POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Self-Repairing Execution Unit for Microprogrammed Processors

Original
A Self-Repairing Execution Unit for Microprogrammed Processors / Benso, Alfredo; Chiusano, SILVIA ANNA; Prinetto,
Paolo Ernesto. - In: IEEE MICRO. - ISSN 0272-1732. - STAMPA. - 21, Issue: 5:(2001), pp. 16-22. [10.1109/40.958696]

Availability:
This version is available at: 11583/1404468 since:

Publisher:
IEEE COMPUTER SOCIETY

Published
DOI:10.1109/40.958696

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

27 July 2024

A SELF-REPAIRING EXECUTION
UNIT FOR MICROPROGRAMMED
PROCESSORS

THIS PROCESSOR DYNAMICALLY RECONFIGURES ITS INTERNAL MICROCODE

Alfredo Benso

Silvia Chiusano
Paolo Prinetto
Politecnico di Torino, ltaly

TO EXECUTE EACH INSTRUCTION USING ONLY FAULT-FREE BLOCKS FROM THE

EXECUTION UNIT. WORKING WITHOUT REDUNDANT OR SPARE

COMPUTATIONAL BLOCKS, THIS SELF-REPAIR APPROACH PERMITS A GRACEFUL

PERFORMANCE DEGRADATION.

eeeeee The emerging field of self-repair
computing could have a major impact on
deployable systems for space missions and
defense applications. These systems must sur-
vive and perform at optimal functionality for
long durations in unknown, harsh, and/or
changing environments. Examples of such
applications include outer solar system explo-
ration, missions to comets and planets with
severe environmental conditions, long-lasting
space-borne surveillance platforms, defense
systems, and monitoring and control of long-
term nuclear waste and other hazardous envi-
ronments. Self-repair computing could also
greatly enrich commercial applications that
require high availability and serviceability.
These applications could range from bio-
medical devices to automotive applications.
The proposed self-repair architecture for
microprogrammed processors is transparent
to the user and tolerates the occurrence of
multiple faults in the device’s functional units.
The processor achieves self-repair by letting
the device dynamically reconfigure its inter-
nal microcode to execute required computa-
tions using only fault-free system units. One
of the main novelties of our approach is that

it does not require adding redundant or spare
computational blocks to the system. The
approach introduces a graceful degradation of
device performance, but nevertheless lets the
processor complete the requested operations
even when multiple faults are present in its
functional units.

Researchers have done little work in the
field of self-repair computing. Most studies
focus on field-programmable gate arrays.'

Microprogrammed target architecture

Our approach’s target device is a vertical
microprogrammed architecture that executes
single-instruction, single-data (SISD) instruc-
tions. Since space applications generally use
well-known and well-tested microprocessors
that are usually one to three generations
behind the most advanced research, we chose
a very simple architecture to easily demon-
strate our approach’s applicability and effec-
tiveness. Nevertheless, the same self-repair
strategy can be implemented in more com-
plex microprogrammed architectures, such as
those with pipelines, branch prediction units,
or speculative execution.

A microprogrammed processor basically

0272-1732/01/$10.00 © 2001 IEEE

consists of two main units—a control unit
and a data path, as shown in Figure 1. These
units execute the user’s program, which is
described at the assembly level (with macroin-
structions) and usually stored in RAM locat-
ed outside the target architecture. A decode
unit decodes each macroinstruction. The
decode unit provides the control unit with the
address of the microroutine that when exe-
cuted will complete the requested operation.

The control unit executes the required
microinstructions by driving the correct enable
signals to the data path. The control unit
includes a ROM that stores the microcode, a
microinstruction pointer, and a sequencer. The
microinstruction pointer indicates the current
microinstruction stored in ROM, whereas the
sequencer computes the next microinstruction’s
address. The sequencer usually includes a
microinstruction pointer stack, which permits
microsubroutine execution. ROM stores all the
microinstructions that constitute the sequence
of operations to implement the device’s
macroinstructions (assembly level instructions).

The data path contains all blocks used to
store and manipulate data, including two
main blocks: the register array and the execu-
tion unit. The register array consists of all reg-
isters—status, user, and temporary, for
example—that can be referred to in either the
macro- or microcode. It is obviously possible
to read or write the content of all registers.

The execution unit acts as the microproces-
sor’s core because it is in charge of manipulat-
ing data. It includes all the functional blocks
required during the computations, from very
simple logical operations (AND, OR, and
XOR) to basic arithmetic operations (addition,
subtraction, and shift) and more complex ones
(multiplication and so on).

Self-repair candidates

The best candidate units for implementing
a self-repair architecture should be those most
subject to faults. Assuming that a unit’s criti-
cality is proportional to its area, the most crit-
ical units in the proposed architecture are the
register array (51.29 percent of the entire chip
area) and the execution unit (31.32 percent).
‘We obtained these area values from a VHSIC
hardware description language model of the
microprogrammed architecture synthesized
using Synopsys tools.’

Control unit

ncer [.
Sequence pointer

Microinstruction

= ROM

A

Data path

Register array

t v

|
——

Execution unit

Figure 1. Basic microprogrammed architecture.

We will focus on a self-repair approach for
the execution unit because the literature
already includes several techniques for design-
ing a fault-tolerant register array.®” For exam-
ple, these techniques include

* Specialized data coding. In these types of
techniques, data stored into the micro-
processor register array is coded using
parity, Hamming, or more complex
codes. Doing so permits easy detection
and possibly correction of permanent or
transient faults.

* Dynamic register allocation. These tech-
niques dynamically reconfigure the reg-
isters addressing space to exclude faulty
registers from the set of available ones.

Self-repairing execution unit

The main idea of our proposed approach is
to design the control unit and data path to
guarantee execution of all microinstructions,
even in the presence of faulty functional
blocks in the execution unit. In our approach,
we use dedicated built-in self-test (BIST)
architectures to provide an online status—
either good or faulty—for each block in the
execution unit. For each microinstruction,
we define an alternative sequence of
microinstructions that can execute the same
operation using only fault-free units. We
implemented the idea by adding a replace unit
to the basic architecture, as Figure 2 (next
page) shows. This unit modifies the microin-
struction execution flow to reallocate func-
tional units on the fly to avoid using faulty
modules.

SEPTEMBER—OCTOBER 2001]]

BUILT-IN SELF-REPAIR

able, the replace unit replaces
the multiply operation with a
repair routine that imple-

ments the multiplication as a
set of addition and shift oper-
ations. The resulting microc-

ode execution will cause a

graceful degradation in system

— Control unit
o __| Microinstruction o
| Sequencer > pointer > ROM
A Repair
microcode
Replace
unit
] Data path -
—

performance, but will never-
theless let the device output a
correct result.

One main goal of this
approach is to tolerate multdi-

Figure 2. Basic microprogrammed architecture with replace unit.

Figure 3. Replacement graph.

] H [EEE MICRO

()
@“@ T

Nt

If the unit involved in a microinstruction’s
execution is faulty, the replace unit replaces
the execution flow of the original microcode
with the repair routine for that instruction,
which is available in the repair microcode.

In particular, the replace unit substitutes
the faulty microinstruction with a no-op and
forces the control unit to jump to the proper
repair routine. The repair microcode is there-
fore a set of repair routines that specify alter-
native execution paths for a given operation.
That is, the repair routine of instruction v is
a piece of code able to execute v using alter-
native functional units.

For example, if a multiply instruction has
to be executed and no multiply units are avail-

\j

ple faults in the execution

unit. To address this issue,

the replace unit and the

repair microcode allow nest-

ed replacements of faulty
microinstructions. For example, suppose that
the multiplier is faulty and therefore the
replace unit executes the multiplication using
addition and shift operations. If the adder is
faulty as well, the replace unit will replace its
functionality by increment and shift opera-
tions. If the increment operation is also faulty,
the replace unit will specify execution of the
multiplication using EXOR, AND, OR, and
shift operations, and so on.

To formalize the self-repair capability pro-
vided by the repair microcode, we defined a
replacement graph. In Figure 3, each node is
a microinstruction. Node #/s successors are the
alternative modules (or microinstructions)
used to execute instruction v. To avoid dead-
lock, the replacement graph must be a direct
acyclic graph (DAG).

To improve performance, the terminal
nodes of the graph must be the simplest
microinstructions—the ones that use the sim-
plest units. This consideration stems from the
following reasons:

 The simplest units are also the smallest
ones, which therefore have the lowest
probability of being affected by faults.

e Itis possible to design fault-tolerant sim-
ple units (for example, triple-module-
redundancy units) without introducing
a significant area overhead. In this way,
the processor can tolerate and repair a
very high number of faults affecting the
most complex units.

DIV
X : X
X X |ADD[ADD| X ; x
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ o [
""""""""""" X |DEC[DEC[DEC] X
""""""""""" X X X X |NEG X X X
""""""""""" X X | INC [INC [INC [INC [INC
X X [XOR
' CX :
"""""" X X AND
"""""""""""""""" X X x X X |NOT

Figure 4. Enhanced repair microcode. To work around a faulty module for the microinstruction in the gray boxes, substitute the
instructions indicated by the X's in the same column. If a microinstruction appears more than once, it means our approach offers

more than one alternative. The complexity of the functional units involved decreases as you move to the right in this figure.

To improve the self-repair capabilities of our
approach, we implemented an enhanced ver-
sion of the repair microcode. This version spec-
ifies several repair routines for each faulty
microinstruction, each routine using progres-
sively simpler functional units. This enhanced
approach sorts repair routines by increasing
performance degradation (and, in general, by
decreasing complexity of units allocated to
functionally replace the operation). Using this
solution, increasingly less complex units will
replace a faulty unit, allowing, in general, exe-
cution of the microinstruction with replace-
ment units that introduce the lowest possible
execution time overhead.

Figure 4 shows alternative units used to
replace every microinstruction. Each column
corresponds to a repair solution for the
microinstruction reported in the correspond-
ing shaded cell. For example, the DEC
microinstruction has three possible repair
solutions: the first using the SUB microin-
struction, the second using ADD and NEG
(two’s complement), and the third using NEG
and NOT (one’s complement).

Our experimental results show that this
solution considerably reduces the perfor-
mance degradation introduced by the replace
microcode.

Testing the execution unit

Our self-repair architecture assumes that
the replace unit always knows the state (good
or faulty) of the execution unit’s functional
modules. We are currently evaluating four

Execution unit

A

YV Y YVY

BIST BIST
adder multiplier

Scheduler

Replace
unit

Y '

}

Figure 5. Block diagram of execution unit that incorporates cyclic-based BIST.

possible online-BIST approaches: cyclic
based, incremental, arithmetic, and func-
tional. Each provides runtime diagnostic
information about the execution unit’s status.
We qualitatively evaluate each of these four
alternatives in terms of area overhead, fault
detection capabilities, and fault latency.

Cyclic-based test

In this cyclic-based approach, shown in Fig-
ure 5, the microprocessor incorporates dedi-
cated BIST logic around each execution unit
module to exhaustively test the module’s func-
tionality. A scheduler cyclically enables the
BIST procedure for each module. During the
test, the BIST procedure always marks the
module under test as faulty. So if an execut-
ing microinstruction requires this module, the
execution unit will instead execute the repair
microcode without interrupting the proces-
sor’s normal activity.

This solution obviously implies some per-
formance degradation because the execution

SEPTEMBER—OCTOBER 2001

BUILT-IN SELF-REPAIR

[EEE MICRO

Execution unit

Y
| Encode |

Y
| Encode |

\i Y

Functional module

\
Decode Error

Figure 6. Block diagram of an execution unit
that incorporates arithmetic-code-based BIST.

unit is always running repair microcode to
replace the module under test. A possible alter-
native is to periodically execute the execution
unit’s BIST, activating it by inserting a special
macroinstruction into the application code.
This scheme does not degrade performance,
but it does periodically interrupt execution of
the user application for testing. In this case,
the fault detection latency is proportional to
the period of time chosen between the activa-
tion of two consecutive test sessions.

Incremental test

Because most execution unit modules are
combinational logic, another solution is to
perform a structural pseudorandom test. We
therefore defined a BIST architecture based
on linear-feedback shift registers to generate
pseudorandom test patterns. The architecture
also relies on multiple-input shift registers to
observe and compact the module responses.

This technique exploits the fact that
microinstructions do not use all the execution
unit modules concurrently—there are always
some unused modules. Thus, at every clock
cycle, it is possible to generate and apply a new
test pattern to all unused modules. In this case,
fault latency is not easily predictable, because
it depends on the resource allocation required
by the user application.

Arithmetic test

This solution, shown in Figure 6, exploits

arithmetic codes to test the execution unit’s
functional modules. A particular characteris-
tic of arithmetic codes is that they are
invariant with respect to certain arithmetic
operations. An encoder and a decoder are used
to encode the operands before a module
processes them and to decode the result to ver-
ify its correctness. In this solution, the fault
latency equals the time elapsed between the
fault occurrence and the successive activation

of the faulty module.

Functional test

This solution implements a functional test
of the execution unit as a user program (that
is, as a set of macroinstructions) that the user
periodically executes, for example, at system
start up. The test is based on a starting-small
approach: It verifies functionality of the sim-
plest modules (registers, for example) first and
then tests the most complex modules, exploit-
ing the functionality of the already verified
units. Since it is a software-based functional
test, this approach does not introduce any
hardware overhead. The fault detection laten-
cy depends on the frequency of test activation.

Tool

To evaluate our approach’s effectiveness, we
implemented the Micro Repair Simulator
(Mires) tool that allows

e validation and simulation of a C++
model of the self-repair architecture,

e fast prototyping of new repair routines,
and

e fault injection of permanent faults into
the model to evaluate self-repair capabil-
ities and performance degradation.

The simulator loads the compiled microc-
ode, repair microcode, and user application
macrocode. We also implemented a special-
ized compiler for both the micro- and macro-
code. Next, the simulator allows step-by-step
execution of both micro- and macrocode,
continuously monitoring all processor
resources.

The injector simulates the fault occurrence
in one of the execution unit modules. It does
not inject a real fault, but simulates a faulty-
unit notification from the BIST logic. In this
way, it is possible to simulate the repair

process’ behavior for each fault combination.
It is also possible to execute a complete fault
injection experiment that automatically emu-
lates all possible combinations of faulty units
that might appear in the execution unit.

Experimental results

To compute the processor’s performance
degradation, we executed a very simple pro-
gram with only one macroinstruction:
(10 %0 —1). We chose a multiply operator
because, when faulty, it allows the activation
of several repair routines. We executed the
algorithm several times, each time injecting a
different combination and number of faulty
units. Figure 7 shows the results for both the
basic and enhanced repair micro-code. The x-
axis shows the number of injected faults,
whereas the y-axis shows the average ratio
between the execution times for the fault-free
and repaired execution units.

We computed the area overhead necessary for
synthesizing a VHDL model of the proposed
architecture using Synopsys tools. Table 1 shows
the execution unit, ROM, the replace unit and
give for each, their initial area and final areas.
Final areas result from applying the basic and
enhanced versions of our proposed approach.

Experimental results reported in Table 1
show that the area overhead introduced by the
replace unit and the repair microcode is very
low for both the basic (6.43 percent) and
enhanced (6.64 percent) version of our

approach.

he results achieved in this research are very
promising. We believe that low-cost tech-
niques such as the one we propose here will
soon become of interest in commercial appli-
cations, where consumers demand increasing-
ly higher levels of reliability and serviceability
We are currently focusing on self-repair tech-
niques that target commercial microprocessor
cores, such as ARM cores. We are studying the
implementation of mixed hardware and soft-
ware techniques that guarantee integrity of
both data and execution flow in cases of per-
manent or transient faults. NichD
Acknowledgment
This work was partially supported by Isti-
tuto Superiore Mario Boella under the Test-

DOC: Quality and Reliability of Complex

120

---- Normal

100 -

—— Enhanced

Execution time ratio

20
Number of injected faults

0 5 10 15

Figure 7 Performance degradation.

25

30

Table 1. Area overhead.

Size of Size of Size of
replace unit ROM execution unit

Approach (no. of gates) (no. of gates) (no. of gates)
No self-repair

capabilities 0 6,488 125,485
Basic built-in

self-repair 1,222 11,455 127,779
Enhanced built-in

self-repair 1,485 11,473 127,779

System-on-Chip project.

References
1. W. Mangione-Smith and B. Hutchings, “Con-

figurable Computing: The Road Ahead,” Proc.
Reconfigurable Architectures Workshop, IT
Press, Chicago, 1997, pp. 81-96.

2. J.Lach, W. Mangione-Smith, and M. Potkon-
jak, "Efficiently Supporting Fault-Tolerance
in FPGAs,"” Proc. ACM/SIGDA 6th Int’l
Symp. Field-Programmable Gate Arrays,
ACM Press, New York, 1998, pp. 105-115.

3. M.J. Wirthlin and B. L. Hutchings, “A
Dynamic Instruction Set Computer,” Proc.
IEEE Symp. FPGAs for Custom Computing
Machines, |IEEE CS Press, Los Alamitos,
Calif., 1995, pp. 99-107.

4. R.Bittnerand P. Athanas, “Wormhole Run-
Time Reconfiguration,” Proc. ACM/SIGDA
Int’l Symp. Field Programmable Gate Arrays,
ACM Press, New York, 1997, pp. 79-85.

5. VHDL Compiler Reference Manual, Synop-
sys, Mountain View, Calif., 1994.

6. F.J. Macwilliams and N.J.A. Sloane, The
Theory of Error-Correcting Codes 11, vol. 16,
North-Holland Mathematical Library, Ams-
terdam, 1998.

SEPTEMBER—OCTOBER 2001

BUILT-IN SELF-REPAIR

Next-
generation
GOUrses

for the
next

generation
of computer

professionals

Influence what our
students learn. Review the
latest draft of Computing Curricula 2001.

http://computer.org/education/curricula2001

Prepared by the
IEEE Computer Society/ACM joint task force

on Computing Curricula 2001

CSEK/ITER

SOCIETY

[EEE MICRO

7. M. Nicolaidis and Y. Zorian, “Online Testing
for VLSI—A Compendium of Approaches,”
J. Electronic Testing, Theory and Applica-
tions (JETTA), vol. 2, nos. 1/2, Feb.-Apr.,
Kluwer Academic Publishers, Boston, 1998,
pp. 7-20.

Alfredo Benso is a research assistant at Politec-
nico di Torino, Italy. His research interests
include design-for-testability techniques,
dependability analysis, and software-imple-
mented hardware fault tolerance of comput-
er-based systems. Benso received a PhD in
computer engineering from the Politecnico di
Torino. He is the chair of the IEEE Comput-
er Society Test Technology Technical Coun-
cil Web-based activities group.

Silvia Chiusano is a research assistant at
Politecnico di Torino, Italy. Her research inter-
ests include high-level testing, design-
for-testability techniques, BIST, and depend-
ability. Chiusano received a PhD in comput-
er engineering from Politecnico di Torino.

Paolo Prinetto is a full professor of comput-
er engineering at Politecnico di Torino, Italy,
and a joint professor at the University of Illi-
nois at Chicago. His research interests include
testing, test generation, BIST, and depend-
ability. Prinetto received an MS in electronic
engineering from Politecnico di Torino. He is
a Golden Core Member of the IEEE Com-
puter Society and the elected chair of the
IEEE Computer Society Test Technology
Technical Council.

Direct questions or comments about this
article to Alfredo Benso, Politecnico di
Torino, Corso Duca degli Abruzzi 24, 10129
Turin, Italy; benso@polito.it.

For further information on this or any other
computing topic, please visit our Digital
Library at http://computer.org/publications/
dlib.

