor product structure for
many-body state is much better achieved in a coupled
structure than in a single QD system, as the one propose
Ref. 25.

Let us finally focus on the SU~2! character of our exci-
tonic qubits. To this end, we have evaluated the aver
value ~over the biexcitonic ground state! of the pseudospin
operatorSz introduced in Eq.~41!. By truncating the single-
particle basis considering just the lowest energy level in e
QD ~strong-confinement limit!, one gets^l2uSl1

z ul2&51,

thus confirming that the operators in Eqs.~39! and ~41! are
the generators of a SU~2! algebra. In contrast, far from th
strong-confinement limit, we get a result which is of cour
dependent on how many single-particle states contribut
form an exciton. Therefore, if we calculate again the me
value of the commutator considering an enlarged sing
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particle basis set, we get deviations from the above id
result. As anticipated in Sec. II E, this turns out to be a m
sure of the leakage of our qubit.

We can therefore conclude that ground-state excito
transitions in our coupled QD molecule fulfill all the bas
requirements for a semiconductor-based implementation
QIC processing. They can be used as computational deg
of freedom, i.e., qubits, and the standard pseudospin
guage can be employed.

C. A simplified model

In this section we shall present a simplified model able
properly describe excitonic binding as well as interdot bie
citonic coupling. Its analytical solution will allow for an ex
tremely quick way of identifying suitable parameter se
needed to employ the above coupled QD structure
semiconductor-based hardware for QIC processing~see Sec.
IV !. As a starting point, let us consider again the typic
single-QD structures of Sec. III A, whose single-particle co
finement is modeled in terms of a boxlike potential of wid
a in the growth~or perpendicular! direction and a 2D para
bolic potential in the in-plane~or parallel! directions. As pre-
viously discussed, this allows a factorization of the origin
3D single-particle problem into a perpendicular and a pa
lel one@see Eqs.~44! and~45!#. However, in the presence o
Coulomb interaction such factorization is, in principle, n
longer possible.

More specifically, let us consider the single-exciton pro
lem (N51) in the presence of an in-plane electric fieldF;
this can be described by the two-body Hamiltonian

H5He~re!1Hh~rh!2
e2

«0ure2rhu
. ~52!

As discussed in Appendix A, the single-particle Hamilt
nians for electrons and holes can be written in the comp
form @see Eqs.~A2!, ~A6!, and~A7!#:

He/h~r !52
\2¹ r

2

2me/h
1V'

e/h~r'!1
1

2
me/hve/h

2 ur i2di
e/hu2

1Dee/h . ~53!

Here, the presence of the applied field results in a displa
mentdi

e/h @see Eq.~A8!# of the parabolic-potential minimum
as well as in a rigid energy shiftDee/h @see Eq.~A9!#. We
want to show that for all the QD structures previously inve
tigated Eq.~52! can be approximated to an analytically sol
able form, and important quantities as wave functions
biexcitonic shifts can be easily estimated with a good deg
of accuracy.

In our QD structures the wave function is strongly co
fined along the growth direction by the square well potent
so that we can approximate (r'

e 2r'
h )2 in the Coulomb term

with its average valuel 2. We choosel to be twice the aver-
age length related to the ground state of aninfinite-height
square well of widtha, i.e., l 5(2a/p)A(p226)/12. It is
thus possible to separate the Hamiltonian~52! as H
5Hi(rei ,rhi)1H'(r e')1H'(r h'), where H'(r i')
6-12
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5pr i'

2 /2mi1Vc
i (r i') is the single-particle Hamiltonian alon

the growth direction—exactly solvable for the case of a pa
bolic potential as well as of an infinite-height square well.
further defining the center of mass~cm! and relative coordi-
nates R5@me(rei2di

e)1mh(rhi2di
h)#/M , (M5me1mh)

and r5rhi2rei , the in-plane Hamiltonian Hi

becomes

Hi~R,r !5
P2

2M
1

1

2
MvR

2R21
p

2m
1

1

2
mv r

2ud2r u2

1m~ve
22vh

2!R•~d2r !2
e2

«0Ar 21 l 2
, ~54!

where m5memh /M is the reduced mass,vR
25(11D)(ve

2

1vh
2)/2, v r

25(12D)(ve
21vh

2)/2, D5@(me2mh)/
M #(ve

22vh
2)/(ve

21vh
2), and

d52di
e1di

h5eFS 1

meve
2 1

1

mhvh
2D ~55!

denotes the total (electron1hole) field-induced in-plane
displacement.

In the limit (ve
22vh

2)/(ve
21vh

2)!1, the two coordinates
are only weakly coupled, and the Schro¨dinger equation
associated to the cm coordinateR is exactly solvable; in
the general case, we shall concentrate on the gro
state, though the generalization to higher states is strai
forward. We can approximate the ground state ofHi as
C(r ,R)5Cx(x)x(y,R), where x and y denote, respec
tively, the components ofr parallel and perpendicular t

the field F, x(y,R)5e2y2/2lr
2
/(l r

2p)1/4 e2R2/2lR
2
/(lR

2p)1/2,

l r5A\/mv r , and lR5A\/MvR. By averagingHi over
x(y,R), we get the effective HamiltonianHeff5

1
2\vr1\vR

1px
2/2m1Veff(x), characterized by the effective potential

Veff~x!5
1

2
mv r

2~x2d!21VCS x21 l 2

2l r
2 D . ~56!

with VC(u)52(e2/«0Apl r)e
uK0(u), K0 being the zero-

order Bessel function.

SinceK0(u) ;
u→`

Ap/2ue2u, in the limit x→`, we regain
the expected behavior for the Coulomb term

VcS x21 l 2

2l r
2 D ;

~x21 l 2!/2@lr
2

2
e2

«0Ax21 l 2
'

uxu@ l
2

e2

«0uxu . ~57!

Notice that, considering the typical parameters of our s
tems ~l'20 Å and l r'50 Å!, according to Eq.~57! there
exists a relevant range of values forx where we cannot ap
proximateVC by its simpler asymptotic, Coulomb-like form

Since we are interested in the system ground state, we
approximateVeff around its minimum

Veff~x!'V01
1

2
mṽ2~x2x0!2, ~58!
07530
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whereV0[Veff(x0) andmv̄2[]2Veff /]x2ux0
. Within such ap-

proximation scheme, the eigenvalues and eigenfunction
Heff can be evaluated analytically and, in particular, the
proximate ground state eigenfunction becomesCx(x)
5(mv̄/\p)1/4e2(1/2)(mṽ/\)(x2x0)2

. In the regime we are in-
terested in~strong confinement and pronounced biexciton
shift, i.e., large enough external field!, the Coulomb attrac-
tion between electron and hole can be regarded as a pe
bation. In this regime, its main effect is to reduce the d
placement d between electron and hole wave-functio
centers tox0 , while the two single particle wave function
are, with a good approximation, rigidly translated. This c
be understood by looking at Fig. 12, where the potentialVeff
is plotted for three different values of the external fieldF.
The solid lines correspond to the full potential, the dash
lines to its parabolic part, the dashed-dotted line to the C
lomb part~independent ofF!. For small and intermediateF
the influence of the Coulomb field on the total potential
relevant. For intermediate fields the figure clearly shows t
the minimum of the total potential is shifted with respect
the parabolic one. For strong and intermediate values of
applied fieldF, the effect of the shallow Coulomb potentia
on the region around the minimum of the total potential
mainly a rigid shift with respect to the unperturbed parabo
potential. For small fields, instead, the shape itself of
potential is definitely modified by the Coulomb term.

In the regime of interest, we can writex0 as

x05d2Dx, ~59!

with Dx!d. By inserting Eq.~59! into ]Veff /]xux0
50 and

considering, in the resulting equation, terms up to first or
in Dx, the following analytical expression is obtained:

Dx

d
52

l r

aex

exp~j!

Ap

DK

12
l r

aex

exp~j!

Ap
F d2

l r
2 A~DK,K1!1DKG ,

~60!

where j5(d21 l 2)/2l r
2, K1 denotes the first-orde

Bessel function, DK5K0(j)2K1(j), A(DK,K1)52DK

FIG. 12. Effective potentialVeff(x) ~solid line! as a function of
the x coordinate for three different values of the external fieldF.
Here, the following parameters have been used:me50.067m0 ,
mh50.34m0 , \ve530 meV, \vh524 meV. The dashed line rep
resents the parabolic part ofVeff(x) and the dashed-dotted line th
Coulomb term.
6-13
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1K1(j)/j, andaex is the excitonic Bohr radius introduced i
Eq. ~49!. Notice that the prefactorl r /aex is a measure of the
system confinement. In a similar way, settingṽ5v r1Dv in
mṽ5]2Veff /]x2ux0

, we can calculate the effect of the Co
lomb attraction on the potential shape

Dv

v r
52

l r

aex

exp~j!

2Ap
Xd2

l r
2 A~DK,K1!1DK

2
Dx

d

d2

l r
2 H d2

l r
2 F2A~DK,K1!2

1

j S DK12
K1~j!

j D G
13A~DK,K1!J C. ~61!

In the strong-field limitl r
2/d2!1 @see Eq.~55!#, Dv/v r5

2Dx/d}2(l r /aex)(l r
3/d3), which shows that, in this re

gime, Coulomb corrections decrease very fast with incre
ing field. The conditionDx/d&20% quantitatively defines
the validity regime of the proposed approximation schem
The latter coincides with the intermediate- and strong-fi
one, which is the regime of interest for the QD structu
investigated below. It is also easy to show that in this regi
the correction on the wave function due toDv/v r is negli-
gible with respect to the correction given by the shiftDx/d
~see also Fig. 13!.

As previously discussed, the most important quantity
implementing our QIC scheme is the biexcitonic shift. Th
is in our case the energy shift due to the Coulomb interac
between two excitons sitting in neighboring dots~see Sec.
III B !. Within our model, we approximate the biexciton
ground state as the product of two excitonic wave functio
sitting in different dots and built according to the prescr
tion given above. The wave function in the growth directi
is approximated by a Gaussian of widthl /2 and the two dots
are taken to have the same widtha, i.e., the average of the
two dots widths. This is reasonable since, for constructi
the two dots have almost the same width. The desired b
citonic shiftDE is then obtained averaging the correspond

FIG. 13. Biexcitonic shiftDE as a function of the in-plane field
F. Here, the parameters used are the same as in Fig. 12. The sq
represent exact numerical results, the solid line the prediction
the model, the dashed line the predictions of the model after se
Dv50, and the dotted line the results obtained by neglecting c
pletely Coulomb interaction in the wave function. The inset repo
the behavior ofDv/v r and Dx/d for the same range of applie
fields.
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two-exciton Hamiltonian over such factorized ground sta
Within this approximation scheme,DE becomes an easy-to
calculate sum of at most 2D integrals. In the correspond
validity region the model provides a good estimate forDE:
Fig. 13 shows a comparison between the exact results~dia-
monds!, the approximate result~solid curve! and the results
obtained by neglecting completely Coulomb correlation
the wave functions~dotted line!. The dashed curve shows th
approximated results obtained settingDv/v r50: as antici-
pated before, this correction is generally negligible.

In order to implement our quantum computing schem
system parameters asve , vh , andF must satisfy some spe
cific requirements. This determines the parameter sp
available in designing our QD structures. To this end, let
analyze the various constraints in details.

First of all, ~i! in order to have well-defined qubits, tun
neling between dots must be suppressed; in agreement
state-of-the-art nanostructure technology, we have chose
our calculations barrier heights of 1 eV~electrons! and 0.58
eV ~holes! and an interdot distanceD5100 Å. On the other
side,~ii ! to implement our QIC scheme, Coulomb interacti
between consecutive dots must be strong enough to pro
a biexcitonic shift of the order of a few meV; this can b
obtained either by tailoring in a suitable way the distan
between the two dots or by varying the strength of the
plane fieldF, since as a rough approximation

DE}
d2

D3 , ~62!

whered is given by Eq.~55!. Unfortunately,~iii ! a side effect
of a strong electric fieldF is to decrease the oscillato
strength and, accordingly, the system response to driving
ser pulses; indeed, the electric field induces a spatial sep
tion between electron and hole wave functions, thus decr
ing their overlap ~see Fig. 4!. If we now consider the
confining parabolic potentials,~iv! in order to have well-
defined quantum dots, the system must be in the stro
confinement regime previously introduced: the characteri
length l r associated to the parabolic potential in Eq.~54!
must be smaller than the corresponding excitonic Bohr
diusaex. On the other side,~v! as shown by Eq.~62! and Eq.
~55!, a too strong parabolic confinement would in tu
heavily decrease the biexcitonic shiftDE. Last but not least,
~vi! in order to be able to perform general QIC schemes,
must be able to energetically address specific excitation
the system unambiguously. This means that the peaks o
terest in the optical spectra, namely ground-state excito
and biexcitonic states, must be well isolated from other hi
energy transitions. This determines additional constraints
the value of\ve and\vh .

From the above discussion, it is clear that in order
satisfy at the same time all the requirements listed ab
@~i!–~vi!#, the system parameters must be fine tuned so th
quick mean to scan the whole parameter space becomes
essary. The simplified model previously described came
to be quite efficient in performing such detailed analysis. T
available parameter space for a reasonable field ofF
575 kV/cm is shown in Fig. 14. Here, the typical error in th
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calculated values ofDE is 10–20 %. The constraints impose
areDE>3.5 meV, oscillator strength greater than 0.15mbulk ,
\ve.\vh , \vh2DE>10 meV, andl r /dex<0.6. Based on
this analysis, we have identified the parameter set used in
simulated experiments of QIC processing presented in
following section.

IV. QUANTUM INFORMATION PROCESSING

As anticipated in the introductory part of the paper, t
advent of QIC~Ref. 28! as an abstract concept, has stim
lated a great deal of new thinking about how to design a
realize quantum information processing devices. This goa
extremely challenging: generally speaking, one should
able to perform, on a system with a well-defined quant
state space~the computationalspace!, precise quantum-stat
preparation, coherent quantum manipulations~gating! of ar-
bitrary length, and state detection as well. It is well know
that the major obstacle to implement this ideal scheme
decoherence: the spoiling of the unitary character of qua
tum evolution due to the uncontrollable coupling with en
ronmental, i.e., noncomputational, degrees of freed
Mostly due to the need of low decoherence rates, the
proposals for experimental realizations of quantum inform
tion processing devices originated from specialties in ato
physics,29 in quantum optics,30 and in nuclear and electro
magnetic-resonance spectroscopy.31 On the other hand, prac
tically relevant quantum computations require a large nu
ber of quantum-hardware units~qubits!, that are known to be
hardly achievable in terms of such systems. In contrast
spite of the serious difficulties related to the ‘‘fast’’ decohe
ence times, a solid-state implementation of QIC seems to
the only way to benefit synergically from the recent progr
in ultrafast optoelectronics32 as well as in meso
nanostructure fabrication and characterization.4 Among the
proposed solid-state implementations one should men
those in superconducting-device physics33 and in meso- and
nanoscopic physics.34 In particular, the first semiconducto
based proposal, by Loss and DiVincenzo, relies on spin
namics in quantum dots; it exploits the low decoherence
spin degrees of freedom in comparison to the one of cha
excitations.

As originally envisioned in Ref. 14, gating of charge e

FIG. 14. Plot of the parameter space available for designing
QD molecule used as quantum hardware in our QIC impleme
tion. This has been calculated using the proposed analytical m
~see text!.
07530
he
e

-
d
is
e

is

.
st
-

ic

-

in

be
s

n

y-
f
e

citations could be performed by exploitingpresentultrafast
laser technology,32 that allows one to generate and manip
late electron-hole quantum states on a subpicosecond
scale: coherent-carrier-control.26 In this respect, decoher
ence times on nano/microsecond scales can be regarde
‘‘long’’ ones. Based on this idea a few implementations ha
been recently put forward.35 However, while in these propos
als single-qubit operations are implemented by means of
trafast optical spectroscopy, the control of two-qubit ope
tions still involves the application of external fields and/
microcavity-mode couplings, whose switching times a
much longer than decoherence times in semiconductor
clearly follows that such proposals are currently out of rea
in terms of state-of-the-art optoelectronics technology.

As already pointed out in Ref. 14, in order to take fu
advantage from modern ultrafast laser spectroscopy
should be able to design fully optical gating schemes able
perform single- and two-qubit operations on a sub
picosecond time scale. Following this spirit, we have
cently proposed the firstall-optical implementation with
semiconductor macromolecules.15

The aim of this section is to review and discuss t
semiconductor-based implementation in Ref. 15, wh
quantum hardware consists of coupled QD structures, sim
to those investigated in Sec. III B. As described below,
crucial ingredient in our QIC scheme is the field-induc
exciton-exciton coupling discussed in Sec. III. Indeed,
central idea in our QIC proposal is to exploit such fe
exciton effects to designconditional operations.

A. Quantum hardware and computational subspace

As discussed in Sec. II E, two basic requirements
needed for QIC processing:~i! the tensor-product structure o
the quantum hardware and~ii ! the SU ~2! character of the
raising/lowering operators acting on the individual qubi
Based on the electro-optical-response analysis of Sec. III
can conclude that state-of-the-art coupled QD structures
be used as semiconductor-based hardware for quantum i
mation processing. Indeed, as shown in the previous sec
these requirements are well fulfilled by the prototypical Q
molecules studied above. Our detailed investigation
shown that a proper tailoring of the QD confinement pote
tial as well as of the interdot distance allows one to ident
a well-precise subset of excitonic states, corresponding
intradot ground-state excitons. Indeed, as clearly shown
Sec. III B ~see Fig. 9!, we can associate to each QD structu
a ground-state exciton, i.e., its low-energy optical transit
corresponding to the creation/destruction of a Coulom
correlated electron-hole pair in that dot. We have shown t
for these low-energy intradot optical transitions the cor
sponding exciton wavefunctions are localized in the vario
dots of the array; this allows us to label such subset of e
tonic states according to their host QD. In addition, in vie
of the relatively strong carrier confinement, leakage effe
~see Sec. II E! are expected to play a minor role.

More specifically, following the second-quantization n
tation, let us denote withunn& the absence (nn50—no
conduction-band electrons—and the presence (nn51) of a
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ground-state exciton—a Coulomb-correlated electron-h
pair—in dotn; they constitute the single-qubit basis for th
proposed QIC schemeu0&n and u1&n . The whole computa-
tional state-space is then spanned by the basis set

u$nn%&5 ^ nunn&, ~nn50,1!. ~63!

The full many-body HamiltonianH5H01H8 in Eq. ~16!
restricted to the above computational space will be descr
by the following matrix elements:

H $nn%$nn8%5^$nn%u~H01H8!u$nn8%&5H
$nn%$nn8%

0
1H

$nn%$nn8%
8 .

~64!

They are the sum of two contributions: the first one is due
the Coulomb-correlated carrier-system Hamiltonian; the s
ond is due to the carrier-light interaction Hamiltonian in E
~14!. As discussed in Sec. II C, the latter describes
creation/destruction of electron-hole pairs driven by ultraf
sequences of multicolor laser pulses.

Let us now focus on the termH0. As discussed in Sec
II B, it preserves the total number of electron-hole pairsN,
and this is still true within our reduced—i.e
computational—subspace. In general, the Hamilton Ma
H

$nn%$nn8%

0
is nondiagonal. However, for the case of the rea

tic coupled QD structure analyzed in Sec. III B, nondiago
terms are found to play a very minor role. In this case,
latter can be neglected and the Hamiltonian matrixH0 is then
diagonal in our number representation$nn%. This suggests to
introduce corresponding number operators acting on
computational subspace:nn5Snn50

1 unn&nn^nnu5u1&n^1un .

The HamiltonianH0 reduced to our computational subspa
can then be expressed in terms of such number operator
particular, for an array of coupled QD’s this can be written

H̃05(
n

Ennn1
1

2 (
nn8

DEnn8nnnn8 . ~65!

Here, En denotes the energy of the ground-state exciton
dot n while DEnn8 is the biexcitonic shift due to the Coulom
interaction between dotsn andn8, introduced in Sec. III@see
Eq. ~50! and Fig. 11#.

The effective Hamiltonian in Eq.~65! has exactly the
same structure of the one proposed by Lloyd in his pione
ing paper on quantum cellular automata,36 and it is the
Model Hamiltonian currently used in most of the NM
quantum-computing schemes.37 This fact is extremely impor-
tant since it tells us the following.

~i! The present semiconductor-based implementation c
tains all relevant ingredients for the realization of basic Q
processing.

~ii ! It allows one to establish a one-to-one corresponde
between our semiconductor-based scheme and much
mature implementations, such as NMR.37

According to Eq.~65!, the single-exciton energyEn is
renormalized by the biexcitonic shiftDEnn8 , induced by the
presence of a second exciton in dotn8:
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Ẽn5En1 (
n8Þn

DEnn8nn8 . ~66!

In order to better illustrate this idea, let us focus again
the two-QD structure, i.e., two-qubit system, of Fig. 9 and
our attention on one of the two dots, say dotb. The effective
energy gap betweenu0&b and u1&b depends now on the oc
cupation of dota. This elementary remark suggests that w
design properly tailored laser-pulse sequences to implem
conditional logic gates between the two QD qubits as wel
single-qubit rotations. Indeed, by sending an ultrafast la
p-pulse with central energy\vb@na#5Eb1DEbana , the
transitionunb&→u12nb& ~p rotation! of the target qubit~dot
b! is obtained if and only if the control qubit~dot a! is in the
stateuna&. Notice that the above scheme corresponds to
so-called selective population transfer in NMR;37 alternative
procedures used in that field can be adapted to the pre
proposal as well. Moreover, by denoting withUb

na the generic
unitary transformation induced by the laserp pulse of central
frequencyvb@na#, it is easy to check that the two-colo
pulse sequenceU b

0U b
1 achieves the unconditionalp rotation

of qubit b.

B. A few simulated experiments

In order to test the viability of the proposed quantum
computation strategy, we have performed a few simula
experiments of basic quantum information processing.
this aim, we have performed a direct time-dependent solu
of the generalized Liouville-von Neumann equation in E
~31! restricted to our computational subspace, i.e., we h
simulated the time evolution of the reduced density matr

r$nn%$nn8%~ t !5^$nn%ur~ t !u$nn8%&. ~67!

As discussed in Sec. II D, this is governed by the to
HamiltonianH reduced to our computational subspace@see
Eqs.~64! and ~65!# plus a nonunitary term23 due to energy-
relaxation and dephasing processes induced by environm
tal degrees of freedom, such as phonons, plasmons, etc.
latter has been treated within the standardT1T2 model.38

We stress that the present density-matrix description,
stricted to our computational subspace, does not accoun
leakage effects, i.e., it neglects processes connecting state
the computational subspace to other—noncomputationa
excitonic states, and vice versa. Due to the stro
confinement character of our QD structures~see Sec. III!
such leakage effects are expected to play a very minor rol
quantitative evaluation of the leakage dynamics would
quire the inclusion in our density-matrix description of no
computational states.

The above simulation scheme has been applied to
coupled-QD structure of Fig. 9 in the presence of an in-pla
static fieldF575 kV/cm: Ea51.673 eV,Eb51.683 eV, and
DE54 meV ~see inset in Fig. 10!.

We shall start our time-dependent analysis by simulatin
basic conditional two-qubit operation, the so-calledcon-
trolled not ~CNOT! gate. Our first simulated experiment
shown in Fig. 15. The multicolor laser-pulse train~see cen-
6-16
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tral panel! is able to perform first ap rotation of the qubita;
Then, the second pulse is tuned to the frequencyEb1DE,
thus performing ap rotation of the qubitb since this corre-
sponds to its renormalized transition energy@see Eq.~66!#
when the neighbor qubita is in state u1&a . The scenario
described so far is confirmed by the time evolution of t
exciton occupation numbersna andnb ~upper panel! as well
as of the diagonal elements of the density matrix in our fo
dimensional computational basis~lower panel!.

More specifically, at the beginning the system is in t
state u0,0&[u0&a^ u0&b . Due to the first pulse att50 the
computational state moves to the stateu1,0&[u1&a^ u0&b .
Finally, at time t51 ps the second pulse brings the syst
into the stateu1,1&[u1&a^ u1&b .

This realizes the first part of the well-known CNOT ga
the target qubitb is rotated if the control qubita is in state
u1&a . To complete it, one has to show that the state of
target qubitb remains unchanged if the control qubita is in
state u0&a . This has been checked by a second simula
experiment~not reported here! where the first pulse, being
now off-resonant~with respect to dota!, does not change th
computational state of the system. As a consequence,
second pulse is no more into resonance with the excito
transition energy of dotb, since the latter is no more reno
malized by the excitonic occupation of dota. Therefore, the
initial state of the system isu0,0& and the final one is again
u0,0&.

The simulated experiments discussed so far clearly s
the potential realization of the CNOT gate, thus confirmi
the validity of the proposed semiconductor-based QIC st
egy. However, the analysis presented so far deals with
torized states, i.e., we have simulated the CNOT gate ac
on basis statesu$nn%& only. It is well known28 that the key

FIG. 15. Time-dependent simulation of a two-qubit operat
realizing the first prescription~u1,0&→u1,1&! for a CNOT logic quan-
tum gate on dotsa andb ~see text!. Exciton populationsna andnb

~upper panel! and diagonal density-matrix elements~lower panel! as
a function of time. The laser-pulse sequence is also sketched~cen-
tral panel!.
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ingredient in any quantum-computation protocol is entang
ment. Generally speaking, this corresponds to a nontri
linear combination of our basis states.

We shall now show that the CNOT gate previously d
cussed is able to transform a factorized state into a m
mally entangled one. Figure 16 shows a simulated tw
qubit operation driven again by a two-color laser-pulse
quence~see central panel!. Initially, the system is in the
state u0,0&. The first laser pulse~at t50! is tailored in
such a way to induce now ap/2 rotation of the qubit
a: u0,0&→~u0,0&1u1,0&!/&. At time t51 ps a second pulse in
duces a conditionalp rotation of the qubitb: u0,0&1u1,0&
→u0,0&1u1,1&. This last operation plays a central role in an
QIC processing, since it transforms afactorizedstate@(u0&a
1u1&a) ^ u0&b] into an entangled state (u0&a^ u0&b1u1&a
^ u1&b).

As we can see, during the pulse energy-nonconverving~or
off-resonant! transitions2 take place; however, at the end o
the pulse such effects vanish and the desired quantum sta
reached. The experiments simulated above~see Figs. 15 and
16! clearly show that the energy scale of the biexciton
splitting DE in our QD molecule~see Fig. 11! is compatible
with the subpicosecond operation time scale of modern
trafast laser technology.32

V. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of the elec
optical response of single as well as coupled QD structu
More specifically, we have investigated the effect of a sta
electric field on the many-exciton optical response
quasi-0D semiconductor nanostructures. Our analysis
shown that a proper tailoring of the single-particle confin
ment potential as well as of the interdot distance and app

FIG. 16. Time-dependent simulation of a CNOT quantum g
transforming the factorized stateu0,0&1u1,0& into a maximally en-
tangled stateu0,0&1u1,1& for the coupled QD structurea1b in Fig.
9 ~see text!. Exciton populationsna andnb ~upper panel! and diag-
onal density-matrix elements~lower panel! as a function of time.
The laser-pulse sequence is also sketched~central panel!.
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field allows one to induce and control intradot as well
interdot exciton-exciton coupling; this, in turn, may give ri
to significant energy shifts of the optical transitions.

This field-induced dipole-dipole coupling constitutes t
key ingredient of the proposed all optical implementation
QIC with a semiconductor-based quantum hardware.
analysis has shown that energy-selected optical transition
realistic state-of-the-art QD structures are good candid
for quantum-information encoding and manipulation. T
subpicosecond time scale of ultrafast laser spectroscop
lows for a relatively large number of elementary operatio
within the exciton decoherence time.

At this point a few comments are in order. First, we stre
a very important feature of the proposed semiconduc
based implementation: as for NMR quantum computi
two-body interactions are always switched on~this should be
compared to the schemes in which two-qubit gates are r
ized by turning on and off the coupling between subsyste
e.g., by means of slowly varying fields and cavity-mode co
plings!; conditional as well as unconditional dynamics is r
alized by means of sequences of ultrafast single-qubit op
tions whose length does not scale as a function of the t
number of QD’s in the array.39

Let us now come to thestate measurement. In view of the
few-exciton character of the proposed quantum hardware
conventional measurement of the carrier subsystem by s
trally resolved luminescence needs to be replaced by m
sensitive detection schemes. To this end, a viable stra
could be to apply to our semiconductor-based structure
well-known recycling techniques commonly used
quantum-optics experiments.40 Generally speaking, the ide
is to properly combine quantum- and dielectric-confinem
effects in order to obtain well-defined energy levels,
which design energy-selective photon-amplificati
schemes. An alternative approach would be to adop
storage-qubit scheme, as recently proposed in Ref. 41.

The nanoscale range of the interdot coupling we e
ployed for enabling conditional dynamics does not allow
space-selective optical addressing of individual qubits.
this reason, at least for our basic QD molecule (a1b), we
resorted to an energy-selective addressing scheme. How
extending such strategy to the whole QD array would im
different values of the excitonic transition in each QD, i.
EnÞEn8 . This, besides obvious technological difficultie
would constitute a conceptual limitation of scalability t
wards massive quantum computations. The problem can
avoided following a completely different strategy original
proposed by Lloyd36 and recently improved in Ref. 42: b
properly designed sequences of multicolor global pul
within a cellular-automaton scheme, local addressing is
placed by information-encoding transfer along our QD arr

Finally, a present limitation of the proposed quantu
hardware are the nonuniform structural and geometr
properties of the QD’s in the array, which may give rise
energy broadenings larger than the biexcitonic shift. Ho
ever, recent progress in QD fabrication—including the re
ization of QD structures in microcavities—will allow us, w
believe, to overcome this purely technological limitation.
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APPENDIX A: EVALUATION OF SINGLE-PARTICLE
PROPERTIES

In this section we shall describe the numerical appro
used for the evaluation of the single-particle properties—
wave functions and energy levels—for single as well
coupled QD structures. Within the standard envelo
function picture,19 the noninteracting carriers in our quasi-0
structure in the presence of a static electric field are
scribed by the Schro¨dinger equation~1! with the confinement
potential in Eq.~42!:

F2
\2¹ r

2

2me/h
1Vc

e/h~r !6eF•r Gc i / j~r !5e i / jc i / j~r !. ~A1!

As for the case of semiconductor quantum wires,24 a
quantitative analysis of the whole single-particle spectr
e i / j requires a direct numerical solution of the above Sch¨-
dinger equation. This can be performed using a fully 3
plane-wave expansion described in Ref. 25, which is
straightforward generalization to QD structures of the
plane-wave expansion proposed in Ref. 24.

As anticipated in Sec. III, when—as in this paper—we a
interested in the low-energy range only, for most of the Q
structures realized so far the carrier confinement can be
scribed as the sum of two potential profiles acting alo
different directions@see Eq.~43!#, which allows us to factor-
ize the original 3D problem in Eq.~A1! into a perpendicular
~'! direction and a parallel~i! plane@see Eqs.~44! and~45!#.
Moreover, as far as the low-energy region is concerned,
in-plane or parallel confinement is well described by a
parabolic potential. In this case the Schro¨dinger equation
within the 2D parallel subspace can be solved analytica
~see below! and thus our problem reduces to a numeri
solution of the Schro¨dinger equation along the perpendicul
direction

Hc i' / j'
' ~r'!52F2

\2¹ r'

2

2me/h
1V'

e/h~r'!6eF'r'Gc i' / j'
' ~r'!

5e i' / j'
' c i' / j'

' ~r'!. ~A2!

This has been solved using the plane-wave-expansion t
nique previously discussed.24,25 Within such approach, the
unknown envelope function is written as a linear combin
tion of plane waves, i.e.,

c i' / j'
' ~r'!5

1

AL
(
G

bGeiGr', ~A3!
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whereG5n(2p/L) are reciprocal lattice vectors associat
to the periodicity boxL. By substituting the above plane
wave expansion into Eq.~A2!, the latter is transformed into
the following eigenvalue problem:

(
G

~HGG82e'dGG8!bG850, ~A4!

whereHGG8 are the matrix elements of the single-partic
Hamiltonian in Eq.~A2! within our plane-wave basis. A di
rect diagonalization ofHGG8 will then provide the desired
perpendicular energy levelse' as well as the wavefunction
coefficientsbG .

Let us now come back to the in-plane or parallel-subsp
problem, which we treat within the 2D parabolic
confinement model previously mentioned, i.e.,

Vi
e/h~r i!5

1

2
ke/hr i

2. ~A5!

The corresponding Schro¨dinger equation is of the form

F2
\2¹ r i

2

2me/h
1

1

2
ke/hr i

26eFi•r iGc i i / j i

i
~r i!5e i i / j i

i c i i / j i

i
~r i!.

~A6!

It is well known that the presence of a static uniform elect
field Fi does not change the parabolic nature of our confi
ment potential. Indeed, Eq.~A6! can be rewritten as

F2
\2¹ r i

2

2me/h
1

1

2
ke/hur i2di

e/hu2Gc i i / j i

i
~r i!

5~e i i / j i

i
2Dee/h!c i i / j i

i
~r i!. ~A7!

The presence of the applied field results in a shift

di
e/h57

eFi

ke/h
~A8!

of the parabolic-potential minimum as well as in a rigid e
ergy shift

Dee/h52
1

2
ke/hdi

e/h2
, ~A9!

often referred to as Stark shift. We stress that in the prese
of the electric fieldFi we have different symmetry cente
for electrons and holes; this, in turn, introduces signific
modifications in the selection rules governing interband
tical transitions~see below!.

As anticipated, the Schro¨dinger equation~A7! can be
solved analytically. Due to the central symmetry of the pro
lem ~with respect to the parabolic-potential minimumdi

e/h!, it
is convenient to adopt a 2D polar-coordinate set. By deno
with r 5ur i2di

e/hu the radial coordinate and withw the azi-
muthal coordinate measured with respect to the field dir
tion, we have
07530
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~r ,w!5a2~ umu11!A n!

p~n1umu!!

3e2 imwr umue2r 2/2a2Ln
umuS r 2

a2D , ~A10!

where

a5S me/hve/h

\ D 21/2

~A11!

is the spatial extension of the harmonic-oscillator grou
state—ve/h5Ake/K /me/h being its oscillation frequency—
while Ln

umu(x) denotes the generalized Laguerre polynom
in the dimensionless variablex5r 2/a2.

In view of the central symmetry of the problem, our qua
tum numbers are those of the angular momentum in
dimensions, i.e., a radial numbern (n50,1,2,...) plus an or-
bital number m (m52n,2n12,...,n22,n). The corre-
sponding in-plane single-particle energy spectrum is giv
by

enm
i

5\ve/h~2n2umu11!5\ve/h~ne11!, ~A12!

where ne52n2umu denotes the energy quantum numb
with degeneracy (ne11).

The 3D single-particle energy spectrum is then given
the sum of equally-spaced energy-level sequences, i.e.,

e l5e l'
' 1enm

i
5e l'

' 1~ne11!\ve/h : ~A13!

for each energy levele'—obtained by solving the eigen
value problem in~A4!—we deal with an harmonic-oscillato
spectrum with energy separation\ve/h .

Given the single-particle state factorization in Eq.~44!,
the corresponding dipole matrix elements in Eq.~15! can be
factorized as well

m i j 5mbulkIi' j'
' Ii i j i

i , ~A14!

with

Ii' j'
' 5E c i'

' ~r'!c j'
' ~r'!dr' ~A15!

and

Ii i j i

i
5E c i i

i
~r i!c j i

i
~r i!dr i . ~A16!

By inserting the plane-wave expansion~A3! into Eq. ~A15!,
we get

Ii' j'
' 5(

G
bG

i'bG
j'. ~A17!

Let us finally focus on the in-plane integral in Eq.~A16!.
This can be rewritten in terms of the polar-coordinate setr, w
introduced in Eq.~A10!:

Inm,n8m8
i

5E cnm
i

~r e ,we!cn8m8
i

~r h ,wh!dr i . ~A18!
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Here, r e/h5ur i2di
e/hu and we/h are the corresponding az

muthal angles. In general, the two polar-coordinate sets
electrons and holes do not coincide. Indeed, in the prese
of a static fieldF i we have different symmetry centers@see
Eq. ~A8!#. In contrast, forF i50 the two coordinate set
coincide (r i[r ,w5r e ,we5r h ,wh) and the above equatio
reduces to

Inm,n8m8
i

5E cnm
i

~r ,w!cn8m8
i

~r ,w!rdrdw. ~A19!

In this case—for which the symmetry centers for electro
and holes coincide—we deal with a number of well-know
selection rules. In particular we have

Inm,n8m8
i

}dm1m8 . ~A20!

This tells us that in the electron-hole generation process
total angular momentum is conserved. Moreover, for the s
cial case of equally extended electron and hole wave fu
tions, i.e.,ae5ah ~see discussion in Sec. III A!, we have

Inm,n8m8
i

}dm1m8dn,n85dm1m8dne ,n
e8
, ~A21!

i.e., the energy quantum numberne is conserved as well.
In contrast, in the presence of the static field the ab

selection rules are violated, due to the fact that
Harmonic-oscillator wave functions in Eq.~A10! are no
longer eigenstates of the total angular momentum. As
shall see, the same considerations apply to the case o
two-body Coulomb matrix elements discussed in the follo
ing section.

APPENDIX B: EVALUATION OF TWO-BODY COULOMB
MATRIX ELEMENTS

In this section we shall describe the numerical appro
used for the evaluation of the two-body Coulomb mat
elements. Starting again from the single-particle state fac
ization in Eq.~44!, the Coulomb matrix elements in Eq.~5!
can be rewritten as

Vl
18 l

28 l 2l 1
5E dr i E dr i8cn

18m
18

i* ~r i!cn
28m

28
i* ~r i8!Vl

18 l
28 l 2l 1

i
~r i2r i8!

3cn2m2

i
~r i8!cn1m1

i
~r i!, ~B1!

where

Vl
18 l

28 l 2l 1

i
~r i2r i8!5E dr'E dr'8 c l

18
'* ~r'!c l

28
'* ~r'8 !

3V~r2r 8!c l 2
' ~r'8 !c11

' ~r'! ~B2!

can be regarded as an in-plane effective potential obtaine
integrating the original 3D Coulomb potentialV—multiplied
by the corresponding wave functionsc'—over the perpen-
dicular direction.

Let us consider the explicit form of the 3D Coulomb p
tential in Eq.~B2! written in terms of its Fourier transform
along the perpendicular direction
07530
or
ce

s

e
e-
c-

e
e

e
the
-

h

r-

by

V~r2r 8!5
e2

«0ur2r 8u
5

e2

«0p E dqK0~qur i2r i8u!eiq~r'2r'8 !.

~B3!

Here, «0 is the static dielectric constant,43 q denotes the
Fourier-transform parameter, while

K0~x!5E
0

` cosydy

Ax21y2
~B4!

is the zero-order modified Bessel function.
By inserting the Fourier expansion~B3! into Eq.~B2!, we

realize a factorization of the two space coordinatesr' and
r'8 . Indeed, by introducing the form factors

Fl l 8~q!5E dr'c l
'* ~r'!eiqr'c l 8

'
~r'!, ~B5!

the Coulomb matrix elements in Eq.~B2! can be simply
written as

Vl
18 l

28 l 2l 1

i
~r i2r i8!5

e2

«0p E K0~qur i2r i8u!Fl
18 l 1

~q!Fl
28 l 2
* ~q!dq.

~B6!

Therefore, the evaluation of the effective Coulomb poten
in Eq. ~B2! reduces to the evaluation of the form factorsF in
Eq. ~B5!. To this end, by replacing the wave functionsc'

with their plane-wave expansion in Eq.~A3! we get

Fl l 8~q!5 (
GG8

bG
l* bG8

l 8 O~G82G1q!, ~B7!

where

O~k!5
1

L E eikr'dr' ~B8!

are plane-wave overlap integrals over the periodicity reg
L, whose explicit form can be evaluated analytically.

Therefore, for any shape of the perpendicular confinem
potential, starting from the numerically computed eigenv
tors bG @see Eqs.~A3! and ~A4!#, we are able to obtain the
various form factorsF which, in turn, allow us to numeri-
cally evaluate the effective in-plane Coulomb potential
Eq. ~B2!. Once the latter is known over a suitable space g
the original six-dimensional integral in Eq.~5! is then re-
duced to the evaluation of the four-dimensional integral
Eq. ~B1!. This requires some care, since the effective pot
tial Vi is singular forur i2r i8u50. In order to eliminate such
singularity, it is convenient to replace the integration coor
nater i8 with the relative coordinater̄ i5r i2r i8 . Indeed, if we
move to 2D polar-coordinate sets for the new integrat
variablesr i and r̄ i , the presence of the Jacobian functio
corresponding to the relative coordinater̄ i cancels the poten
tial singularity.

We stress that—as for the case of optical matrix eleme
previously discussed~see Appendix A!—in the absence of
applied static fields the symmetry centers for electrons
holes coincide@see Eq.~A8!# and, due to global rotation
symmetry, we get
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Vl
18 l

28 l 2l 1
}dm11m2 ,m

181m
28

~B9!

and the numerical integration in Eq.~B1! reduces to three
variables only: one angular and two radial coordinates.
for the optical matrix elements previously discussed, the
lection rule in Eq.~B9! describes the conservation of th
total angular momentum in the Coulomb interaction proce
m11m25m181m28 .

In contrast, in the presence of an applied static field
selection rule~B9! is relaxed and we need to numerical
solve the four-dimensional integral in Eq.~B1!.

APPENDIX C: EVALUATION OF MANY-EXCITON STATES
AND OPTICAL MATRIX ELEMENTS

In this section we shall apply the exact-diagonalizat
approach introduced in Sec. II B to the excitonic (N51) and
biexcitonic (N52) case. Generally speaking, the meth
consists in a numerical diagonalization of the interactin
carrier HamiltonianH° written in the single-particle basi
$u l N&% @see Eqs.~8!, ~11!, and~12!#.

For the evaluation of excitonic states, i.e., states co
sponding to a single Coulomb-correlated electron-hole p
the proper basis set is given by the single-particle state
Eq. ~10! with N51, i.e.,

u l 1&[u i 1 j 1&5ci 1
† dj 1

† u0&. ~C1!

The corresponding Hamiltonian matrix is given by

Hi 1 j 1 ,i
18 j

18
+

5Hi 1 j 1 ,i
18 j

18
c

1Hi 1 j 1 ,i
18 j

18
cc

~C2!

with

Hi 1 j 1 ,i
18 j

18
c

5^ i 1 j 1uHcu i 18 j 18& ~C3!

and

Hi 1 j 1 ,i
18 j

18
cc

5^ i 1 j 1uHccu i 18 j 18&. ~C4!

Combining Eq.~C1! with the explicit form of the noninter-
acting HamiltonianHc in Eq. ~3! and making use of the
Fermionic commutation relations we get
07530
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Hi 1 j 1 ,i
18 j

18
c

5~e i 1
1e j 1

!d i 1 j 1 ,i
18 j

18
. ~C5!

In a similar way, combining Eq.~C1! with the explicit form
of the carrier-carrier HamiltonianHcc in Eq. ~4!, after a
straightforward calculation we obtainHi 1 j 1 ,i

18 j
18

cc
52Vi 1 j 1 j

18 i
18
.

Let us now come to the evaluation of biexcitonic stat
i.e., states corresponding to two Coulomb-correla
electron-hole pairs. In this case the proper basis set is g
by the single-particle states in Eq.~10! with N52, i.e.,

u l 2&[u i 1 j 1i 2 j 2&5ci 1
† dj 1

† ci 2
† dj 2

† u0&. ~C6!

The corresponding Hamiltonian matrix is given by

Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
°

5Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
c

1Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
cc

~C7!

with

Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
c

5^ i 1 j 1i 2 j 2uHcu i 18 j 18i 28 j 28& ~C8!

and

Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
cc

5^ i 1 j 1i 2 j 2uHccu i 18 j 18i 28 j 28&. ~C9!

Again, combining Eq.~C6! with the explicit form of the
noninteracting HamiltonianHc in Eq. ~3! and making use of
the Fermionic commutation relations, in this case we get

Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
c

5~e i 1
1e i 2

1e j 1
1e j 2

!d i 1 j 1 ,i
18 j

18
d i 2 j 2 ,i

28 j
28

2~e i 1
1e i 2

1e j 1
1e j 2

!d i 1 j 1 ,i
18 j

28
d i 1 j 2 ,i

28 j
18

2~e i 1
1e i 2

1e j 1
1e j 2

!d i 1 j 1 ,i
28 j

18
d i 2 j 2 ,i

18 j
28

1~e i 1
1e i 2

1e j 1
1e j 2

!d i 1 j 1 ,i
28 j

28
d i 2 j 2 ,i

18 j
18
.

~C10!

In a similar way, combining Eq.~C6! with the explicit form
of the carrier-carrier HamiltonianHcc in Eq. ~4!, after a
straightforward calculation we obtain
Hi 1 j 1i 2 j 2 ,i
18 j

18 i
28 j

28
cc

5
1

2
~Vi 1i 2i

18 i
28
2Vi 2i 1i

18 i
28
2Vi 1i 2i

28 i
18
1Vi 2i 1i

28 i
18
!~d j 1 j 2 , j

18 j
28
2d j 1 j 2 , j

28 j
18
!1

1

2
~Vj 1 j 2 j

18 j
28
2Vj 2 j 1 j

18 j
28
2Vj 1 j 2 j

28 j
18

1Vj 2 j 1 j
28 j

18
!~d i 1i 2 ,i

18 i
28
2d i 1i 2 ,i

28 i
18
!2Vi 1 j 1i

18 j
18
d i 2 j 2 ,i

28 j
28
1Vi 1 j 1i

18 j
28
d i 2 j 2 ,i

28 j
18
1Vi 1 j 2i

18 j
18
d i 2 j 1 ,i

28 j
28
2Vi 1 j 2i

18 j
28
d i 2 j 2 ,i

18 j
18

1Vi 1 j 1i
28 j

18
d i 2 j 2 ,i

18 j
28
2Vi 1 j 1i

28 j
28
d i 2 j 2 ,i

18 j
18
2Vi 1 j 2i

28 j
18
d i 2 j 1 ,i

18 j
28
1Vi 1 j 2i

28 j
28
d i 2 j 1 ,i

18 j
18
1Vi 2 j 1i

18 j
18
d i 1 j 2 ,i

28 j
28
2Vi 2 j 1i

18 j
28
d i 1 j 2 ,i

28 j
18

2Vi 2 j 2i
18 j

18
d i 1 j 1 ,i

28 j
28
1Vi 2 j 2i

18 j
28
d i 1 j 1 ,i

28 j
18
2Vi 2 j 1i

28 j
18
d i 1 j 2 ,i

18 j
28
1Vi 2 j 1i

28 j
28
d i 1 j 2 ,i

18 j
18
1Vi 2 j 2i

28 j
18
d i 1 j 1 ,i

18 j
28
2Vi 2 j 2i

28 j
28
d i 1 j 1 ,i

18 j
18
.

~C11!
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Let us finally discuss the explicit form of the carrier-lig
matrix elements~19! entering the many-exciton absorptio
probability in Eq.~20!.

For the excitonic absorption@see Eq.~22!# the corre-
sponding matrix elements are defined in Eq.~23!. Combining
the explicit form of the carrier-light interaction Hamiltonia
~14! with that of the generic excitonic state in Eq.~21!, we
get

Hl108 52E~ t !(
l 1

Ul 1

l1* m l 1
* , ~C12!

whereUl 1

l1 is the unitary transformation from the noninte

acting basis to the interacting one,l 1 is the noninteracting
two-particle label corresponding to the single-particle sta
i 1 and thej 1 , while m l 1

[m i 1 j 1
is the single-particle dipole

matrix element given in Eq.~15!.
o-

uc

n-

pl

B
.

07530
s

For the biexcitonic absorption@see Eq.~26!# the corre-
sponding matrix elements are defined in Eq.~27!. Combining
the explicit form of the carrier-light interaction Hamiltonia
~14! with that of the excitonic state in Eq.~21! as well as of
the biexcitonic state in Eq.~25!, we obtain

Hl2l2
8 52E~ t !(

l 2
Ul 2

l2* $~Ui 1 j 2

l1 m i 2 j 1
* 1Ui 2 j 1

l1 m i 1 j 2
* !

3~2d i 1i 2 , j 1 j 2
21!2Ui 1 j 1

l1 m i 2 j 2
* 2Ui 2 j 2

l1 m i 1 j 1
* %,

~C13!

where againUl N

lN is the unitary transformation from of th

noninteractingN-particle basis to the interacting one,m is the
single-particle dipole matrix element, andl 2[ i 1 j 1 ,i 2 j 2 is
the generic label for the noninteracting two-pair basis.
tt.
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