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Decoherence-free emergence of macroscopic local realism for entangled photons in a cavity
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We investigate the influence of environmental noise on polarization entangled light generated by parametric
emission in a cavity. By adopting a recent separability criterion, we show that (i) self-stimulation may suppress
the detrimental influence of noise on entanglement, but (ii) once it becomes effective, a noise-equipped
classical model of parametric emission provides the same results of quantum theory with respect to the
separability criterion. More generally we also show that, in the macroscopic limit, it is not possible to observe
violations of local realism with measurements of finite order n-particle correlations only. These results provide
a prototypical case of the emergence of macroscopic local realism in the presence of strong entanglement even

in the absence of decoherence.
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Entanglement is one of the most profound features of
quantum mechanics. It plays an essential role in all branches
of quantum information theory [1]. Bell theorem [2], which
is derived from the Einstein-Podolsky-Rosen (EPR) notion
of local realism [3], quantifies how measurements on en-
tangled quantum mechanical systems may invalidate local
classical models of reality. While all bipartite pure entangled
states violate some Bell inequality [4], the relationship be-
tween entanglement and nonlocality for mixed quantum
states is not well understood yet [5,6]. Moreover, recent pro-
posals [7] and realizations [8—12] of many-particle entangled
quantum states require a better understanding of the domain
of validity of quantum behavior. A relevant point is whether
the conflict between classical elements of reality and quan-
tum mechanics may persist at a macroscopic level [13,14].
Indeed continuous-variable entanglement of intense-light
sources has been recently demonstrated in [8,10] and polar-
ization entanglement of macroscopic beams in [11]. It has
been recently shown in Ref. [7] that a source of strongly
entangled states with photon numbers up to a million seems
achievable. In these works entanglement has been tested and
quantified by means of specific separability criteria that are
inequalities among expectation values of experimentally
measurable quantities, violated by entangled quantum states
[15]. The behavior of entanglement towards a macroscopic
situation (even close to classical everyday life phenomena)
and its robustness versus noise and decoherence are not well
understood and the quantum-to-classical transition is usually
associated with decoherence [14].

In this paper we shall address this crucial problem focus-
ing on a particular promising source of macroscopic en-
tanglement: parametric downconversion of photons inside an
optical cavity. On the one hand, we shall quantify the detri-
mental influence of such environment channels and show
how self-stimulation may suppress them efficiently. On the
other hand, we shall tackle the problem of the macroscopic
limit and of the emergence of classical elements of reality
within a quantum framework. We shall illustrate a counter-
example where the emergence of macroscopic local realism
(MLR) may be seen as an intrinsic feature of quantum sys-
tems, endogenous in the quantum theory itself (even in the
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presence of strong entanglement that is the quintessential of
nonclassicality). In such a case there is no need at all to rely
on environment ingredients (like noise and decoherence).
Our results, of course, do not imply that macroscopic en-
tangled systems cannot display violations of local realism
[16,17], but that there is a large class of quantum correlation
measurements that cannot be used to show them. We shall
first deal with a specific situation that is the Heisenberg
steady-state Eq. (2); this way we are able to focus on the
most important physical ingredients in a very neat way. It is
worth noting that this does not restrict our conclusions at all,
indeed we prove that in the more realistic 7-dependent
Langevin approach of Eq. (8) all our results continue to hold
(see Fig. 1). The results presented here indicate that MLR
may result from the inability of the observer, practically un-
avoidable for macroscopic systems, to catch the quantized
structure of the system.

We consider polarization entangled light from parametric
downconversion driven by an intense pump field inside a
cavity. The multiphoton states produced are close approxi-
mations to singlet states of two very large spins [7]. The
interaction Hamiltonian describing the process is given by
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FIG. 1. (Color online) Time development of (J?)/{N) according
to classical (dashed line) and quantum (continuous line) mechanics,
and quantum calculation of of the total mean photon number (N).
Parameters are given in the text.
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H=ihQ(ajb - a’b)) +He., (1)

where a and b refer to the two conjugate directions the
frequency-degenerate photon pairs are emitted along. 4 and v
denote horizontal and vertical polarization and #{) is a cou-
pling constant whose magnitude depends on the nonlinear
coefficient of the crystal and on the intensity of the pump
pulse. In the absence of losses, within the Heisenberg pic-
ture, the interaction Hamiltonian in (1) dictates the following
steady-state solution for photon operators

Gy = o (0)cosh(r) + b ,(0)sinh(r),

byp= by ,(0)cosh(r) = @) ,(0)sinh(r), (2)

where the interaction parameter r is {17 being 7=L/v the
interaction time interval, i.e., the time spent by the photons
with velocity v inside a crystal of length L. In the absence of
losses and considering the photon vacuum as initial state, the
Hamiltonian (1) produces a multiphoton quantum state |i)
that is the polarization equivalent of a spin-singlet state,
where the spin components correspond to the Stokes polar-

ization parameters J =(aja,—ala, /2, JA (ata,—a'a_)/2,

andJ =(dja,-a.a,)/2, where a+_—(ah+a )/\2 corresponds
to hnearly polanzed light at +45°, and d,,=(a,=id,)/ V2 to

left- and right-ended circularly polarized light. The label A
refers to the a modes. Analogous expressions can be ob-

tained for J® in terms of the » modes. It has been shown [7]
that the state |¢) is a singlet state of the total angular mo-

mentum operator J=J4+J5. As a consequence (J2[y)=0.
Losses, fluctuations, and imperfections may lead to nonzero
values for the total angular momentum, corresponding to
nonperfect correlations between the Stokes parameters in the
a and b beams. Within this picture it is straightforward to
include the presence of noise in the system assuming that,
before the pump is switched on, the system is in an incoher-
ent thermal-like state described by a diagonal density matrix.
Dealing with such systems the first analysis one may perform
is an intensity measurement

Rano)(r) = (@} ,dp,) = sinh? r + no(1 + 2 sinh? r), ~ (3)
where 1g={(d;,(0)d;,,(0))=(b} ,(0)b,,(0)) is the noise
present in the system. There are two different contributions:
The first term arises from vacuum fluctuations and describes
true (eventually self-stimulated) spontaneous emission, van-
ishing in the absence of parametric interaction; the latter de-
scribes a classical-like amplification of the input thermal
noise ny. It is worth noting that the solution of the corre-
sponding classical model of an optical parametric amplifier
has the same structure of Eq. (2) with a and b being, of
course, replaced by classical amplitudes [19],

n€(r) = (a;vah DE no(l +2sinh? r), (4)

where (---) denotes statistical average and ng is, as before,
statistical noise. For small r values and for negligible n
(ng<<r?), quantum and classical descriptions lead to distinct
behavior in r, being n(r)=r> and n¢(r)=nc(0). It can be

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 73, 020101(R) (2006)

related to the fact that vacuum fluctuations (in contrast with
classical ones) do not produce work and hence, while they
can stimulate pump scattering, they cannot be directly evi-
denced by photodetection. In contrast, when r increases, it is
no more possible to identify quantum behavior by means of
simple intensity measurements. In particular, for =2 a clas-
sical model with ng =ny+1/2 (in order to properly include
vacuum fluctuations) is able to give an intensity description
that cannot be distinguished from the quantum one. It is
worth noting that this behavior can also be found in intrigu-
ing second-order interference effects [18,20] and it agrees
with the old idea that many quanta in a system give rise to a
classical-like behavior. Other relevant second-order correla-
tions are given by the following anomalous correlators:

A/w(vh) = <dh(v)bAv(/1)> = (n0 + 1/2)Slnh(2r) s

Ahv(uh) (ap@yby(ny) = n sinh(2r), (5)

which quantify the pair correlation induced by the parametric
process. Equation (5) shows that replacing again ng =n
+1/2, the classical description coincides with the quantum
one.

If the above hold for second-order correlations, now we
want to focus our attention on what we can say about en-
tanglement measurements on this system. In order to test the
degree of entanglement, a simple inseparability criterion has
been derived [7]: Tf (J2)/(N) (where N =1\A/A +NB is the total
photon number) is smaller than 1/2, then the state is en-
tangled. We now consider the system at r<0 (before switch-
ing on the pump) to be in thermal equilibrium, i.e., in a
completely incoherent (mixed) state described by a diagonal
density matrix. The only input for the system are thermal
noise (if 7#0) and vacuum fluctuations. From Eq. (2) we
obtain

@ _ 3n0(7’l0 + l)
(V) "~ 4ng+ (1 + 5ng)sinh?

(6)

At zero temperature ny=0 and the system is maximally en-

tangled ((J2)=0) independently of the magnitude of r. As
Eq. (6) shows, even when thermal noise largely exceeds

vacuum fluctuations (ny>1), <j2>/ (N) goes below 1/2 pro-

viding r is large enough. Moreover, (J2)/(N)—0 for r—s .
Thus macroscopic entanglement may in principle be
achieved even in the presence of strong fluctuations, pro-
vided that self-stimulation of the emitted pairs takes place. In
particular the system becomes entangled when sinh” r
>2ny(3ny+1)/(5ny+1). Nevertheless, according to the cri-
terion, in order to beat the detrimental effect of strong fluc-
tuations on entanglement we need to rely on self-stimulation.
It is known that entanglement as well as violations of Bell
inequalities have limited resistance to noise. Here a small
amount of noise is enough to completely destroy entangle-
ment, e.g., for r= 1073, ng=2X 107 is sufficient to wash out
entanglement according to Eq. (6); nevertheless switching on
self-stimulation (by increasing r) we shall restore it. In order
to get a deeper insight we seek some additional information
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wondering if, from the criterion viewpoint (this time), we
can distinguish between classical and quantum findings. To
this end we put the two descriptions (classical and quantum)
on equal footing and compute the entanglement criterion
evaluating their differences and similarities. A classical cal-
culation, computed according to the above described pre-
scriptions, gives (J2)/(N)=3n{/(4+5 sinh?r). Of course
classical optics does not require a minimum amount of fluc-
tuations, thus within a classical model it is possible to obtain
(J?)/{N)<0.5. In the low excitation regime (r<<1) and n,

lower than r? classical and quantum calculations of (J2)/(N)
display very different variations with r as it happens for sim-
pler intensity cases. As r increases they tend to coincide.
This means that experiments eventually demonstrating mac-
roscopic entanglement for this system can be accounted for
in terms of purely classical correlations, with no need for a
quantum-mechanical explanation. Analogous conclusions
can be reached for different experimentally tested criteria
[8,10-12]. This does not mean at all that the entanglement
criterion is wrong or contradictory. In contrast to Bells’ in-
equalities, these kind of criteria are derived exploiting the
fact that involved operators do not commute (hence they do
not hold for classical descriptions). Also these results do not
imply that macroscopic entangled systems cannot display
quantum nonlocality effects. It has been shown in [16] that
quantum states of a nondegenerate optical parametric ampli-
fier display violations of the Bell inequality due to Clauser,
Horne, Shimony, and Holt in the macroscopic limit (r— ).
However the above analysis suggests that there is a large
class of quantum correlation functions that cannot dif-
fer from the corresponding classical ones in the macro-
scopic limit. Indeed we can define the following set

of correlation functions (BZ’)TB(:, )>, where Bf:;)z .

=(50)”‘m(éh)m‘l(dv)l‘k(dh)k is a generic n-particle destruction
operator. These correlation functions (and also their classical
counterparts (B(;)*Bff, ))) are different from zero only if n
=n' and a=(k,l,m)=a’. Since we are dealing with a
Gaussian system [21], such correlators (quantum and classi-
cal) can be decomposed in a sum of products of second-order
correlation functions only [n(r) and A(r)]. Since A(r)
=AC(r) (for ng=n0+1/2), and n(r)/n€(r)—1 for r—o, we
obtain that

i)
lim % = (7)
r—o By By’)

This result implies that it is not possible to observe violations
of macroscopic local realism (e.g., violations of Bell in-
equalities, including those which are not yet known) by mea-
surements of any finite set of expectation values that can be
expanded as a finite sum of these correlation functions. It is
easy to verify via explicit calculations that convergence of
limit (7) is very fast even for large values of n. Bell inequali-
ties can be schematically expressed as f[(Bg’>*BZ’ ¥)7r)]
< [L(n), where L(n) is a bound imposed by local realism that
cannot be violated by classical correlations, and F is a ge-
neric continuous function of <B(;)*B:l)> depending also on
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the different settings choosen by the observers. From Eq. (7):
FUBDB" ) (1] — FUBY B ) ()] when r—s, thus any
bound £ cannot be violated (in the limit). One example of
these wide class of Bell inequalities can be found in [22]. We
stress that Eq. (7) has been obtained simply by exploiting
Gaussian factorization and comparing the macrolimit for
classical and quantum second-order correlations; it is thus
clear that it can be easily generalized to a wide variety of
Gaussian systems with larger degrees of freedom, e.g., to
multipartite situations obtained by inserting in the setup a
number of beam splitters [23].

So far we have considered a situation where the system is
initially in thermal equilibrium, but Eq. (2) has been obtained
under the hypothesis that the system has no losses, hence it is
assumed that for the steady-state calculations at any value of
the interaction parameter r the system is disconnected from
the environment. However, in real systems amplification,
losses, and noise disturbances actually take place simulta-
neously. Thus (steady-state) Heisenberg equations have to be
replaced by (s-dependent) Langevin equations with noise
sources. In the symmetric case (equal losses for all the four
modes), we obtain

an(t) = a,(0)e™ cosh A(2,0) + b7 (0)e™ sinh A(z,0)

t
+f e M=) cosh A(t,t')fah(t')dt'

0
t , N

+ f ™M= sinh A1) f5,(¢)dt’ (8)
0

where A(t,t’):fﬁ,x(t”)dt”: KO/A(e‘A’,—e‘A’); fa(t) are
Bose-quantum noise operators associated with the losses [24]
[« denotes the specific mode, e.g., «=(a,h)]. In the follow-

ing we will assume (}A‘;(t)far(t’)>=2)\n05a)a,5(t—t’). Analo-
gous expressions can be obtained for the other three modes.
Figure 1 displays the quantum and the classical calculation
of (jz)/<N> for A\=A=0.1, ky=1. For the quantum (continu-
ous line) and the classical (dashed line) calculations we
adopted ny=0.3 and néd)=0.8, respectively. The figure
clearly shows that for r>3 classical and quantum results
cannot be distinguished. Thus (i) also in this more realistic
case self-stimulation can suppress the detrimental effect of
noise, (ii) coincidence between classical and quantum results
can be obtained without requiring n>1 if we choose ngd)
=ng+1/2; (iii) decoherence due to losses and noise seems to
affect equally quantum entanglement and classical correla-
tions, hence it cannot be invoked in the present case for the
emergence of a classical behavior. In order to interpret our
results, we distinguish between two situations: When r<<1,
the probability to deal with states with more than two pho-

tons is negligible, so measurements of <jz> and of (N) can
probe the system at a microscopic level, but with a lot of
particles (when r increases) they both become macroscopic
observables unable to probe the system fluctuations with pre-
cision at a few quanta level. In this case the information
recovered by observations is a coarse grained quantity miss-
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ing the underlying quantum structure. This lack of micro-
scopic information seems able to introduce elements of local
realism even in the presence of strong entanglement and in
the absence of decoherence. As shown in [25], the partition
of a quantum system into subsystems and hence the en-
tanglement structure, is dictated by the set of operationally
accessible interactions and measurements. A given set can
hide a multipartite structure. Our results suggest that, analo-
gously, the set of operationally accessible measurements and
their ability to catch the quantized structure of the system
determine the quantum or classical nature of the observed
correlations. As pointed out above, our findings [included
Eq. (7)] do not imply that macroscopic entangled systems
cannot display quantum nonlocality effects. As already men-
tioned, it has been shown that these kind of systems do vio-
late the Clauser Horne Shimony Holt (CHSH) Bell inequal-
ity in the macroscopic limit (r— o) [16]. However in that
case the Bell operator is constructed by means of operators
with single quantum sensitivity independently of the number

of particles in the system in contrast to operators B’Z’”B’g).
Of course these operators cannot be expanded in a finite sum
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of operators Bg’”fﬁ(:). Analogous conclusions can be drawn
for the violations of macroscopic local realism shown in
[13].

The emergence of macroscopic local realism in the pres-
ence of strong entanglement, shown here, provides insight
into the boundary between classical and quantum worlds.
These results, with the care that they have been obtained for
a Gaussian system, suggest that, despite the feasible realiza-
tion of systems with a huge amount of entangled particles,
the lack of information gathered by coarse-grained observa-
tions may lead to the introduction of elements of local real-
ism even in the presence of strong entanglement and in the
absence of decoherence. In particular, Eq. (7) shows that by
using apparata able to measure finite-order correlations only,
it is not possible to detect violations of local realism for
macroscopic Gaussian states. Further investigations are
needed to understand if these results can be extended to more
general quantum systems.

We thank P. Zanardi for helpful discussions and com-
ments.
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