
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A new system design methodology for wire pipelined SoC / Casu, MARIO ROBERTO; Macchiarulo, Luca. - STAMPA. -
(2005), pp. 944-945. (Intervento presentato al convegno Design, Automation and Test in Europe, 2005. tenutosi a
Munich (D) nel 7-11 March 2005) [10.1109/DATE.2005.25].

Original

A new system design methodology for wire pipelined SoC

Publisher:

Published
DOI:10.1109/DATE.2005.25

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1410341 since: 2018-03-26T14:46:01Z

IEEE Computer Society

A New System Design Methodology for Wire Pipelined SoC

Mario R. Casu
Politecnico di Torino, Italy

mario.casu@polito.it

Luca Macchiarulo
University of Hawaii, HI

lucam@hawaii.edu

Abstract

Wire Pipelining (WP) has been proposed in order to limit
the impact of increasing wire delays. In general, the added
pipeline elements alters the system such that architectural
changes are needed to preserve functionality. We illustrate
a proposal that, while allowing the use of IP blocks with-
out modification, takes advantage of a minimal knowledge
of the IP’s communication profile to dramatically increase
the performances. We showed the formal equivalence be-
tween WP and original system and proved the higher per-
formance achievable through a relevant case study.

1. Theory and Implementation

A signal is a set of events e, i.e. couples e = (v, t)
of values v and tags t. In our sequential systems, tags
can be thought as clock ticks. Processes exchange signals
by means of channels. If we add wire pipeline elements
to channels, these initially hold void data that we denote
using τ symbol. The behavior is modified such that se-
quences of valid events, are interrupted by void values. A
generic realization of a channel in time interval [t1, tN] is
(v1, t1), τ, τ, (v2, t2), . . . , τ . . . Let us filter out void sym-
bols τ and find the maximum tag N such that every sig-
nal has a sequence of at least N values. If all sequences are
identical to the original system from 1 to N , the two sys-
tems, with and without WP, are N-equivalent. If they are
equivalent ∀N , they are said equivalent. A wrapper must
enclose the processes in order to guarantee equivalence and
perform the following tasks:
1) τ -filtered inputs are buffered with semi-infinite fifos and
stored in positions progressively numbered with the tags.
2) a synchronizer keeps trace of the current tag and, a) when
all identically tagged inputs are available (synchronous sig-
nals) dispatches them to the internal process, removing
them from the fifos; b) if at least one input does not have
the current tag, the process is stalled.
3) In correspondence with the stall, τ is sent to all outputs.

This wrapper could be simplified so that all valid signals
(�= τ) already processed (and so eliminated from the fifo)
are counted. The synchronizer’s task is to trigger the pro-
cess if all inputs with tag equal to the counter are present.

If we suppose that some processes are such that, for some
of their internal states, not all inputs are simultaneously
read, then it is possible to advance the computation even be-
fore all the corresponding inputs have reached it (relaxation
of synchronicity). This is the key for an overall increase of
performance. An analogous observation is in [1] without
proof of equivalence. We introduce a new element in our
wrapper: an oracle that decides which inputs are needed for
the next computation. The new wrapper’s features are:
1) if all inputs required by the oracle are present, the com-
putation is triggered and the fifo updated.
2) The synchronizer discards all inputs whose tag is smaller
than the counter value (“old” tags).

Synchronicity is guaranteed by the fact that the fifo actu-
ally discards valid non-necessary inputs which became use-
less due to the process’ blindness to them.

The step to make the entire consideration practical is
making the fifo length finite. Thus, back-pressure has to be
implemented with a stop signal propagated back to the wire
pipeline elements that, in order not to lose data, should con-
tain, together with the pipeline register, at least one aux-
iliary register for saving a valid incoming datum when a
stop is received. A simple FSM already described in [2] and
called relay station (RS) suffices to guarantee correct func-
tionality. When also the auxiliary register is full, the stop is
propagated to the previous RS up to the source process.

Instead of counting the absolute tag, it is sufficient to use
an initialized counter that records the lag between the most
recent and old data received by each channel. From the prac-
tical standpoint, it is also not necessary to send the tag to-
gether with the signal, but only a bit indicating its validity
[2], as the distributed counters will take care of the tag val-
ues, thanks to the ordering properties of the signals.

Wrappers with and without the additional oracle that
uses the processing information were described in VHDL
and simulated. We evaluated the wrappers’ area with sev-
eral synthesis experiments on a 130 nm technology. The
overhead was always less than 1% with respect to an IP of

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

100 kgates. As for the timing of the logic used within the
wrappers, it was never critical in all our experiments.

2. Case Study

We considered a processor made out of five components
to be enclosed within our wrappers and with pipelined con-
nections as shown in fig. 1. The responsible of performance

CUIC

rd

addr

data
DC

ad
dr

 s
rc

1
ad

dr
 s

rc
2

ad
dr

 d
st

1
rd w

r

RF ALU

al
u

fl
ag

s
al

u
op

co
de

al
u

di
r

loops
instruction

data
loops

loops
branch

wr
rd

ds
t1

 (
ad

dr
)

sr
c2

 (
da

ta
in

)

src1
dst2

src2
dst1

da
ta

ou
t

Figure 1. Case study.

pitfalls are the netlist loops. Let us define the throughput
Th as the average number of valid data produced in every
clock cycle. A loop containing m process and n pipeline
delays has Th= m

m+n in case wrappers do not implement or-
acles. The worst loop dominates the system Th. The netlist
loops are shown in fig. 1. We built the system with a mini-
mal instruction set and used two basic programs to cover the
spectrum of applications: a strictly data dependent problem,
extraction sort, and a matrix multiplication. The processor
was modelled with a RTL VHDL description and imple-
mented in two different fashions, multicycle and pipelined.

The migration to a standard WP system, WP1 in our ex-
periments, is straightforward: blocks are encapsulated by
wrappers and wires segmented by relay stations. In the case
of our new technique, WP2, the input signals are comple-
mented, when possible, by a processing signal derived from
the process operation. However, in our case (which we think
representative of practical cases), the effort was minimal.

3. Experimental Results

We ran the following experiments for both multiproces-
sor and pipelined case but for space reasons only the lat-
ter case results are reported in table 1:
1. The golden system is simulated. The number of clock pe-
riods is used for the computation of the WP’s performance.
The throughput without WP is of course 1.0.
2. We added single relay stations (RS) for each and every
connection in the system’s topology (rows 2-11).

3. We built a system with 1 RS in each connection (row 12).
4. For the Matrix Multiply only, we repeated the simula-
tions for at least 1 RS everywhere and 2 somewhere (rows
13-22) and 2 RS everywhere but in some links (rows 23-25).

We would like to draw some overall conclusions:
1. All results are in favor of the proposed WP2 system.
2. The advantage depends on the features of the communi-
cation channel at stake: In the Multicycle case, not reported
in table, the CU-IC loop is excited only every 5 cycles due
to the non pipelined sequence of 5 phases Instruction Fetch,
Decode and contextual Operand Fetch, Execution, Memory
access and Write-back. That’s the reason of the best im-
provement of WP2 in this loop with respect to WP1 (60%)
where such loop is statically present at all time. Other chan-
nels accessed more frequently give less advantage.
1. Even if the computations are tighter in the pipelined case
(in the same clock cycle different loops are exercised at the
same time) we still observe the relevant advantages of WP2.

Th Th WP2 vs.
RS Configuration Cycles WP1 WP2 WP1 (%)

Extraction Sort
1 All 0 (ideal) 1559 1.0 1.0 0%
2 Only CU-RF 2078 0.75 0.75 +0%
3 Only CU-AL 2090 0.667 0.75 +13%
4 Only CU-DC 2078 0.75 0.75 +0%
5 Only CU-IC 3118 0.5 0.5 0%
6 Only RF-ALU 1886 0.667 0.83 +25%
7 Only RF-DC 1569 0.667 0.99 +49%
8 Only ALU-CU 1681 0.667 0.93 +40%
9 Only ALU-RF 1701 0.667 0.92 +38%
10 Only ALU-DC 1634 0.667 0.96 +44%
11 Only DC-RF 1624 0.667 0.96 +44%
12 All 1 (no CU-IC) 2325 0.5 0.67 +34%
13 Optimal 1 (no CU-IC) 1952 0.667 0.80 +20%

Matrix Multiply
1 All 0 (ideal) 2778 1.0 1.0 0%
2 Only CU-RF 3704 0.75 0.75 +0%
3 Only CU-AL 3724 0.667 0.75 +13%
4 Only CU-DC 3704 0.75 0.75 +0%
5 Only CU-IC 5557 0.5 0.5 0%
6 Only RF-ALU 3596 0.667 0.77 +16%
7 Only RF-DC 2824 0.667 0.98 +47%
8 Only ALU-CU 2851 0.667 0.97 +46%
9 Only ALU-RF 3436 0.667 0.81 +22%
10 Only ALU-DC 3058 0.667 0.91 +37%
11 Only DC-RF 2994 0.667 0.93 +40%
12 All 1 (no CU-IC) 4703 0.5 0.59 +18%
13 All 1 and 2 CU-RF 4775 0.5 0.58 +16%
14 All 1 and 2 CU-AL 4703 0.4 0.59 +48%
15 All 1 and 2 CU-DC 4703 0.5 0.59 +18%
16 All 1 and 2 CU-IC 8335 0.33 0.33 0%
17 All 1 and 2 RF-ALU 5521 0.4 0.50 +25%
18 All 1 and 2 RF-DC 4703 0.4 0.59 +48%
19 All 1 and 2 ALU-CU 4776 0.4 0.58 +45%
20 All 1 and 2 ALU-RF 5235 0.4 0.53 +33%
21 All 1 and 2 ALU-DC 4919 0.4 0.56 +40%
22 All 1 and 2 DC-RF 4919 0.4 0.56 +40%
23 Optimal 2 (no CU-IC) 4919 0.4 0.56 +40%
24 All 2 (no CU-IC) 6555 0.33 0.42 +26%
25 All 2 and 1 CU-RF 6555 0.33 0.42 +26%

Table 1. Sort: Pipelined Case.

References

[1] M. Singh and M. Theobald, Generalized Latency Insensi-
tive Systems for Single-Clock and Multi-Clock Architec-
tures, Proc. DATE 2004, Paris.

[2] L.P Carloni et al., A Methodology for Correct by Construc-
tion Latency Insensitive Design”, ICCAD 99, pp. 309-315.

[3] L.P. Carloni et al. Theory of Latency-Insensitive Design,
IEEE TCAD, vol. 20, No. 9, Sept. 2001, pp. 1059-1076.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

