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Abstract

The paper describes a numerical technique for the
design and the analysis of the flow in air intakes and
nozzles. Interfaces separating internal flows, as in
the jet of multiple nozzles, and the external flow are
fitted, while shocks or contact discontinuities inside
each flow are inherently captured by the numerical
scheme. The interaction with the external flow and
shape optimization are both concerned in an unified
approach which refers to the solution of an inverse
problem. The unsteady Euler equations are inte-
grated numerically by using a time-dependent pro-
cedure and by adopting an upwind finite volume ap-
proximation that belongs to the class of the second
order ENO schemes. Several numerical examples are
presented.

1 Introduction

The efficiency of propulsion systems is strongly af-
fected by the air intake and the nozzle. Despite their
simple geometry, such devices exhibit flow phenom-
ena quite complex over the expected range of opera-
tion. The presence of flows having different thermo-
dynamic properties give rise to shear layers strongly
interacting with the external flow. This phenomenon
is especially relevant to the transonic flight [1], where
an even stronger coupling can take place between the
above mentioned contact interfaces and shocks. Fur-
thermore, in hypersonic propulsion the high integra-
tion of airbreathing engines in the vehicle requires
also an accurate prediction of the perfomances of
the exhaust system because of its influence on the
net thrust. To avoid the use of iterative procedures
in the design process, we formulate an inverse prob-
lem in which the location of the contact interfaces
is not known a priori and their final shape is part
of the solution. At the same time other design re-
quirements can be prescribed to optimize the nozzle
performance. The numerical method is based on the

finite volume approximation of the time-dependent
Euler equations according to a second order accurate
ENO scheme. Interfaces separating internal flows,
as in the jet of multiple nozzles, and the external
flow are fitted, while shocks or contact discontinu-
ities inside each flow are inherently captured by the
numerical scheme. The design problem of finding the
shapes of the solid walls of intakes or nozzles is sat-
isfied the prescibed pressure distributions is solved
according to a time-dependent process [2][3][4][7].
The walls are considered impermeable and flexible,
an initial shape is assumed and then design pres-
sure and impermeability are imposed as boundary
conditions. During the transient the shape changes
until a steady state is reached. The same model is
used to define the geometry of the fluid interfaces,
which are treated as impermeable an flexible walls
with the same pressure on their sides. In the next
sections the mathematical model and the numerical
procedure are illustrated. The technique is then ap-
plied to the design of a transonic diffuser and to the
study of a dual nozzle configuration interacting with
the external flow.

1.1 Governing Equations

The Euler equations for a two-dimensional or ax-
isymmetric unsteady motion of an inviscid compress-
ible fluid, are written in divergence form:

V-[V]:—%-N (1)

with V and [V] being:
o, a. 0, B . .
V= akJralJra—yJ [V] = {U}k+{F}i+{G}j

where a = 0 for 2-D flow and a = 1 for axisymmetric
flow, i, j, k are the unit vectors of a Cartesian frame
of reference of the 3D space-time (z,y,t), and
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p, p, e, denote density, pressure and internal en-
ergy per unit volume, respectively, while u, v are
the Cartesian components of the flow velocity. All
the flow properties are normalized with respect to
suitable reference values.

According to the Gauss formula, the integral of eq.
(1) in a given volume D of the space-time can be
written as:

/ [V] ndo = -« EalT (2)
oD DY

with D being the boundary of the volume D and
n the outward normal. Eq. (2) is approximated by
a finite volume technique by discretizing the (z,y)
plane by means of four sided cells whose shape de-
pends on time. The integration in time is carried
on according to a Godunov type two-step scheme
[9]. At the predictor step, a standard first order
FDS is used: the primitive variables (p, p, e, u, v)
are assumed at a constant average value inside each
cell. The fluxes F, G are evaluated by solving the
Riemann’s problems pertinent to the discontinuities
that take place at the cells interfaces. To this pur-
pose, we adopted the approximate Riemann solver
suggested in [6]. At the corrector level, the second
order of accuracy is achieved by assuming a linear,
instead of constant, behaviour of the primitive vari-
ables inside the cells, according to the ENO concept
([8], [9]). The resulting scheme is second order ac-
curate in both time and space.

1.2 The boundary conditions

The computational domain is bounded by artificial
(i.e. far field boundaries) and physical contours (i.e.
impermeables walls), that can be solid, as in the
direct problem, flexible, as in the inverse problem,
or partly solid and partly flexible. The theory of
characteristics states the number of conditions to
be imposed at each boundary of the computational
domain. For examples, one boundary condition is
nedeed at impermeable boundaries; it is prompted
by the physics of the problem: at a solid wall the
vanishing of the velocity component normal to the
wall is imposed, while at a flexible wall, according to
the inverse problem formulation, the design pressure
is prescribed. The computation at the boundaries is
carried out by solving an half Riemann problem, as
described in [10]. At a deformable wall, once the
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Figure 1: Transonic diffuser: a) isoMach b) isoen-
tropy

flow properties are computed, the geometry is up-
dated by enforcing the condition of impermeability:
each point of the wall has to move with a normal
velocity equal to the normal component of the flow
velocity, as described with details in [2]. The same
method here described to solve inverse problems can
be used to determine the shape of plumes and inter-
faces. For instance, the streamtube confining a jet
in air at rest can be seen as the wall of a duct along
which costant pressure is prescribed. Moreover, in
flow regions, such as after-bodies or dual nozzles in
by-pass turbofans, contact discontinuities are gen-
erated by different stagnation conditions and ther-
modynamic properties of the incoming flows. Such
discontinuities are interfaces that can be computed
explicitly according to the present method: they
are considered as impermeable and deformable walls
across which pressure and normal component of the
flow velocity are imposed to be continuous.



2 Numerical results

2.1 Transonic diffuser

The first example deals with the design of a tran-
sonic diffuser. The design pressure along the un-
known upper wall is prescribed according to the law:

Pd = Pin + (pe - pm) (x/l) (3)

with pip, = 0.4, p. = 0.75, PY = 1. The lower wall
is assumed solid. The inlet flow is assumed super-
sonic, while a subsonic condition is imposed at the
exit. Figs 1 a) and b) show the final geometry with
the iso-mach and isoentropy contours respectively.
The pictures exhibit the transition from supersonic
to subsonic regime through a shock wave in the flow
core but shockless at wall, as it should be expected,
since the design pressure is prescribed as a continu-
ous function along the wall.

2.2 Dual nozzle configuration with
external flow

In this example we show the computation of a dual
nozzle and jet. The wall geometry of the external
nozzle and and the shapes of the interfaces confin-
ing the inner and outer flows are determined accord-
ing to the inverse procedure. The computational
domain is divided in two regions: the inner region
which represent an ’internal flow’ bounded by the
centerline, the inner nozzle contour and the con-
tact discontinuity; the outer region is confined by
the external nozzle walls, the contact discontinu-
ity and a free pressure boundary. The inner noz-
zle has an half-angle equal to 5°, while the external
one has 10° divergence angle. The inlet flow is su-
personic for both nozzles, but with different total
conditions. At the inner nozzle we prescribe total
pressure p° = 1.0, total temprerature 70 = 1.0 and
Mach number M = 2.0; at the inlet of the external
nozzle we impose p® = 0.9, 7° = 1.0 and M = 1.8.
The external pressure is p. = 0.07. Moreover, along
the upper wall of the secondary nozzle, a design pres-
sure distribution is set according to

O<z<1b
15<ax <25

Pd = (Pin — Pe) sin(m 2/1.5)
Pd = De

where p;, = 0.1566 and p. = 0.07. The above
pressure distribution allows the secondary nozzle to
be fully expanded with a nearly uniform axial flow
at the exit section. The resulting flow configura-
tion and the geometry of the swecondary nozzle are
shown in fig. 2. The isoMach contours, plotted in
fig. 2 a, reveal the presence of an oblique shock wave,
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Figure 2: Dual nozzle: a) isoMach, b) isopressure c)
time evolution

due to the change of wall curvature.In fig. 2 b isopres-
sure contours show a continuous behavior across the
interface. The evolution in time of the jet contour
and the interface are given in fig. 2 ¢. The start-
ing configuration is characterized by straight lines
for the jet boundary and interface (K = 0). The fi-
nal steady configuration is obtained after K = 1000
time steps.

2.3 Flow past a turbofan-nacelle-like
configuration

The final example refers to the flow past a turbofan-
nacelle-like configuration. The flow is assumed ax-
isymmetric and the computational domain is divided
in three parts: I) the region pertinent to the in-
ner nozzle, which is bounded by the centerline, the



inner nozzle contour and the contact discontinuity
separating the hot flow and the cold flow; II) the re-
gion pertinent to the outer nozzle, which is bounded
by the above mentioned contact discontinuity and a
second one, separating the cold flow from the exter-
nal flow: IIT) the external flow field. The present
numerical example refers only to the afterbody re-
gion, comprehensive of the nozzles and multiple-jet
flow. As test-case and for sake of simplicity, we im-
posed in all the three regions identical inlet condi-
tions: P® = 1., 7% = 1. and M = 0.5. The external
pressure is p. = 0.843 . In the complete model,
which is work in progress, the effective inlet condi-
tions are given by the engine, which is modelled as a
black box that receives the flow through the intake
and return back flows with different total pressure
and total enthalpy to the nozzles. The isopressure
lines and the computed shapes of the plumes and
inner interfaces are plotted in fig3, as well as the
visualization of the velocity field.

3 Conclusions

A numerical technique has been proposed to com-
bine optimized design of air intake and nozzles, tak-
ing into account the interaction with the external
flow inherently. The procedure lead to an inverse
problem, solved in a time-dependent fashion. Sev-
eral numerical examples have been also presented to
explain the most important aspects of the methodol-
ogy. This work is the kernel of a model for the entire
flow past a turbofan nacelle, in the inlet, nozzles and
multiple-jets flow, where the engine will be modeled
as a black box that receives the flow through the in-
take and return back flows with different total pres-
sure and total enthalpy to the nozzles.
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Figure 3: Flow past a turbofan-nacelle-like configu-
ration: a) isoMach, b) Isopressure, c¢) streamlines.



