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CONVERGENCE ANALYSIS OF AN INEXACT INFEASIBLE
INTERIOR POINT METHOD FOR SEMIDEFINITE PROGRAMMING∗

STEFANIA BELLAVIA† AND SANDRA PIERACCINI‡

Abstract. In this paper we present an extension to SDP of the well known infeasible Interior
Point method for linear programming of Kojima, Megiddo and Mizuno (A primal-dual infeasible-

interior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here
allows the use of inexact search directions; i.e., the linear systems defining the search directions can
be solved with an accuracy that increases as the solution is approached. A convergence analysis is
carried out and the global convergence of the method is proved.
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1. Introduction. In this paper we consider the Semidefinite Program (SDP)

min
X∈Sn

C • X

s.t. Ai • X = bi, i = 1, ..., m, (1.1)

X � 0,

where Sn denotes the set of n × n symmetric matrices; C ∈ Sn, Ai ∈ Sn and bi ∈ IR,
i = 1, . . . , m; C • X = tr(CX) and X � 0 means that X is positive semidefinite. We
assume that Ai, i = 1, . . . , m, are linearly independent.

Under certain assumptions, X∗ is solution of (1.1) if and only if there exist a vector
y∗ ∈ IRm and a n × n symmetric matrix S∗ such that (X∗, y∗, S∗) is a solution of the
following constrained nonlinear system:

m
∑

i=1

yiAi + S − C = 0, (1.2)

Ai • X − bi = 0, i = 1, ..., m, (1.3)

XS = 0, (1.4)

S � 0, X � 0, (1.5)

where the n × n symmetric matrix S and the vector y ∈ IRm are the dual variables
[2, 14]. The zero on the right hand side of the equations in (1.2)-(1.4) means that every
entry on the left-hand side is zero.
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SDP arises in a wide variety of areas as optimal control, structural optimization,
pattern recognition, eigenvalue optimization. See the survey paper [26] for some in-
stances. Several authors have discussed generalizations of Interior Point methods for
linear programming to the context of Semidefinite Programming. An important paper
in this direction is due to Zhang [28], where some key results are given which provide
a convenient tool for studying extension from LP to SDP. A rather comprehensive list
of references to papers dealing with IP methods for SDP can be found in [24]. Regard-
ing the analysis of infeasible Interior Point methods for SDP, important results were
obtained in [12, 14, 21, 22, 28]. More precisely Zhang [28] extended to SDP the long
step infeasible Interior Point method for horizontal linear complementarity problems
given in [27]; in [14] Kojima, Shindoh and Hara presented an infeasible potential re-
duction method for SDP; Kojima, Shida and Shindoh [12] and Potra and Sheng [21]
independently analyzed generalizations to SDP of the Mizuno-Todd-Ye predictor cor-
rector method [17] for infeasible starting points. In these latter papers also the local
superlinear convergence is studied and in [22] the convergence results obtained in [21]
are improved.

In this paper, we discuss an extension to SDP of the infeasible Interior Point
method for LP given by Kojima, Megiddo, Mizuno [11]. This latter method allows
the use of arbitrary starting points and appeared to be an efficient approach in solving
LP problems. In the sequel we will refer to this method as the KMM method. The
extension we develop here is obtained employing the HRVW/KSH/M search direction
[8, 14, 18] and the resulting method, due to its simple structure, can be easily modified
in order to use inexact search directions. In fact, at each iteration of an Interior Point
method for SDP a linear system must be solved. More precisely, the computation of the
search direction can be reduced to the solution of a linear system (the Schur complement
equation) M∆y = d, where d ∈ IRm and M is a symmetric and positive definite m×m
matrix. Computing M and solving the system is an expensive task; further, the matrix
M is generally dense even if the data matrices of the original problem are sparse. In
this context, when m is large, iterative linear solvers, and among them Krylov subspace
methods, may be useful for several reasons. In fact, Krylov methods only require the
action of the matrix M onto a vector v and not the matrix itself. Therefore, the whole
matrix M does not need to be stored and the sparsity of the original problem can be
exploited. Moreover, if we are far from a solution it may be unnecessary to compute
the search directions with a high accuracy. As a result it can be convenient to use
iterative methods for solving the linear systems with an accuracy which increases as
far as we get closer to the solution.

Interior Point methods that at each iteration compute an approximate solution of
the linear system are called Inexact (or Truncated) Interior Point methods. For these
methods a crucial question is how approximately the linear systems can be solved
without loosing the good convergence properties of the exact counterpart. In the
context of LP problems and complementarity problems many inexact Interior Point
methods have been proposed [3, 4, 5, 6, 7, 15, 16, 19, 20]. In particular, in [3, 15]
inexact variants of the KMM algorithm have been studied. These two methods mainly
differ in the accuracy requirement in the solution of the linear systems; the criterion
used in [15] has the drawback that if an iterate happens to be primal-feasible then all
the forthcoming iterates remain feasible and the linear systems must be solved exactly,
loosing the advantage of inexact computation.

The issue of inexact computation in Interior Point methods for SDP was investi-
gated in [13], [25] and [29]. In [13] an inexact predictor corrector infeasible Interior
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Point method is devised and some complexity results for this method are proved. In
[25] numerical results are shown for the method proposed in [13]: the linear systems are
solved with the conjugate residual method and a decomposition strategy is designed
in order to overcome the difficulty to build a good preconditioner for the matrix M .
It should be noted that the method in [13] requires at each iteration the solution of a
further m × m linear system whose coefficient matrix is constant throughout the iter-
ations. In [25] is pointed out that this matrix is sparse for many large scale problems
and can be factored at reasonable cost, but for some classes of problems (such as those
arising from control theory) the matrix is dense and the solution of the additional
linear systems can be very expensive to compute and it should be performed by an
iterative solver in order to avoid memory problems. In this latter case the advantage
of having a constant coefficient matrix is obviously lost. In [29] the infeasible Interior
Point method for SDP proposed by Zhang in [28] is modified in order to allow the use
of inexact search directions.

Here we present an inexact Interior Point method for SDP that does allow the
linear systems to be solved to a low accuracy when the current iterate is far from the
solution. More precisely, the accuracy requirement in the solution of the linear systems
is related only to the quantity X•S. Therefore, even if the iterates happen to be primal
feasible, the linear systems can be solved inexactly. Under the assumption that the
iterates are bounded, we prove that the method is globally convergent. We note that
our convergence results are consistent with those obtained in [15] and [3] for inexact
variants of the KMM algorithm for LP, under similar assumptions.

Regarding the exact counterpart of our method, following the general framework
given in [28], we prove that it is polynomially convergent without imposing any as-
sumptions on the boundedness of the iterates.

We would like to remark that also Zhou and Toh in [29] use an accuracy requirement
in the solution of the linear systems that is related only to the complementarity gap.
Anyway, they use a requirement which is tighter than our, in order to preserve the
same complexity of the exact method given in [28]. Finally, it should be noted that
our method does not require the computation of a further linear system as in [13].

The paper is organized as follows. In section 2 the general class of methods we are
involved with is reviewed. In section 3 the inexact search directions are introduced and
our Inexact Interior Point method is given. The convergence analysis of the method is
carried out in section 4 and in section 5 some practical issues are discussed. Finally,
since in this paper we will frequently use Kronecker products, we report in the Appendix
some useful results related to Kronecker products as long as some technical results on
eigenvalues.

Notation. We use Sn
+ (Sn

++) to denote the set of the n × n positive semidefinite
(definite) symmetric matrices. Sometimes the abbreviation s.p.d. will be used as
shorthand for “symmetric positive definite”.

Given A ∈ IRp×p, λi(A) are the eigenvalues of A and Λ(A) denotes the spectrum
of A. Given A ∈ IRp×q, σi(A) are the singular values of A. Throughout the rest of the
paper we assume that the eigenvalues of a symmetric matrix A and the singular values
of any matrix A are ordered as follows:

λ1(A) ≥ λ2(A) ≥ ... ≥ λp(A), σ1(A) ≥ σ2(A) ≥ ... ≥ σmin{p,q}(A).

The notations X(α), y(α), S(α), µ(α) are used for X(α) = X + α∆X , y(α) =
y + α∆y, S(α) = S + α∆S, µ(α) = X(α) • S(α)/n.

The euclidean norm and the Frobenious norm are denoted by ‖ · ‖ and ‖ · ‖F ,
respectively.
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For any m × n matrix A, vecA denotes the mn-vector obtained by stacking the
columns of A one by one from the first to the last, while for a given mn-vector v, matv
denotes the m × n matrix such that vec(matv) = v.

2. Preliminary discussion. In this section, first we describe the general infea-
sible Interior Point path-following framework for SDP. Second, we specify our choices
for the search direction and the centrality conditions.

The standard Interior Point method for LP is obtained by applying a perturbed
Newton method to the nonlinear system defined by the optimality conditions. However,
unlike the corresponding equations for linear programming, the nonlinear system (1.2)-
(1.4) is not “quite” square. In fact, the function defined by the left-hand side of (1.2)-
(1.4) maps Sn × IRm × Sn into Sn × IRm × IRn×n since the product of two symmetric
matrices is not necessarily symmetric. Consequently, the domain and the range of this
function are not the same spaces, and Newton-type methods cannot be straightforward
applied since they do not preserve the symmetry of the matrix X . To apply Newton-
type algorithms it is previously necessary to symmetrize (1.4) so that the left-hand side
of the resulting equivalent nonlinear system gives a function that maps Sn × IRm ×Sn

into itself [23]. Zhang [28] introduced a general symmetrization scheme based on the
operator HP : IRn×n 7→ Sn defined as

HP (A) =
1

2
(PAP−1 + (PAP−1)T ) ∀A ∈ IRn×n, (2.1)

where P ∈ IRn×n is some nonsingular matrix. In [28] the author has shown that for
any given nonsingular matrix P the system (1.2)-(1.5) is equivalent to the following
nonlinear system:

m
∑

i=1

yiAi + S − C = 0

Ai • X − bi = 0, i = 1, . . . , m

HP (XS) = 0,

S � 0, X � 0,

to which Newton-type methods can be applied.
Taking into account the above considerations, an infeasible Interior Point path-

following method, starting form an initial guess (X0, y0, S0) ∈ Sn
++ × IRm × Sn

++ (a
common choice is X0 = S0 = ρI, ρ > 0 and y0 = 0) generates a sequence of iterates
{(Xk, yk, Sk)} belonging to Sn

++ × IRm × Sn
++. The sequence {(Xk, yk, Sk)} is defined

by







Xk+1 = Xk + αk∆X
yk+1 = yk + αk∆y
Sk+1 = Sk + αk∆S

(2.2)

where (∆X, ∆y, ∆S) ∈ Sn × IRm × Sn is the solution of the following linear system:

m
∑

i=1

∆yiAi + ∆S = −
m
∑

i=1

(yi)kAi − Sk + C (2.3)

Ai • ∆X = −Ai • Xk + bi, i = 1, . . . , m (2.4)

HP (∆XSk + Xk∆S) = σkµkI −HP (XkSk) (2.5)
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and αk ∈ (0, 1] is chosen in order to satisfy suitable centrality conditions and a decrease
condition on the merit function X • S.

In (2.5) σk ∈ (0, 1) is the centering parameter and

µk = (Xk • Sk)/n.

Note that (2.3) implies that ∆S is symmetric while ∆X does enjoy symmetry thanks
to the introduction of the symmetrization operator. This way the symmetry of Xk and
Sk is maintained.

Different choices of the matrix P lead to different search directions with different
properties and drawbacks [23, 24]. Throughout the paper, we use the matrix P = S1/2

proposed in [8, 14, 18], that gives rise to the so called HRVW/KSH/M search direction.
¿From now on, we drop the subscript P from HP when it is clear from the context.

The previous linear system can be written in a more compact form in the following
way:

AT ∆y + vec∆S = vecR
(k)
d (2.6)

Avec∆X = r(k)
p (2.7)

Ekvec∆X + Fkvec∆S = vecR(k)
c , (2.8)

where AT := (vecA1, vecA2, ..., vecAm) ∈ IRn2×m and

vecR
(k)
d = −(AT yk + vecSk − vecC)

r(k)
p = −(AvecXk − b)

R(k)
c = 2(σkµkSk − SkXkSk)

Ek = 2Sk ⊗ Sk

Fk = SkXk ⊗ I + I ⊗ SkXk.

For sake of simplicity in the following the iteration index k of r
(k)
p , R

(k)
d and R

(k)
c

is omitted whenever it can be inferred from the context. ¿From (2.6) we can easily get
vec∆S; replacing it in (2.8) we obtain

Avec∆X = rp

Ekvec∆X + Fk(vecRd −AT ∆y) = vecRc.

Now, getting vec∆X from the second equation and replacing it in the first one, we
have

AE−1
k FkAT ∆y = rp −AE−1

k vecRc + AE−1
k FkvecRd. (2.9)

For convenience, let Mk = AE−1
k FkAT .

Therefore, we can solve the reduced system (2.9) of dimension m obtaining ∆y;
then ∆X and ∆S are computed via

vec∆S = vecC − vecSk −AT (yk + ∆y) (2.10)

and

vec∆X = E−1
k (vecRc − Fkvec∆S) . (2.11)
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Concerning the matrix Mk, in [28, Proposition 2.1] it is proved that as long as Xk

and Sk are s.p.d and A is full rank, Mk is s.p.d. as well. As a consequence, for solving
the linear system (2.9) we can rely on methods as Cholesky factorization for a direct
approach or Conjugate Gradient method for an iterative approach.

We consider the following centrality conditions:

γ1µk ≤ Λ(H(XkSk)) (2.12)

Xk • Sk ≥ γ2‖rp‖ (2.13)

Xk • Sk ≥ γ3‖vecRd‖, (2.14)

where, given γ̂ ∈ (0, 1), the constants γ1, γ2 and γ3 are defined by

γ1 = min

{

γ̂,
λn(H(X0S0))

µ0

}

, γ2 = min

{

γ̂,
X0 • S0

‖r(0)
p ‖

}

, γ3 =
X0 • S0

‖vecR
(0)
d ‖

. (2.15)

Then, the step αk in (2.2) is chosen in such a way that (Xk+1, yk+1, Sk+1) satisfies
(2.12)-(2.14) and the following decrease condition on the merit function X • S:

Xk+1 • Sk+1 ≤ (1 − αk(1 − β))Xk • Sk, (2.16)

where β ∈ (0, 1). This way, the quantity Xk •Sk is driven to zero and due to conditions
(2.13) and (2.14) also ‖rp‖ and ‖vecRd‖ are pushed to zero.

Conditions (2.12)-(2.14) and the decrease condition (2.16) are the generalization
to SDP of the centrality conditions and the decrease condition used in [11]. Therefore,
an Interior Point method for SDP that uses (2.12)-(2.14) and (2.16), turns out to be
an extension of the KMM method to SDP.

3. Inexact search directions. At each iteration of an Interior Point method for
SDP the linear system (2.9) must be solved. As pointed out in the introduction, when
m is large it may be convenient to use an iterative solver to compute the solution of
the linear system inexactly.

Here we propose an Inexact Interior Point method for SDP that uses conditions
(2.12)-(2.14), (2.16) and the matrix P = S1/2 in the symmetrization operator defined
by (2.1). In our approach we consider inexact search directions (∆X, ∆y, ∆S), where
∆y satisfies

AE−1
k FkAT ∆y = rp −AE−1

k vecRc + AE−1
k FkvecRd + rk (3.1)

with

‖rk‖ ≤ ηkXk • Sk, ηk ∈ (0, 1), (3.2)

and ∆X and ∆S are then computed via (2.10) and (2.11). As it is usual in the context
of inexact methods, we will refer to the vector rk as the residual vector and to the
parameter ηk as the forcing term. The forcing term is used to control the level of
accuracy in solving the linear systems. We would like to remark that the criterion
(3.2) allows us to solve the linear systems to a very low accuracy when the iterates are
far from the solution, i.e. when Xk • Sk is large.

Note that solving (3.1) instead of (2.9) corresponds to replace equation (2.7) in
the full dimensional system (2.6)-(2.8) with

Avec∆X = rp + rk. (3.3)
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The method outlined above is formally defined as follows.

IIP-SDP Method (Inexact Interior Point Method for SDP)

0. Given σ0 ∈ (0, 1), ε > 0, γ̂ ∈ (0, 1), β ∈ (0, 1), η0 ∈ [0, 1),
X0 ∈ Sn

++, S0 ∈ Sn
++, y0 ∈ IRm.

1. Set k = 0 and compute γ1, γ2, γ3 from (2.15).
2. Repeat until Xk • Sk ≤ ε:

2.1. Solve system (3.1) with ‖rk‖ ≤ ηkXk • Sk, for ∆y and compute ∆X, ∆S via
(2.10) and (2.11).

2.2. Compute the new iterate (Xk+1, yk+1, Sk+1) by (2.2) using a step αk such
that (Xk+1, yk+1, Sk+1) satisfies conditions (2.12)-(2.14) and (2.16).

2.3. Choose σk+1 and ηk+1.
2.4. Set k = k + 1.

3. Stop

Clearly, if ηk = 0 is taken at each iteration the previous method reduces to an
exact infeasible IP method. In other words it turns out to be an extension of the KMM
method to SDP where inexact computation is not used. In the following we will refer
to this variant as the exact counterpart of the IIP-SDP Method and we will call it the
EIP-SDP Method (Exact Interior Point Method for SDP).

We remark that the KMM algorithm uses a slightly different approach to compute
the step αk. More precisely different primal and dual steplenght are allowed and the
decrease condition (2.16) is tested also using a scalar β̂ greater than β in order to try
to take larger steps. Anyway, it is easy to see that the convergence results proved in
the next section remain valid also for a variant of the IIP-SDP Method that employs
the above mentioned features of the KMM algorithm.

Finally, it may be interesting to compare our accuracy requirement (3.2) with the
one used in the method proposed by Zhou and Toh in [29]. In their approach, the
residual norm must decrease at least O(

√
n log n ) time faster than Xk • Sk. Recall

that the forcing term ηk determines how fast the residual norm need to be decreased
with respect to Xk • Sk. Hence, the forcing terms used in [29] depend on n and this
may lead to small forcing terms when n is large. That is, the larger is the dimension,
the more accurately the linear systems are solved. On the contrary, our approach does
not suffer of this drawback since the forcing terms are not related to the dimension n.
On the other hand, the algorithm given in [29] achieves O(n2 log(1/ǫ)) complexity.

4. Convergence. In this section we analyze the convergence properties of the
IIP-SDP Method and of its exact counterpart.

First, we show that if the sequences {σk} and {ηk} are chosen in such a way that
β − σk > 0 and σk − γ2ηk > 0, then the sequence of the iterates is well defined, i.e.
at each iteration it is possible to satisfy conditions (2.12)-(2.14) and (2.16), and the
generated matrices Xk and Sk are s.p.d. for all k > 0.

Second, we analyze the convergence behavior of the EIP-SDP Method. We prove
that, if the standard starting point X0 = S0 = ρI, ρ > 0 and y0 = 0 is used and the
sequence {σk} is chosen in such a way that β − σk > θ1, for θ1 > 0, then the EIP-SDP
Method takes no more than O(n2.5 ln 1

ε ) iterations to reach Xk • Sk ≤ ε.
Finally, we focus on the inexact method. Under the following assumption:

A1. The sequence {(Xk, Sk)} is bounded, i.e. there exist a constant c1 such that
‖Xk‖, ‖Sk‖ ≤ c1, for every k > 0,
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we prove that the sequence {Xk • Sk} generated by the IIP-SDP Method with ε = 0,
converges to zero, provided that the constant β and the sequences {σk} and {ηk} are
chosen in such a way that β − σk > θ1 and σk − γ2ηk > θ2 for some θ1, θ2 > 0.

We remark that the convergence of the complementarity gap to zero implies that
all the accumulation points (X∗, y∗, S∗) of {(Xk, yk, Sk)} solve the problem (1.2)-(1.5).
This latter observation is due to the fact that X • S = 0 if and only if XS = 0 (see
Lemma 2.9 of [1]) and to conditions (2.13)-(2.14).

Before starting to analyze the convergence of the method, we prove the following
technical Lemma.

Lemma 4.1 Let P be any nonsingular matrix and A, B ∈ Sn. Then

|A • B| ≤ n‖HP (AB)‖F .

Proof. First note that given any matrix C ∈ IRn×n, we have

tr(HP (C)) =
1

2
tr
(

PCP−1
)

+
1

2
tr
(

[PCP−1]T
)

= tr
(

PCP−1
)

= tr(C) . (4.1)

Then, using (4.1) we get

|A • B| = |tr(AB)| = |tr(HP (AB))| =

∣

∣

∣

∣

∣

n
∑

i=1

λi(HP (AB))

∣

∣

∣

∣

∣

≤
n
∑

i=1

|λi(HP (AB))| ≤ n max
1≤i≤n

|λi(HP (AB))|

= n‖HP (AB)‖ ≤ n‖HP (AB)‖F

and the thesis follows. �

The next result show that if (Xk, yk, Sk) satisfies (2.12)-(2.14) and (2.16) then
there exists α̂k ∈ (0, 1] such that, for all α ∈ [0, α̂k], (Xk(α), yk(α), Sk(α)) satisfies

γ1µk(α) ≤ Λ(H
S

1/2

k

(Xk(α)Sk(α))) (4.2)

Xk(α) • Sk(α) ≥ γ2‖rp(α)‖ (4.3)

Xk(α) • Sk(α) ≥ γ3‖vecRd(α)‖, (4.4)

Xk(α) • Sk(α) ≤ (1 − α(1 − β))Xk • Sk (4.5)

where

rp(α) = b −AvecX(α) and vecRd(α) = vecC − vecS(α) −AT y(α).

Proposition 4.1 Assume that the triplet (Xk, yk, Sk) is such that conditions (2.12)-
(2.14) and (2.16) are satisfied and let (∆X, ∆y, ∆S) be a solution of (3.3), (2.6) and
(2.8). If

‖rk‖ ≤ ηkXk • Sk, σk − γ2ηk > 0, β > σk, (4.6)

then there exists α̂k ∈ (0, 1] such that for all α ∈ [0, α̂k] the triplet (Xk(α), yk(α), Sk(α))
satisfies conditions (4.2)-(4.5).
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Proof. For sake of simplicity we drop the matrix S
1/2
k from H

S
1/2

k

and we omit the

iteration index k in the proof. First, let us show that there exists α̂1 ∈ (0, 1] such that

λn(H(X(α)S(α))) − γ1µ(α) ≥ 0 ∀α ∈ [0, α̂1].

Note that equation (2.8) in the linear system is equivalent to

H(XS + ∆XS + X∆S) = σµI, (4.7)

from which, using (4.1), it follows that

tr(∆XS + X∆S) = tr(σµI − XS) . (4.8)

Hence we have

X(α) • S(α)= tr((X + α∆X)(S + α∆S))

= tr
(

XS + α∆XS + αX∆S + α2∆X∆S
)

= tr(XS) + αtr(∆XS + X∆S) + α2tr(∆X∆S)

= tr(XS) + αtr(σµI − XS) + α2tr(∆X∆S)

= X • S + α(σ − 1)X • S + α2tr(∆X∆S)

= (1 − α + ασ)X • S + α2∆X • ∆S. (4.9)

Further, taking into account (4.7), it can be easily seen that

H(X(α)S(α)) = (1 − α)H(XS) + ασµI + α2H(∆X∆S). (4.10)

Hence, from (4.9), relation (6.1) in the Appendix and the fact that λn(H(XS)) ≥
γ1µ, we derive

λn(H(X(α)S(α)))−γ1µ(α)= λn

(

(1 − α)H(XS) + ασµI + α2H(∆X∆S)
)

−γ1

(

(1 − α + ασ)µ +
α2

n
∆X • ∆S

)

≥ (1 − α)λn(H(XS)) + ασµ − α2‖H(∆X∆S)‖F

−γ1(1 − α)µ − γ1ασµ − γ1
α2

n
∆X • ∆S

≥ (1 − α)γ1µ + ασµ − α2‖H(∆X∆S)‖F

−γ1(1 − α)µ − γ1ασµ − γ1
α2

n
∆X • ∆S

= (1 − γ1)ασµ − α2(‖H(∆X∆S)‖F +
γ1

n
∆X•∆S)(4.11)

≥ (1 − γ1)ασµ − α2
(

‖H(∆X∆S)‖F +
γ1

n
|∆X • ∆S|

)

≥ (1 − γ1)ασµ − α2(1 + γ1)‖H(∆X∆S)‖F .

The latter inequality follows from Lemma 4.1. Then, since γ1 ≤ γ̂ < 1, taking

α̂1 =
(1 − γ1)σµ

(1 + γ1)‖H(∆X∆S)‖F
,

we can state that condition (4.2) is satisfied for all α ∈ [0, α̂1].
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Now let us show that there exist α̂2 such that for all α ∈ [0, α̂2] condition (4.3) is
satisfied. Taking into account that ‖r‖ ≤ ηX • S and X • S ≥ γ2‖rp‖ and using (4.9)
and (3.3) we get

X(α) • S(α) − γ2‖rp(α)‖= (1 − α + ασ)X • S + α2∆X • ∆S

−γ2‖b −AvecX − αAvec∆X‖
= (1 − α + ασ)X • S + α2∆X • ∆S

−γ2‖b −AvecX − α(b −AvecX + r)‖
≥ (1 − α + ασ)X • S + α2∆X • ∆S

−γ2(1 − α)‖b −AvecX‖ − γ2α‖r‖
≥ ασX • S + α2∆X • ∆S − γ2αηX • S

≥ α(σ − γ2η)X • S − α2 |∆X • ∆S| .

Since σ−γ2η > 0 by hypothesis, it follows that (4.3) is satisfied for every α ∈ [0, α̂2],
with

α̂2 =
(σ − γ2η)X • S

|∆X • ∆S| .

Now, let us consider condition (4.4). We use (2.6) and, once again, (4.9). Then,
taking into account that X • S ≥ γ3‖vecRd‖, we get

X(α) • S(α)−γ3‖vecRd(α)‖= (1 − α + ασ)X • S + α2∆X • ∆S

− γ3‖ − vecS − αvec∆S + vecC −AT y − αAT ∆y‖
= (1 − α + ασ)X • S + α2∆X • ∆S

−γ3‖ − vecS −AT y + vecC − α(vecC − vecS −AT y)‖
≥ ασX • S − α2 |∆X • ∆S| .

Then, taking

α̂3 =
σX • S

|∆X • ∆S| , (4.12)

condition (4.4) is satisfied for all α ∈ [0, α̂3].
Finally, let us turn to condition (4.5). Using again (4.9), we get

(1 − α(1 − β))X • S − X(α) • S(α)= (1 − α(1 − β))X • S − (1 − α + ασ)X • S

−α2∆X • ∆S

= α(β − σ)X • S − α2∆X • ∆S

≥ α(β − σ)X • S − α2 |∆X • ∆S| .

Then, since β > σ by hypothesis, we can conclude that condition (4.5) holds for
all α ∈ [0, α̂4], where α̂4 is given by:

α̂4 =
(β − σ)X • S

|∆X • ∆S| . (4.13)

Finally, the thesis follows with

α̂k = min

{

1, X•S min

{

1 − γ1

1 + γ1

σ

n‖H(∆X∆S)‖F
,

σ − γ2η

|∆X•∆S| ,
σ

|∆X•∆S| ,
β − σ

|∆X•∆S|

}}

.

(4.14)
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�

Note that, as pointed out by Zhang in [28], the computation of a steplenght α̃k
1

such that (4.2) is satisfied for any α ∈ [0, α̃k
1 ] can be performed without calculating the

eigenvalues of H
S

1/2

k

(Xk(α)Sk(α)), due to (4.11).

The following Proposition, which is essentially [28, Lemma 4.7], ensures that the
matrices Xk(α) and Sk(α), with α ∈ [0, α̂k], are s.p.d.

Proposition 4.2 Assume that the hypotheses of Proposition 4.1 are satisfied and let
α̂k be defined as in (4.14). Then for all α ∈ [0, α̂k] the matrices Xk(α) and Sk(α) are
s.p.d., unless α̂k = 1 and Xk(1) • Sk(1) = 0 in which case (Xk(1), yk(1), Sk(1)) is a
solution to (1.2)-(1.5).

Proof. Using (4.9) we get:

Xk(α) • Sk(α) − (1 − α)Xk • Sk

= (1 − α + ασk)Xk • Sk + α2∆X • ∆S − (1 − α)Xk • Sk

≥ ασkXk • Sk − α2|∆X • ∆S|.

Then, the inequality

Xk(α) • Sk(α) ≥ (1 − α)Xk • Sk (4.15)

holds for any α ∈ [0, α̂3], with α̂3 defined by (4.12); therefore, it holds for any α ∈
[0, α̂k]. Then we can proceed as in the proof of [28, Lemma 4.7] and the thesis follows.
�

¿From the previous results it follows that step 2.2 of Method IIP-SDP is well
defined. In fact, we recall from Proposition 4.1 that, taking α ∈ (0, α̂k], the point
(Xk+1, yk+1, Sk+1) = (Xk(α), yk(α), Sk(α)) satisfies conditions (4.2)-(4.5); further,
Proposition 4.2 guarantees that Xk+1 and Sk+1 are s.p.d. Note that conditions (4.3),
(4.4) and (4.5) imply that the point (Xk+1, yk+1, Sk+1) also satisfies conditions (2.13),
(2.14) and (2.16), respectively. Concerning condition (2.12), note that at the (k+1)-th

iteration, the scaling matrix used in (2.1) is S
1/2
k+1 and in general H

S
1/2

k+1

(Xk+1Sk+1)

is different from H
S

1/2

k

(Xk+1Sk+1). Anyway, Lemma 4.2 in [28] states that if Sk and

Sk+1 are s.p.d. then the following inequality holds:

λn(H
S

1/2

k

(Xk+1Sk+1)) ≤ Λ(H
S

1/2

k+1

(Xk+1Sk+1)).

Hence, we can conclude that the point (Xk+1, yk+1, Sk+1) satisfies condition (2.12)
as well.

Now, we focus on the convergence behavior of the sequence {Xk • Sk}. Here we
report some observations and results of [28] which are useful in several places in the
analysis that follows. First, in [28, Proposition 2.1] it is shown that the matrix

E−1
k Fk =

(Xk ⊗ S−1
k + S−1

k ⊗ Xk)

2

is s.p.d.
Further, in this section we make use of the matrix Ŝk = FkET

k which originally
appeared in [28]. Regarding this matrix the following result holds.

11



Lemma 4.2 ([28, Proposition 2.3]) The matrix Ŝk = FkET
k is s.p.d. and can be

written as

Ŝk = E
1/2
k F̂kE

1/2
k (4.16)

where F̂k is s.p.d. and is given by

F̂k = E
−1/2
k FkE

1/2
k = S

1/2
k XkS

1/2
k ⊗ I + I ⊗ S

1/2
k XkS

1/2
k . (4.17)

Remark 4.1 Note that XkSk, SkXk, X
1/2
k SkX

1/2
k , and S

1/2
k XkS

1/2
k are similar ma-

trices. Moreover, note also that

H(XkSk) =
1

2
(S

1/2
k XkSkS

−1/2
k + (S

1/2
k XkSkS

−1/2
k )T ) = S

1/2
k XkS

1/2
k ; (4.18)

this yields the similarity between H(XkSk) and XkSk. All this things considered, for
sake of brevity, from now on we will denote the eigenvalues of these matrices as λk

i ,
i = 1, . . . , n. Finally, using Lemma 6.1, part (g), it is straightforward noting that the
eigenvalues of Fk and F̂k are given by λk

i + λk
j , for i, j = 1, .., n.

We also make repeated use of the following matrices:

Dk = Ŝ
−1/2
k Fk = Ŝ

1/2
k E−T

k , D−T
k = Ŝ

−1/2
k Ek = Ŝ

1/2
k F−T

k . (4.19)

They will play a key role in the development of this analysis. First, note that from
the definition of the matrix Dk we have

DT
k Dk = (Ŝ

−1/2
k Fk)T Ŝ

1/2
k E−T

k

= FT
k (Ŝ

−1/2
k )T Ŝ

1/2
k E−T

k

= FT
k E−T

k .

Then, the symmetry of E−1
k Fk yields

DT
k Dk = E−1

k Fk. (4.20)

Moreover, from Lemma 3.3 in [28] we get the following inequality:

‖H(∆X∆S)‖F ≤ 1

2

√

λk
1

λk
n

(‖D−T
k vec∆X‖2 + ‖Dkvec∆S‖2). (4.21)

Further, we note that

|∆X • ∆S| ≤ ‖D−T
k vec∆X‖‖Dkvec∆S‖ ≤ 1

2
(‖D−T

k vec∆X‖2+‖Dkvec∆S‖2). (4.22)

Finally, let us introduce the quantity

νk =

k
∏

j=0

(1 − αj).

Note that

vecR
(k+1)
d = νkvecR

(0)
d (4.23)

and that (4.15) yields

µk+1 ≥ νkµ0. (4.24)
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4.1. Convergence of the EIP-SDP Method. Let us consider the exact version
of our method. In this case, the global convergence can be proved following the lines
given by Zhang in [28] under the assumption that the following conditions hold:

X0 − X∗ � 0, S0 − S∗ � 0, X0 = S0 = ρI,

where (X∗, y∗, S∗) is a solution of (1.2)-(1.5) and

ρ ≥ tr(X∗) + tr(S∗)

n
.

Note that the relation r
(k+1)
p = νkr

(0)
p is satisfied, then Lemma 3.5 of [28] can be

used in our context. Therefore, the following result holds.

Lemma 4.3 Let (Xk, yk, Sk) be the k-th iterate generated by the EIP-SDP Method,
(X0, y0, S0) be the initial guess, (X∗, y∗, S∗) be a solution of the problem. Then,

‖D−T
k vec∆X‖2 + ‖Dkvec∆S‖2 ≤

(

ξk +
√

ξ2
k + ζk

)2

,

where

ξk = νk−1(‖D−T
k vec(X0 − X∗)‖ + ‖Dkvec(S0 − S∗)‖), (4.25)

ζk = ‖Ŝ−1/2
k Rc‖2

F + 2ν2
k−1(X0 − X∗) • (S0 − S∗). (4.26)

Concerning the boundedness of ξk and ζk, since (4.24) and (2.12) hold, we can
apply Lemma 3.6 and Lemma 3.7 in [28] obtaining

ξk ≤ 3n

√

µk

γ1
(4.27)

and

ζk ≤ (3 − 2σk + σ2
k/γ1)nµk. (4.28)

Then, Lemma 3.8 in [28] shows that the following inequality holds

‖D−T
k vec∆X‖2 + ‖Dkvec∆S‖2 ≤ 38n2µk

γ1
(4.29)

if n ≥ 4.

Finally, using the above results we can prove the following theorem:

Theorem 4.1 Let γ1, γ2, γ3 be as in (2.15). Let (X∗, y∗, S∗) be a solution of (1.2)-
(1.5). Assume that the constant β and the sequence {σk} are such that β−σk > θ1 > 0.
Further, assume that there exists σ̄ > 0 such that σk > σ̄, for all k > 0. Then the
EIP-SDP Method with ε > 0 terminates in a finite number of iterations. In particular
it needs no more than O[n2.5 ln(X0 • S0/ε)] iterations to achieve Xk • Sk ≤ ε.
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Proof. Note that

√

λk
1

λk
n

≤
√

Xk • Sk

γ1Xk • Sk/n
=

√

n

γ1
. (4.30)

Then, using (4.21), (4.22) and the bound (4.29), from (4.14) we get:

α̂k ≥ ᾱ = min

{

1,
γ1
√

γ1

19n2.5
min

{

1 − γ1

1 + γ1
σ̄, θ1

}}

. (4.31)

Moreover, from Proposition 4.1 we have that

Xk+1 • Sk+1 ≤ (1 − ᾱ(1 − β))Xk • Sk. (4.32)

Then, the duality gap is reduced at each iteration at least of a factor of

1 − (1 − β)
γ1
√

γ1

19n2.5
min

{

1 − γ1

1 + γ1
σ̄, θ1

}

and this implies that Xk • Sk ≤ ε in at most O[n2.5 ln(X0 • S0/ε)] iterations. �

4.2. Convergence of the IIP-SDP Method. Now, let us consider the inexact
case. We cannot directly apply the convergence theory given in [28], because, unlike

the exact case, it is not true that r
(k+1)
p = (1 − αk)r

(k)
p . In fact, we have

r(k+1)
p = (1 − αk)r(k)

p − αkrk

and in order to prove the global convergence of the sequence {Xk • Sk} to zero, we
need to assume the boundedness of the iterates (assumption A1). The proof of our
convergence result requires some intermediate stages concerning the boundedness of
‖E−1

k Fk‖, ‖M−1
k ‖, and ‖H(∆X∆S)‖F . For sake of simplicity we omit the iteration

index k in the proofs of these results.
First note that, recalling Lemma 6.1, part (f) in the Appendix, we have

‖Ek‖ = 2‖Sk ⊗ Sk‖ = 2‖Sk‖2 ≤ 2c2
1; (4.33)

similarly, from Lemma 6.1, part (a) we have

‖E−1
k ‖ =

1

2
‖S−1

k ⊗ S−1
k ‖ =

1

2
‖S−1

k ‖2. (4.34)

Proposition 4.3 Let assumption A1 be satisfied and let {(Xk, yk, Sk)} be the sequence
generated by the IIP-SDP Method. Then, the following inequalities hold:

‖E−1
k Fk‖ ≤ c2

1n

γ1Xk • Sk
, (4.35)

‖(E−1
k Fk)−1‖ ≤ c2

1n

γ1Xk • Sk
. (4.36)
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Proof. Let us consider the matrix E−1F . We have

E−1F =
1

2
(X ⊗ S−1 + S−1 ⊗ X)

=
1

2
(X1/2 ⊗ X1/2)(X1/2 ⊗ X−1/2S−1 + X−1/2S−1 ⊗ X1/2)

=
1

2
(X1/2 ⊗ X1/2)(I ⊗ X−1/2S−1X−1/2+X−1/2S−1X−1/2 ⊗ I)(X1/2 ⊗ X1/2).

This yields

‖E−1F‖ ≤ 1

2
‖X1/2 ⊗ X1/2‖2(‖I ⊗ X−1/2S−1X−1/2‖ + ‖X−1/2S−1X−1/2 ⊗ I‖)

= ‖X1/2‖4‖X−1/2S−1X−1/2‖
≤ c2

1‖X−1/2S−1X−1/2‖

= c2
1

1

λn
.

Therefore, from (2.12), we get (4.35).
Now, we turn our attention to ‖(E−1F )−1‖. At this regard, we recall that the

matrix E−1F is s.p.d. Let v be an eigenvector of E−1F corresponding to the eigenvalue
λn2(E−1F ) and assume that ‖v‖ = 1. From the definition of F̂ (see (4.17)) it follows
that the relation E−1F = E−1/2F̂E−1/2 holds. Then we get

λn2(E−1F ) = ‖E−1/2F̂E−1/2v‖ ≥ ‖F̂E−1/2v‖
‖E1/2‖ ≥ ‖v‖

‖E1/2‖2‖F̂−1‖
=

λn2(F̂ )

‖E‖ .

Thus, from Remark 4.1, (2.12) and (4.33) we get

λn2(E−1F ) ≥ γ1X • S

c2
1n

,

and this yields (4.36).
�

Proposition 4.4 Let assumption A1 be satisfied and {(Xk, yk, Sk)} be the sequence
generated by the IIP-SDP Method. Then,

‖M−1
k ‖ ≤ c2

1n

γ1Xk • Skσ2
m(A)

. (4.37)

Proof. Let Â = AE−1/2. Then, from the definition of F̂ (see (4.17)), it follows

M = AE−1FAT = AE−1/2E−1/2FE1/2E−1/2AT = ÂF̂ ÂT .

Let v be an eigenvector of M corresponding to the eigenvalue λm(M) and assume
that ‖v‖ = 1. Further, let y = ÂT v; we have

λm(M) = vTAE−1FAT v = vT ÂF̂ ÂT v = yT F̂ y.

Since F̂ is s.p.d. we have

λm(M) ≥ λn2(F̂ )‖y‖2;

15



Then, Remark 4.1 and (2.12) yield

λm(M)≥ 2γ1
X • S

n
‖y‖2 = 2γ1

X • S

n
‖ÂT v‖2

= 2γ1
X • S

n
‖E−1/2AT v‖2. (4.38)

Let A = UΣV T be the singular value decomposition of A, i.e. U ∈ IRm×m and

V ∈ IRn2×n2

are orthogonal matrices and Σ ∈ IRm×n2

is given by Σ = (Σ1 0), with
Σ1 = diag(σi(A)) ∈ IRm×m. Then,

‖E−1/2AT v‖ = ‖E−1/2V ΣT UT v‖ = ‖E−1/2V ΣT q‖,

with q = UT v; therefore ‖q‖ = 1. Since A has full row rank, Σ1 is nonsingular. Further,
‖ΣT q‖ = ‖Σ1q‖. Hence,

‖E−1/2AT v‖= ‖E−1/2V ΣT q‖ ≥ ‖V ΣT q‖
‖E1/2‖ =

‖ΣT q‖
‖E1/2‖ =

‖Σ1q‖
‖E1/2‖

≥ ‖q‖
‖E1/2‖‖Σ−1

1 ‖
=

σm(A)

‖E1/2‖ .

Then, using (4.33) we get ‖E−1/2AT v‖ ≥ σm(A)√
2c1

and therefore by (4.38) we can

conclude that

λm(M) ≥ γ1X • Sσ2
m(A)

n c2
1

,

and this completes the proof. �

Proposition 4.5 Let assumption A1 be satisfied and let {(Xk, yk, Sk)} be the sequence
generated by the IIP-SDP Method. Then,

‖S−1
k ‖ ≤ c1n

√
n

γ1Xk • Sk
. (4.39)

Proof. Let us consider the quantity ‖DvecI‖2. Using (4.16), (4.19) and Lemma 6.1,
part (d), we get:

‖DvecI‖2 = (vecI)T E−1Ŝ1/2Ŝ1/2E−1vecI

= (vecI)T E−1/2F̂E−1/2vecI

=
1

2
(vec(S−1/2IS−1/2))T F̂vec(S−1/2IS−1/2)

≥ 1

2
λn2 (F̂ )‖vecS−1‖2.

Now, Remark 4.1 and (2.12) yield

‖DvecI‖2 ≥ λn‖vecS−1‖2 ≥ γ1X • S

n
‖vecS−1‖2. (4.40)
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Moreover, from (4.20) and (4.35) it follows

‖DvecI‖2 = (vecI)T DT DvecI

= (vecI)T E−1FvecI

≤ ‖E−1FvecI‖‖vecI‖
≤ ‖E−1F‖‖vecI‖2

≤ c2
1n

γ1X • S
n.

Then from (4.40) we obtain

‖vecS−1‖ ≤
√

n

γ1X • S
‖DvecI‖ ≤ c1n

√
n

γ1X • S
(4.41)

and, since ‖S−1‖ ≤ ‖S−1‖F = ‖vecS−1‖, (4.39) holds. �

Proposition 4.6 Let assumption A1 be satisfied and {(Xk, yk, Sk)} be the sequence
generated by the IIP-SDP Method. Assume that for a fixed ε̃ > 0 we have Xk•Sk ≥ ε̃ for
all k > 0. Then there exists a constant ω such that at each iteration ‖H(∆X∆S)‖F ≤
ω.

Proof. We will prove that there exists a constant ω > 0 such that

1

2

√

λ1

λn
(‖D−T vec∆X‖2 + ‖Dvec∆S‖2) ≤ ω. (4.42)

Then, recalling (4.21), the thesis will follow. Thus, we need to bound each element in
the left hand side of (4.42).

Using (2.6), (2.8) and the definition (4.19) of the matrix D, we get

D−T vec∆X = D−T (E−1vecRc − E−1FvecRd + E−1FAT ∆y)

= Ŝ−1/2EE−1FAT ∆y − Ŝ−1/2EE−1FvecRd

+Ŝ−1/2EE−1vec(2(σµS − SXS))

= Ŝ−1/2FAT ∆y − Ŝ−1/2FvecRd + 2σµŜ−1/2vecS − 2D−T E−1vec(SXS)

= DAT ∆y − DvecRd + 2σµŜ−1/2vecS − D−T vecX.

Regarding Dvec∆S we have from (2.6)

Dvec∆S = DvecRd − DAT ∆y.

Then, we have

‖D−T vec∆X‖ ≤ ‖DAT ∆y‖ + ‖DvecRd‖ + 2σµ‖Ŝ−1/2vecS‖ + ‖D−T vecX‖ (4.43)

and

‖Dvec∆S‖ ≤ ‖DvecRd‖ + ‖DAT ∆y‖. (4.44)
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Now, we proceed to bound every single term in the right hand sides of (4.43) and
(4.44). Let us begin from 2σµ‖Ŝ−1/2vecS‖. Relation (4.16) and Lemma 6.1, part (d),
yield:

‖Ŝ−1/2vecS‖2 = (vecS)T Ŝ−1vecS

= (vecS)T E−1/2F̂−1E−1/2vecS

=
1√
2
(vecS)T E−1/2F̂−1vecI.

Then, from (4.34), the bound (4.39), Remark 4.1 and (2.12) we get

‖Ŝ−1/2vecS‖2 ≤ 1√
2
‖vecS‖‖E−1/2‖‖F̂−1‖‖vecI‖

≤
√

nc1
1

2

c1n
√

n

γ1X • S

n

2γ1X • S

√
n =

1

4

c2
1n

3
√

n

(γ1X • S)2
.

Therefore we have

2σµ‖Ŝ−1/2vecS‖ ≤ σµ
c1nn3/4

γ1X • S

=
σc1n

3/4

γ1
. (4.45)

Concerning the term ‖D−T vecX‖, proceeding as before, taking into account that
D−1D−T = (E−1F )−1 and (4.36) we get:

‖D−T vecX‖ ≤ ‖vecX‖‖(E−1F )−1‖1/2 ≤ c2
1n√

γ1X • S
. (4.46)

Now, let us consider ‖DvecRd‖. Again, using (4.20) we get

‖DvecRd‖ ≤ ‖vecRd‖‖E−1F‖1/2.

Therefore, from (4.23), (4.24) and (4.35) we obtain

‖DvecRd‖ ≤ c1

√
nX • S√

γ1X0 • S0
‖vecR

(0)
d ‖. (4.47)

Concerning the term ‖DAT ∆y‖ we have, recalling (4.20),

‖DAT ∆y‖2 = ∆yTADT DAT ∆y = ∆yTAE−1FAT ∆y ≤ ‖∆y‖‖M∆y‖. (4.48)

Let us consider system (3.1). We have

M∆y = rp −AE−1vecRc + AE−1FvecRd + r

= b −AvecX −AE−1vec(2(σµS − SXS)) + AE−1FvecRd + r

= b −AvecX − 2σµAE−1vecS + 2AE−1vec(SXS) + AE−1FvecRd + r

= b −AvecX − σµAvecS−1 + AvecX −AE−1FvecRd + r

= b − σµAvecS−1 −AE−1FvecRd + r.
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Thus, by (3.2), the inequalities (4.23) and (4.24), and the bounds (4.35) and (4.41),

‖M∆y‖ ≤ ‖b − σµAvecS−1 −AE−1FvecRd + r‖

≤ ‖b‖ + σµσ1(A)
c1n

√
n

γ1X • S
+ σ1(A)‖E−1F‖‖vecRd‖ + ‖r‖

≤ ‖b‖ + σσ1(A)
c1
√

n

γ1
+ σ1(A)

c2
1n

γ1X • S

X • S

X0 • S0
‖vecR

(0)
d ‖ + ηX • S

≤ ‖b‖ + σ1(A)
c2
1n

γ1

‖vecR
(0)
d ‖

X0 • S0
+ σσ1(A)

c1
√

n

γ1
+ ηX • S. (4.49)

Thus, by (4.37) we have

‖∆y‖ ≤ c2
1n

γ1X • Sσ2
m(A)

(

‖b‖ +
σ1(A)c2

1n

γ1

‖vecR
(0)
d ‖

X0 • S0
+ σσ1(A)

c1
√

n

γ1
+ ηX • S

)

≤ c2
1n

γ1X • Sσ2
m(A)

(

‖b‖ +
σ1(A)c2

1n

γ1

‖vecR
(0)
d ‖

X0 • S0
+ σσ1(A)

c1
√

n

γ1

)

+ η
c2
1n

γ1σ2
m(A)

.(4.50)

Summarizing, from (4.21) and bounds (4.30) and (4.45)-(4.50) it follows that if
Xk • Sk ≥ ε̃, there exists a constant ω such that ‖H(∆X∆S)‖F ≤ ω. �

With these preliminary results at hand we are now ready to prove the following
result.

Theorem 4.2 Let γ1, γ2, γ3 be as in (2.15). Let assumption A1 be satisfied. Assume
that the constant β and the sequences {ηk} and {σk} are such that β − σk > θ1 > 0
and σk − γ2ηk > θ2 > 0, for all k > 0 . Further, assume that σk is bounded away from
zero whenever Xk • Sk 6→ 0. Then the sequence {Xk • Sk} generated by the IIP-SDP
Method with ε = 0 converges to 0.

Proof. The sequence Xk • Sk is monotone decreasing and bounded, therefore it is
convergent. Assume that Xk •Sk → ε̃ > 0. Note that, from our assumptions, it follows
that there exists σ̄ such that σk ≥ σ̄, for all k > 0. ¿From Proposition 4.1 we have that

Xk+1 • Sk+1 ≤ (1 − α̂k(1 − β))Xk • Sk, (4.51)

with α̂k given by (4.14). Furthermore, under our assumptions, by Proposition 4.6 it
follows that α̂k ≥ ᾱ, where ᾱ is independent of k and given by:

ᾱ = min

{

1,
ε̃

nω
min

{

1 − γ1

1 + γ1
σ̄, θ1, θ2

}}

.

Then α̂k is bounded away from zero, and this along with (4.51) implies that
Xk • Sk → 0, which is a contradiction. �
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5. Practical considerations. In this section, we will spend a few words on the
computation of the matrix-vector products Mkw, for some vector w ∈ IRm. This is
a crucial implementation issue for an inexact method. In fact, iterative solvers for
linear systems only require the action of the coefficient matrix onto a vector w and this
computation must be carried out efficiently.

For sake of simplicity we omit the index k. The computation of the product

Mw, requires computing the product z = E−1Fv, for some v ∈ IRn2

. This can be
done without building E and then solving the n2-dimensional linear system Ez = Fv.
Recall that E−1 = 1

2S−1 ⊗ S−1 and E−1F = 1
2

(

(X ⊗ S−1) + (S−1 ⊗ X)
)

. Let us

consider first products of the kind ẑ = (X ⊗ S−1)v. Let V ∈ IRn×n be such that
V = matv, and let Vi· and V·j denote the i-th row and j-th column of V , respectively.
It is straightforward to note that

(X ⊗ S−1)v =







∑n
j=1 X1jS

−1V·j
...

∑n
j=1 XnjS

−1V·j






;

therefore we can solve the n-dimensional linear systems Sẑ(l) = V·l, for l = 1, ..., n, and
then build (X ⊗ S−1)v through linear combinations of the vectors ẑ(l).

Now, let us turn to products of the kind z̄ = (S−1 ⊗ X)v. We have

(S−1 ⊗ X)v =







∑n
j=1 S−1

1j XV·j
...

∑n
j=1 S−1

nj XV·j






.

Let G ∈ IRn×n be such that G·j = XV·j for j = 1, ..., n and let Z̄ = matz̄. We
have, for i = 1, ..., n,

Z̄·i =

n
∑

j=1

S−1
ij G·j

and therefore, for i, l = 1, ..., n,

Z̄li =
n
∑

j=1

S−1
ij Glj .

As a consequence, for each l = 1, . . . , n, the vector Z̄T
l· is nothing but the solution of

the linear system SZ̄T
l· = GT

l· . In conclusion, to compute the matrix-vector product
E−1Fv, we mainly need to solve 2n linear systems of dimension n, with coefficient
matrix always equal to S, and therefore s.p.d.

6. Appendix. In this section we collect some known results on eigenvalues and
Kronecker products [9, 10].

Theorem 6.1 (Weyl’s Theorem) Let A, B be two given n × n symmetric matrices.
Then, for all k = 1, ..., n, we have

λk(A) + λn(B) ≤ λk(A + B) ≤ λk(A) + λ1(B).
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Remark 6.1 Recalling that tr(B) =
∑

λi(B), for any symmetric matrix B we have

‖B‖2
F = tr

(

BT B
)

= tr
(

B2
)

=
∑n

i=1 |λi(B)|2; hence, |λi(B)| ≤ ‖B‖F . From this and
from Theorem 6.1 we have, for any two symmetric matrices A and B,

λn(A + B) ≥ λn(A) + λn(B) ≥ λn(A) − |λn(B)| ≥ λn(A) − ‖B‖F . (6.1)

Lemma 6.1 Let A, B, C, D be matrices of proper dimensions. Then the following
properties hold:
(a) A ⊗ B is nonsingular iff A and B are nonsingular; moreover, (A ⊗ B)−1 =

A−1 ⊗ B−1.
(b) (A ⊗ B)(C ⊗ D) = AC ⊗ BD.
(c) (A ⊗ B)T = AT ⊗ BT .
(d) (A ⊗ B)vecX = vec(BXAT ).
(e) Λ(A ⊗ B) = {λi(A)λj(B), i, j = 1, ..., n}.
(f) ‖A ⊗ B‖ = ‖A‖‖B‖.
(g) Λ(A ⊗ I + I ⊗ B) = {λi(A) + λj(B), i, j = 1, ..., n}.
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