
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Programmable built-in self-testing of embedded RAM clusters in system-on-chip architectures / Benso, Alfredo; DI
CARLO, Stefano; DI NATALE, Giorgio; Lobetti Bodoni, M.; Prinetto, Paolo Ernesto. - In: IEEE COMMUNICATIONS
MAGAZINE. - ISSN 0163-6804. - STAMPA. - 41:9(2003), pp. 90-97. [10.1109/MCOM.2003.1232242]

Original

Programmable built-in self-testing of embedded RAM clusters in system-on-chip architectures

Publisher:

Published
DOI:10.1109/MCOM.2003.1232242

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1404469 since:

IEEE

_ ~ _
TESTING AND VERIFICATION OF I

COMMUNICATION SYSTEM-ON-CHIP DEVICES I

Programmable Built-I n Self-Test i ng of
Embedded RAM Clusters in
System-on-Chip Architectures
Alfred0 Benso, Stefan0 Di Carlo, Giorgio Di Natale, and Paolo Prinetto, Politecnico di Torino

Monica Lobetti Bodoni, Siemens Mobile Communications

ABSTRACT
Multiport memories a r e widely used as

embedded cores in all communication system-
on-chip devices. Due to their high complexity
and very low accessibility, built-in self-test
(BIST) is the most common solution implement-
ed to test the different memories embedded in
the system. This article presents a programmable
BIST architecture based on a single micropro-
grammable BET processor and a set of memory
wrappers designed to simplify the test of a sys-
tem containing a large number of distributed
multiport memories of different sizes (number of
hits, number of words), access protocols (asyn-
chronous, synchronous), and timing.

INTRODUCTION
Silicon area is now so cheap and integration
technologies so advanced that industries can
embed in a single chip, usually referred to as sys-
tem-on-chip (Sac), all t he components and
functions that historically were placed on a hard-
ware board. Each component or function is now
available as a predesigned complex functional
block, or embedded core.

Embedded memories a re the most densc
components within an SoC, accounting for up
to 90 percent of its real estate. Today’s tech-
nologies allow the design and manufacturing of
memory cores with many 110 ports, and multi-
port RAM core generators are commonly avail-
able in many application-specific integrated
circuit (ASIC) vendors’ libraries (e.g. , LSI-
Logic, Texas Instruments, and ST Microelec-
t ronics) . T o get a n idea of today’s SoC
complexity, it is enough to consider that typi-
cally more than 30 embedded memories are
placed o n a single chip; they a r e sca t t e red
around the device rather than concentrated in
o n e locat ion; they a l l have different types,
sizes, and access protocols and t iming; and

they can even he doubly embedded inside
embedded cores. From a testability point of
view, memories are also the most sensitive to
process defects, making it essential t o thor-
oughly test them in the SoCs.

This new dcsign philosophy, based on the use
of embedded cores, leads to a radical change in
the test engineering process. First of all, direct
accessibility to interconnections and Cores’
boundaries is not possible; however, test patterns
and test responses still need to he delivered to
the core or the SoC boundaries.

In the case of memory cores, the test method-
ology of choice is built-in self-test (BIST). BIST
offers a simple low-cost means to test for fail-
ures of embedded memories without significant-
ly impacting device performance. In this
scenario, t he implementation of an efficient
BIST strategy for SoCs including several multi-
port RAMS requires taking into account the dif-
ferent sizes (number of hits, number of words),
access protocols (asynchronous, synchronous),
and timing of the memories embedded in the
system, to minimize the BlST area and routing
overhead and fulfill power budget constraints.
Moreover, while it has been used primarily for
production passifail testing, BIST should he
extended to provide the diagnostic data required
for process monitoring and repair. A successful
BlST for embedded memories has to guarantee
core accessibiliy, scalabi/ily, in-system programma-
bi/itv (ISPI. low overhead. and tlexibi/itv in the test
scheduling.’

This art icle nresents the efforts and the
results obtained in designing a proprietary BIST
architecture.to tackle the above-mentioned set
of problems.

The article is organized as follows. We sum-
marize some of th; most significant memory
BlST architectures presented in literature; we
give a general overview of the proposed BlST
architectures and then detail the structure of the
main blocks of the architecture. The scheduling

90 0163-68041031$17.00 0 2003 IEEE IEEE Communications Magazine - September 2003

y-program
memory

2

...................-

, .gure 1. Basic architecture.

and diagnosis facilities of the proposed BIST are
detailed, and a possible optimization is dis-
cussed. We present a real application of the pro-
posed approach on an industrial case study, and
finally we summarize the main contributions of
the work and conclude the article.

STATE OF THE ART
Several memory BIST solutions have been pro-
posed to test both single- and multiport memo-
ries [I , 21, and static and dynamic memories [3 ,
41. Programmable memory BIST has been pro-
posed in [5-71 to increase flexibility in applying
different combinations of test patterns targeting
different types of faults. Despite their effective-
ness, all these solutions are designed to address
the problem of testing a single type of memory,
and none focuses on the problem of concurrent-
ly testing several heterogeneous embedded
memory arrays. This problem has been
addressed in [S, 91, where the authors propose a
built-in self-diagnostic method to simulteneously
diagnose spatially distributed memory modules
with different sizes. The approach is based on
the serial interfacing technique proposed in [lo].
The basic idea is to synthesize the 110 port of
each buffer as a scan chain from which the test
patterns can be provided and memory contents
can be read. The solution is very easy to imple-
ment, but it is not so efficient in terms of test
speed and area overhead, and does not take into
account power consumption constraints. More-
over, all the memory tested in parallel must he
of the same type. A deterministic BIST state
machine was designed in [I I] to test multiple
RAMS with different Characteristics. Although
all the memory modules arc tested (truly) con-
currently, each memory module receives its own
control signals from the BIST controller. This

solution has the disadvantages of large routing
area overhead and a complex design of the BIST
controller.

MEMORY BIST
MANAGEMENT ARCHITECTURE

The goal of this article is the design of a propri-
etary BIST scheme to tackle the problem of test-
ing the memory subsystem of a complex SOC.
Figure 1 gives an overview of the proposed BIST
architecture.

A single BISTprocessor is in charge of per-
fo rming t h e tes t of all (o r a subset of) t he
memories of the system. Using a minimal set
of communication signals, the BIST processor
coordinates, executes, and synchronizes the
test algorithm of the memories under test. The
BIST processor is y-programmable: the test
algorithm is stored as a sequence of elemen-
tary test primitives in a dedicated memory (p-
program memory); these instructions include
(but are not limited to) update of the address
generators, application of a test pattern, and
comparison of a memory cell with an expected
value. This solution allows, if necessary, pro-
gramming t h e system at runt ime t o execute
any required test algorithm. The BIST proces-
sor functionalities and communication proto-
col a r e i n d e p e n d e n t of the number a n d
characteristics of the memories embedded in
the system.

The different test primitives that constitute
the test algorithm are received by a wrapper
placed around each memory. In particular, each
wrapper is composed of a set of port wrappers
(one per each memory port) and a dispatcher.
The port wrapper contains the standard blocks
required to implement BIST capabilities (i.e., an

-
The different test

primitives that
constitute the test

algorithm are

received by a

wrapper placed
around each

memory. In

pahcular, each
wrapper is

composed
of a set of

port-wrappers
(one per each

memory po16

and a dispatcher.

IEEE Communications Magazine September 2003 91

-
When the test

program is
completed @.e.,

all the test

primitives have

been applied). the

BlST processor

reads the test

results from each

memory lf a fault

is detected, the

faulv memories

can be located

resorting to a set

of diagnosis

capabiirties.

.
and timing.

The following sections will further detail the
blocks compo& the architecture.

THE BlST PROCESSOR
The proposed memory BIST is bascd on a single
BIST processor used to test all the memories of
the target SOC. To increase flexibility, BIST exe-
cution is based on a w-programmable approach.
Due to their regular structure, the most popular
and widely accepted detcrministic test algo-
r i thms for memory B lST are March tests. A
March test is a finite sequence o f operat ions
(March elements) applied to each memory cell
in the memory array in e i ther ascending or
descending order before proceeding to the next
cell [l] . March tests are popular because of their
low temporal complexity, regular structures, and
their ability to detect different types of faults.
The proposed BIST processor has therefore
been optimized to implement March tests. The
chosen algorithm is stored in a dedicated p - p m
gram memory, coded through a set of fesf primi-
f ives. The p-program memory can be either a
ROM or an ISP device. In the former case, the

test program is fixed at design time, whereas in
the l a t t e r any custom test a lgori thm can be
downloaded into thc p-program memory at test
time.

After selecting the set of memories under
test, the BIST processor reads from the p-pro-
gram memory one test primitive at a time, for-
wards i t to all the wrappers of the memories
undcr test, and waits until its completion by all
the target memories.

When the test program is completed (i.e., all
the test primitives have been applied), the BlST
processor reads the test results from each mem-
ory. If a fault is detected, the faulty memories
can be located hyresorting.to a set of diagnosis
capabilities.

The architecture of the BIST processor and
the p-program memory are strongly influenced
hy the peculiar characteristics of multiport mem-
ories. In fact, due to the possibility of concur-
rently accessing several cells, new fault models
must he targeted [12], and ad hoc March algo-
rithms must be adopted to cover these new types
of fault. In particular, the proposed implementa-
t ion is opt imized to implement March algo-
rithms for multiport memories presented in [13].
The main characteristic of these algorithms is
the use of nested cycles to access the different
memory ports,

k A (1Qr: (nZ,B+l))},
where f A - l B = o f n C = B + , denotes a nes ted
addressing sequence in which cd l B goes from 0
to A - 1 and, for each value of B , cell C goes
from B + 1 to n. A pseudo-C code of this nested
addressing sequence would correspond.to two
nested for cycles:

for (B = 0; B < A - 1;B++)
for (C = B + 1; B < n: B++)

As previously explained, each step of the test
program is coded in the p-program memory as a
sequence of test primitives, one for each memo-
ry port . T h e set of test primitives needed to
implement the proposed family of March algo-
rithms are:
* WO: Write pattern
* W1: Write not (pattern)
* RO: Read and verify a pattern - R1: Read and verify a not (pattern) - INC: Increment the address p e r a t o r and

define the end of a March element - D E C Decrement the address generator and
define the end of a March element

* INCCOND: Conditionallv incremcnt the
address generator - DECCOND: Conditionallv decrement the
address generator

withx > 1

x, with x > 1

tor

* SUB: Increment the address generator ofx ,

* ADD: Decrement the address generator of

* LOAD: Load a value in the address genera-

* N M E New March element - NOP No operation
* NEXTP Next pattern

* CONF: Define the set of SRAM under test - RUN: Synchronization primitive - E N D End of test
The external interface of the BIST processor

can he designed in order to match the target sys-
tem requirements. Possible solutions are a P1500
compliant interface, an addressable device on
the system bus, or a JTAG interface, as in the
case study presented later.

THE MEMORY WRAPPER
The wrapper placed around each memory has to
execute the test primitives broadcast by t h e
BIST processor regardless of t he par t icu lar
memory access protocol. The wrapper is there-
fore the only element in the architecture taking
carc of the number of ports, the size, and the
access protocol of the memory it wraps.

The wrapper generates the correct test pat-
terns and memory addresses required to execute
the received test primitives, and compares the
values read during the tcst with the expected
ones.

The wrapper architecture consists of a dis-
patcher and a set of port wrappers.

DISPATCHER
Each R A M under test has a dedicated dis-

patcher, which receives the test primitives for all
the por t wrappers from the BIST processor.
Since the primitives a re sent sequentially hut
must he applied at the same time in order to
execute the required operations concurrently on
all the ports of the memory, each dispatcher
saves all the primitives in a temporary register
and delivers them to each port wrapper only
after receiving a synchronization test primitive
(RUN). This solution allows a dramatic rcduc-
tion of the routing ovcrhead tha t would h e
required to send all the primitives in parallel
using a dedicated bus for each port.

PORT WRAPPER
Each memory port has a dedicated port wrapper
that generates the test patterns (address and
da ta) and verifies the correct behavior of t he
memory according t o the primitive received
from the dispatcher. Thc rcsult of each primitive
is signaled on an output line.

The internal structure o f , a port wrapper is
drawn in Fig. 2. The addre.s.7 generaror (AG) is in
charge of generating the correct address where
the test pattern, provided by the pattem generator
(PG), has to be written or verified. PGs can easi-
ly be customized in order to target different
fault types [131. Its implementation is neverthe-
less always very simple, and never more complex
than an up counter. The correctness of the con-
tent of a memory cell is evaluated using a simple
comparator.

Two status hits are used to set the memory in
lranspamnt or rest mode (the mode srarus bir) and
to store the resf results a t the end of the BIST
algorithm (the result status bit). All the memories
set in test mode are tested in parallcl, whereas
those set in rransparenr mode arc bypassed and
not tested; this feature is requircd to allow flexi-
ble scheduling of the memories under test. T o
set and read them, the status bits of all the port

I Figure 2 . Por~ wrapper architecture.

wrappers are dynamically connected in a global
scan chain.

Finally, each port wrapper includes an inter-
facing block able to receive the test primitives
(command) from the dispatcher and execute
them on the memory using the required proto-
col. Moreover, the interfacing block receives a
synchronization signal (Sync-lN) from the previ-
ous port wrapper, and produces an output syn-
chronization signal (Sync-OUT) needed by the
other wrappers and the BIST processor to syn-
chronize the scheduling of the next test primi-
tive.

The Sync-1,N signal of each'port wrapper is
directly connected to the Sync-Out,signal of the
previous one, except for the last port wrapper
whose Sync-OUT signal is connec ted t o the
BIST processor. T h e Sync-OUT signal is
enabled only when the Sync-OUT signal of the
previous port wrapper is asserted. Therefore, the
BIST processor receives the logic-AND of the
output signals generated by all the port wrap-
pers.

From a functional point of view, Sync-OUT
assumes different meanings depending on the
received test primitive. As an example, fo r a
read or write operation, i t has the meaning of
end ofinsrruction (E O N) . It is asserted when the
memory actually ends the execution of the com-
mand. This mechanism guarantees thc synchro-
nization among memories with different timing
and access protocols. For a primitive to incre-
ment or decrement the value of the address geu-
erator, Sync-OUT has the meaning of end of
address (EOAD). It is asserted when the address-
ing space has been visited by the address genera-
to r , allowing the synchronization among
memories of different sizes.

Two types of port wrappers are available: one
for the first port of each memory and one for
the other ports. The main difference between

IEEE Communications Magazine - September 2003' 93

-
In order to

minimize the

routing overhead,

the signals

exchanged

between the BlST

processor and the

memoty wrappers

(command signals,

synchronization
signal, scan chain

signals) are

multiplexed. In

paflkular, these

signals are

multiplexed at the

port-wrapper

level. ,

p-program
memory

?-+-

t
algorithm

.- RAMl

- RAM4

I I

W Figure 3. Scheduling using the Confprimirive.

the two lies in the fact that the port wrapper
connected to the first port of the memory imple-
ments thc main addressing loop of the March
tes t family discussed ear l ie r , whereas t h e
addresses applied to thc mcmory by port wrap-
pers connected to the remaining ports are rela-
tive to the value of the address generated by the
previous port wrapper.

In ordcr to minimize the routing overhead, the
signals exchanged between the BIST processor
and the memory wrappers (command signals, syn-
chronization signal, scan chain signals) are multi-
plexed. In particular, thcsc signals are multiplexed
at the port wrapper level. All thc information is
routed using only six signals (four command sig-
nals and two synchronization signals).

TEST SCHEDULING
An important issue to he faced when running
concurrently the BIST of several modules is ful-
filling power budget constraints. In fact, BIST
typically results in a circuit activation rate higher
than t h e normal o n e , and overdissipation of
power may seriously damage the devices. More-
over, the variety of memories that can be found
in a complcx architecture may requirc different
test algorithms. To address thesc two issues, the
proposed approach implements a very flexible
scheduling mechanism. In particular, it is possi-
ble to select the se t of memories t o be tested
using either a dcdicdted test primitivc as part of
the test algorithm or setting the mode sfarus bit
flag into the memory wrapper through a scan
chain. Only the wrappers of the selected memo-
rics will execute the test primitives received from
the BIST processor; all the others will be set in

t ransparent mode and therefore bypassed. In
this way, sevcral test algorithms may be stored in
t h e p-program memory and may h e appl ied
sequentially to different sets of memories. The
definition of algorithms or guidelincs for sclcc-
tion of the hest scheduling is a task that depends
on the particular targct system and is therefore
outsidc the scope of this article. Our main focus
is o n the design of an architecture that allows
flcnihle definition of test scheduling. The two
mechanisms implemented to allow the schcdul-
ing of t h e memor ies under test a r e bricfly
explained in the following.

SCHEDULING USING THE CONF PRIMITIVE
Using t h e CONF primitive, it is possihlc t o
embed scheduling information into the test pro-
gram. The representation of this primitive in the
p-program memory is defined as follows:
* The CONF opcode. - Thc number of 4-bit words used to code the

Activatio~Mask.
* The ActivatibnMask, a mask of hits where

each bit corresponds to one memory in the
system. To include a memory in the set of
thc SRAMs under test, the corresponding
hit in the ActivationMask has to he set.
As a n example, let's consider the system in

Fig. 3.
When thc BIST processor reaches a CONF

primitive during the test program enecution, it
reads thc ActivationMask and configures all the
memory wrappers using the scan chain defined
earlicr in order to activate the required schedul-
ing plan. The first ActivationMask shown in Fig.
3 sets RAMl and RAM4 under test, whereas thc
second o n e sets RAM2 and RAM3 undcr test.

94 IEEE Communications Magazine * September 2003

..

I , 6 ,

: Port-wrapper ; I Port-wrapper
'.. ... I.._.__........._...------

P

W Figure 4. Results-Scan-Chain.

In order to define different test sessions and col-
lect test results, at the end of each algorithm the
BIST processor stops the test program execution
and waits for a new start primitive to continue
with the next one.

SCHEDULING USING THE SCAN CHAIN OPTION
In order to give the designer greater flexibility, the
set of memories under test can also he set loading
the appropriate ActivationMask directly from the
outside using a scan chain protocol. In ordcr to
jump to the appropriate test algorithm in the F-
program memory, the starting value of the p-pro-
gram memory Address Regi.yter can also he loaded
in the BIST processor using the same protocol.

DIAGNOSIS
Fail map extraction is required to output the rel-
evant data needed to determine why a failure
occurred within a memory. This data is post-pro-
cessed using diagnostic software to isolate the
defective memory and location within the mem-
ory. Therefore, when a faulty memory is detect-
ed, the proposed approach allows collection of
diagnostic information about the location of the
faulty memories, the ports where the fault has
been detected, the addresses of the faulty cells,
and the detecting patterns. This information is
stored into the result status bit, address generator,
and background pattern generator of each port
wrapper and can he scanned ou t via t h e
Results-Scan-Chain. To allow even m o r e
detailed diagnostic capabilities, it is also possible
to include in the Result-Scan-Chain the test
primitive that triggered the detection of the
fault. To reduce the scan chain length, dcpend-
ing on the result of the test (Result-Status-Bit),
each port wrapper configures its portion of the
Resufts-Scan-Chain in one of the following two
ways (Fig. 4): - Result-Stntus-Bit=1: The memory is not

faulty; only the Result-Status-Bit is placed
on the scan chain. - Result-Status-Bit=O: The memory is faulty;
the Result-Status-Bit is chained to the con-
tent of the address generator and the back-
ground pattern generator.

FURTHER OPTIMIZATION
To further reduce the BlST area overhead, the
designer can share a single wrapper for a cluster
of identical memories (same type, width, and
size) to he tested in parallel.

This optimization is made at the port wrap-
per level, For each port wrappe r only o n e
address generator and one background pattern
generator are needed. The only difference from
the previously described port wrapper structure
is that a shared port wrapper contains a pair of
status hits and a comparator for each memory.
In this way, when a fault is detected, the result
status hit of the faulty memory is set, the memo-
ry is disconnected, and the wrapper keeps o n
testing the remaining memories of the cluster.
Obviously, in this case the status of the address
generator and pattern generator of the faulty
memory are not presewed. To collect diagnostic
information, the test must he reexecuted on the
faulty memory only by properly setting its mode
status hit.

Finally, since a fault in the BIST logic can he
detected only if it causes an e r r o r that is
detectable as a memory fault by the test algo-
rithm, the stuck-at fault coverage cannot he pre-
cisely computed a priori and, anyway, will he
quite low. Therefore, to allow high fault cover-
age at the end of production, the BIST logic can
he synthesized and tested using full scan.

CASE STUDY
A case study has been used to evaluate the pro-
posed approach and gather experimental results.
The target circuit, VClZAD, is part of atelecom.
municatious ASIC designed by Italtel SPA. Both
Italtel SpA and Siemens ICN have also used the
same circuit as a benchmark for the evaluation
of commercial BIST insertion tools. The target
circuit has been described in VHDL and synthe-
sized using the GI0 LSILogic'" library, which
provides a set of RAMS of different sizes.

The VClZAD counts up to 860,000 equiva-
lent gates (excluding RAMs), plus 36 small-sized
RAMs, for 'a total of 14,704 hits and 380,503
equivalent gates.

The case study aims ai evaluating the BIST
architecture complexity when applied to a set of
memories with very different characteristics, and
the area overhead after the B E T insertion.

The 36 RAMS of the circuit are grouped into
four distinct macro areas whose characteristics
are listed in Fig. 5.

BlST ARCHITECTURE
In the definition of the BIST architecture, we
tried to minimize the number of wrappers resort-
ing, whenever possible, to clusters of memories
(described earlier). As a consequence:

-
In order to define

different test

sessions and to

collect test results,
at the end of

each algorithm

the BIST processor
stops the test

program execution

and waits for a

new start
primitive to

continue with

the next one.

- -

IEEE Communications Magazine - Seplember 2003 95

-
The proposed
memory BlST

architecture deals
with memory
modules on/y
If additional

modules (e.g.,
random logic,

legacy cores) have

to be BlSTed as

well, more

complex and

sophisticated

approaches will

have to be
adopted.

processor

I I I I I +
tpa 336x8

I C12A I-- '.... ...
...

: Cl2D
'~
..

: SVNDES

... I ' A

I Figure 5. VClUDBISTarchitecture.

* Within C12A, the two modules tpa21x8 and
the two modules spa*21x26 are treated as
two clusters. - Within C12D, the two modules spa21x34
and the two modules spa' are treated as
two clustcrs.

* Within SYNDES. the memories are orea-
I

nired in four clusters of seven, scven, six,
and one elements, respectively.
The memory clustering has been strongly

influenced by the actual floor plan: for example,
the three spa21x34 memories (two located inside
C12D and one in PDH-INT) are too far apart
to he included in a single cluster.

The overall VC12AD structure after BIST
insertion is shown in Fig. 5.

BlST SCHEDULING
D u e t o the different characterist ics of the
VC12AD memories (readiwrite ports, read-only
ports, and write-only ports are present), It is not
possible to adopt a single March algorithm for
all of them. We therefore organized the BIST in
four sessions. each executing a different March
algorithm: - Session 1: All t he sinele-oort RAMs are " .

tested concurrently.

ed concurrently.

tested concurrcntly.

are tested concurrently.

* Session 2: All the dual-port RAMs arc test-

* Session 3: All t h e tr iple-port RAMs a r e

- Session 4: All the quadruple-port RAMS

EXPERIMENTAL RESULTS
The total area overhead and area occupation of
each wrapper and its functional blocks are sum-
marized in Fig. 6.

The total area overhead introduced by the
port wrappers is 68,177 equivalent gates. This
area is not proportional to the number of memo-
ry ports, but depends more on the port sizes and
functionalities.

The BIST processor and y-program memory
area overhead (5431 and 4459 equivalent gates,
respectively) are a fixed contribution and are not
influcnced by the number of memories present
in the system.

The total area overhead.is, in this case study,
17.02 perccnt. Although this result may secm
quite high, i t is necessary to consider that the
target circuit has a lot of small memories, and
therefore the overhead introduced by the wrap-
per is significant. With larger memories the
overhead would be much lower.

The area overhead introduced by a commer-
cial BlST insertion tool is 22.5 perccnt.

I

CONCLUSIONS
In this article wc present a proprietary solution
for a particular industrial scenario in which it is
necessary to define the BIST strategy of a com-
plex communication SoC, including several mul-
t iport memories of different sizes, access
protocols, and timing. The proposed architecture
consists of a single BIST processor, implemented
as a p-programmable machine and able to exe-
cute different test algorithms, a wrapper for each
memory (or cluster of memories), each wrapper
including one port wrapper for each memory
port and a special block named dispatchcr. Each
port wrapper contains standard memory BlST
modules and an interface block to manage the
communications hetwcen the memory and the
BIST processor. T h e dispatcher collects the

96 IEEE Communications Magazinc - September 2003

instructions from the test processor and delivers
them to the port wrappers. The proposed scheme
presents scveral advantages. I t a l l o w s running
concurrently the BlST of a set of memories of
different number of ports, sizes, and access pro-
tocols; minimizing the BIST area overhead and
connectivity around each memory. In addition,
the set of memories to he tested can he freely
sclccted by the designer, as well as the test algo-
rithm to be executed on each set.

T h e p r o p o s d m e m o r y BIST architecture
deals with memory modules only. If additional
modules (e.g., random logic, legacy cores) have
to be BlSTed as well, more complex and sophis-
ticated approaches will have to he adoptcd.

ACKNOWLEDGMENTS
This work is partially supported by lstituto Supe-
riore per I C ICT Mario Boclla under contract
Tcst D O C Quality and Reliability of Complex
SOC.

REFERENCES
11) A. I . van de Gmr.'Testiog Semiconductor Memories:

Theoryaod Practice, Wiley, 1991
[2I Y. Wu, S . Gupta. "Quilt~in Self-test for Multipart RAMI,''

IEEE Asran Test Symp.. NOV 1997. pp. 398403.
I31 M . H. Tehranipour. 2. Navabi, and S . M. Fakhraie, "An E f f -

cient BlST Method for Testing of Embedded SRAMr." IEEE
Int'l. Symp. Circuits and Sys.. 2001. vol. S. pp. 73-76.

141 c . - I . Huang e t al., "A Programmable B l S T Core f o r
Embedded DRAM." IEEEDesiqn and Test of Comp.. vol.
16, no. 1, 1an:Mar. 1999. p i . 59-70.

151 H. Koike. T. Takerhima. and M. Takada, "A BlST Scheme
I l ~ i n o Micronrooram ROM for Laroe Caoacitv Memo- ~-~~ ~ ~~~

~ ~ ~

ries." IEEE lnt'l. Jest Conf., Sept. 19iO. pd. El<-22.
I61 I. Ching-Hong and W. Cheng-Wen, "Plocersor-Programmable

Memory BlST for Bur-Connmed Embedded Memories: IEEE
Design Automatbn Conf.. 2001, pp. 325-30.

I71 K. rarr ineh and S . 1. Upadhyaya. "On Programmable
Memory BlST Architectures,'' IEEE Design AUromatioO
and Test in Europe Conf., 1999, pp. 872-81

I81 W. 8. lone and D.C. Huang. "A Parallel Built- in Self-
diagnostic Method f o r Embedded Memory ArraYS.''
IEEE Trans. Comp.~Aided Desiqn of Integrated Circuits
and Sy5.. vol. 21. no. 4, Apr. 2002, pp. 449-65.

191 W. 5. lone et al.. "An Efficient BlST Method for D i r ~
tributed Small Buffers," IEEE Trans. VLSl Sys.. vol. 10,
no. 4, AUg 2002, pp. 512-15.

1101 B. N. Dostie. A. Silburt, and V . K. Agarawal. "Serial
Interfacing Technique for Embedded Memory Testing."
IEEE Design Test Comp.. Apr. 1990, pp. 52-63.

I1 11 L. Ternullo e t al.. "Deterministic Self~Tert o f a High-
Speed Embedded Memory and Logic Proce~sor Subsyr-

,' tem," IEEE Prac. lnt'l. Jeit Conf.. 1995. pp. 33-44
1121 5. Hamdioui and A. I. Van de Goor, "Consequence5 Of

Port Reitrictions on Testing Two-Port Memories," IEEE
lnt'l, Test Conf., 1998, pp. 63-72.

1131 M. Nirolaidir. V. CaStrO Alvei, and H. Bederr. "Testing
Complex Couplinqi in Multiport Memories." IEEE T r a m

~-,
. .

VLSIS~I.. v d 3 , i o . 1, Mar. 1995, pp. 59-71.
1141 A. 1 . van de Goor and I. B. S . Tlili, "March Tertr f o r

Word-oriented MPmOrie$." IEEE Desion Automation and ~. ~ ~ ~~~ ~ ~, ~~~~~

Teertin Europe C o d . 1998, pp. 501-08.

BIOGRAPHIES
A m m o BENIO [MI received his M.S. degree in computer
engineering (1995) and Ph.D. (1998) f rom the Politecnico
d i Torino, Italy. He IS currently a researcher a t the same
university. where his research interests include der ign-

H 0 Dispatcher area
..~~~~,........,...........~...,......~~~~~.......

a Port wrapper 2
~.. . .~.~.~~ ~.~ ~ ~ ~ ~ ~ ~ ~ . . .

0 Figure 6. Wrappen'urra overhead.

for-testabil ity techniques, BlST f o r complex digi ta l sys-
tems, dependability analysis o f computer-based systems,
and so f tware- imp lemented hardware f a u l t to lerance
(SWIHFT). He i s the chair of the ItEE Computer Society
Test Technology Technical Council (TTTCI W e b ~ B a r e d
Activities Group.

PAOLO PRlNlTTO I M] received an M.S. i n electronic engi
neer ing in 1976 f r o m t h e Politecnico d i Torino, I ta ly.
Since 1990 he has been a fu l l professor o f computer
engineering a t the same university. and since 1998 joint
professor a t t h e U n w e r r i t y o f l l l i n o i i a t Chicago. Hi5
rerearch interests cover testing. test generation. BIST. and
dependability. He is a Golden Core Member of the IEEE
Computer Society and elected chair o f the IEEE Computer
Society TTC.

STEFANO DI CARLO [MI (r te fano.d icar lo@pol i t~ . i t) i s a
research assistant in the Department o f Automat ion and
I n f o r m a t i o n Technology a t Pol i tecnico di Tarina. His
research interests include DFT techniques, SoC testing,
BIST. and FPGA testing. He has an M.S. in computer en+
neering and a Ph.0. in in fo rmat ion technologies, b o t h
f rom Politecnico d i Torino. He chairs the IEEE Computer
Society T T C Electionic Submission Committee.

GlORGlO DI NATALE [M l i r d rerearch arristant In the Depart-
m e n t o f A u t o m a t i o n and I n f o r m a t i o n Technology a t
Politecnico d i Torino. His rerearch interests include DFT
techniques. SoC testing, BIST, and FPGA testing. He has an
MS tn computer engineering and a Ph.D. in informat ion
technologies. both from Politecnico di Torino. He is associ-
ate Webmarter of the IEEE Computer Society m c .

MONICA LOBETTI BooONI IM1 is a DFT and test engineer at
Siemens Mobi le Communicationr. Her research interests
include ASIC and PCB test. wi th an emphasis on defining a
test methodology and providing t h e tools, training. and
support required for the chosen strategy's application. She
has an M.Sc. 8 " nuclear engineer ing and a Master's in
information technology, both f rom Politemico d i Milano.
She is a member of the Board Test Action Group for the
International Test Conference's Test Week. and General
Chair o f both BTLb '02 and BPA '03.

. .

IEEE Communications Magazine * Septcmher 2003 97

