
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Decoupling Bandwidth and Delay Properties in Class Based Queuing / Risso, FULVIO GIOVANNI OTTAVIO. - (2001),
pp. 524-531. (Intervento presentato al convegno 6th IEEE Symposium on Computers and Communications (ISCC 01)).

Original

Decoupling Bandwidth and Delay Properties in Class Based Queuing

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417040 since:

Decoupling Bandwidth and Delay Properties
in Class Based Queuing

Fulvio Risso
Dipartimento di Automatica e Informatica – Politecnico di Torino

Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy
risso@polito.it

Abstract— This paper presents the Decoupled Class
Based Scheduling, a CBQ-derived scheduling algorithm.
Main advantages of D-CBQ are a new set of rules for
distributing excess bandwidth and the ability to guarantee
bandwidth and delay in a separate way, whence the name
“decoupled”; moreover D-CBQ guarantees better delay
bounds and more precise bandwidth assignment. This
paper presents D-CBQ main points and discusses the
choices for the implementation of the algorithm.

1 Introduction
Historically, networks carried only predetermined

types of traffic. For instance, the telephone network was
able to transport voice, the Internet was able to transport
data, and so on. Nowadays, networks want to integrate
different kinds of traffic on the same physical
infrastructure. For doing that, a modern network must be
able to guarantee at least a certain amount of bandwidth
and a maximum delay bound to each session. These
parameters are usually independent each one from the
others; for instance a session that requires assured
bandwidth (for example a video stream) might not require
strict delays. Networks usually guarantee differentiation
among traffic by means of properly configured schedulers
that are able to forward traffic in different ways according
to the service required.

Priority Queuing (PQ) is the most effective scheduler
from the “low delay service” standpoint, because it is able
to forward prioritized traffic as soon as possible. Several
other schedulers, particularly non-work conserving ones,
are also excellent choices for delay requirements because
they are able to forward traffic at predetermined intervals.
Traffic is “paced”; therefore they are able to guarantee a
maximum end-to-end delay bound to each session.
However non-work conserving schemas are not widely
accepted because they cannot exploit network resources at
best (the output link can be idle even if there are packets
in queue); moreover the guaranteed delay is usually

higher than PQ schemas.
Fair schedulers [4] such as Weighted Fair Queuing [5]

(WFQ) or Weighted Round Robin (WRR) are excellent
choices for the “guaranteed bandwidth service” because
of their ability to guarantee a predetermined amount of
bandwidth to each session. Since WFQ is able to
guarantee also a maximum delay bound ([6],[7]) to leaky
bucket constrained sessions, it seems to be an excellent
choice to satisfy bandwidth and delay requirements.
However the delay experimented by a session in a WFQ
scheduler could be larger than the PQ one; most
important, delay is controlled by changing the bandwidth
assigned to each session [11]. Since delay and bandwidth
cannot be modified independently, the network may not
be able to prevent a low-delay session from sending a
large amount of data as well. This is a non-negligible
issue in a modern network because a malicious user can
exploit this point to overload the network; hence the
network has to control (policing) explicitly the amount of
traffic of each user. For this reason, the ability to decouple
bandwidth and delay (i.e. granting bandwidth and delay
bounds independently) is becoming a major point.

Besides guaranteeing bandwidth and delay,
hierarchical link-sharing is getting increased importance.
This requirement can be thought as a generalization of the
“assured bandwidth” service because it guarantees that
leaf classes receive their assigned bandwidth (for example
class Data1 in Figure 1 must be able to get at least 40% of
the total bandwidth), in the same way as fair schedulers
do. Moreover, hierarchical link-sharing is used to impose
specific rules for the distribution of bandwidth among
different agencies sharing the same physical link. For
instance, it guarantees the Data1 class to be able to use up
to 60% of the link bandwidth (i.e. all the bandwidth
granted to Agency A) when the Real-Time1 class is idle.
Hierarchical schemas allow link-sharing to be potentially
repeated inside each class of the hierarchy, moreover
granting each class a minimum amount of bandwidth.

Previous schedulers are not able to meet delay,
bandwidth and hierarchical-link sharing requirements at

the same time. For instance, PQ is not able to guarantee a
minimum share to low priority traffic. On the other hand,
WFQ guarantees bandwidth and delay, but they are not
decoupled. Neither PQ nor WFQ have hierarchical link-
sharing capabilities.

B
40%

RT2
10%

Data2
30%

Root
100%

A
60%

RT1
20%

Data1
40%

Figure 1. Hierarchical Link-Sharing.

Class Based Queuing [1] (CBQ), Hierarchical Packet
Fair Queuing [2] (H-PFQ) and Hierarchical Fair Service
Curve [9] (H-FSC) are able to satisfy previous
requirements. All of them have to solve the theoretical
problem of the incompatibility between link-sharing and
delay goals, since there will be some time intervals in
which satisfying one leads the other to be broken. This
problem is addressed in different ways: H-PFQ privileges
link-sharing goals, while CBQ and H-FSC privileges
delay objectives. Poor delay capabilities are enough for
H-PFQ to survive only in the academic literature.

CBQ is based on several mechanisms that basically
merge PQ and fair capabilities to provide different kinds
of service to data traffic. While the internals are quite
complex, CBQ is easy to understand from the end-user
point of view. Network managers need to define the link-
sharing hierarchy and assign the proper amount of
bandwidth and the desired priority to each class. Classes
are served in decreasing order of priority, therefore high
priority classes experiment a smaller delay.

H-FSC relies on a strong mathematical foundation
(the service curve approach) but its behavior is difficult to
predict (which class will get the bandwidth next?) because
classes are selected using service curves1 instead of static
priorities. Configuration is less intuitive as well: network
managers have to specify the link-sharing hierarchy and
the service curve of each class instead of the couple
bandwidth-priority of CBQ.

Thanks to its intuitiveness, CBQ is considered the most
appealing advanced scheduler available today. However,
an in-depth analysis of CBQ showed several problems,
most noticeably that link-sharing and delay are not well
decoupled (high priority sessions may also get more
bandwidth) and that the rules used to distribute excess
bandwidth are questionable.

Previous schedulers do not address a fourth
requirement. Bandwidth guarantees can be divided in two

1 An H-FSC service curve consists in two segments: the first one sets
the delay properties of the session and the second one sets the long-term
throughput. Each curve is made up of three parameters: the slope of the
first segment (bps), the x-projection of the intersection point of the two
segments (ms), the slope of the second segment (bps).

objectives, the minimum bandwidth (a voice session can
be willing to pay a large amount of money for that) and
the preferred bandwidth (a voice session could be willing
to pay less money to have CD-audio quality). This
bandwidth differentiation is addressed only by D-GPS
[13]; however the author believes this feature will add
complexity into the algorithm without a valuable interest
from end-users.

This paper presents an enhanced version of CBQ,
called Decoupled-CBQ (D-CBQ), whose main points are
the improvement of the rules used to distribute bandwidth
according to the link-sharing structure and the decoupling
of bandwidth and delay. D-CBQ is also able to guarantee
tighter delay bounds and more precise bandwidth
guarantees. This paper is structured as follows: Sections II
and III present an in-depth analysis of CBQ and its leaky
points. Section IV shows the main topics of D-CBQ;
Section V shows the comparison between CBQ and D-
CBQ. Finally, Section VI gives some conclusive remarks
and presents the future directions we are interested in.

Classifier

Link-Sharing
Scheduler

Estimator

Output link

General Scheduler
(Weighted Round Robin)

Input link

Allocation

Figure 2. CBQ building blocks.

2 Class Based Queuing: an overview
CBQ architecture (Figure 2) is based on a generic

“fair” scheduler controlled by a generic link-sharing
scheduler. Incoming traffic is inserted (classifier) into the
appropriate queue according to a set of filtering rules.
General scheduler (usually WRR) extracts packets from
queues and it guarantees each class to receive at least its
nominal bandwidth. The estimator measures the inter-
packet departure time for each class and checks whether
the class is exceeding its allocated rate (overlimit class).
The link-sharing scheduler cooperates with this
“feedback block” and distributes the excess bandwidth
according to the link-sharing structure. Basically, the link-
sharing scheduler keeps control and suspends (for a
specific amount of time) classes that exceed their
allocated rate. Suspension time is calculated in such a way
to force the class being consistent with its allocated
bandwidth. Generally speaking, it appears like the
suspended class is no longer active so that the WRR does
not give any service to it until the suspension ends.

Link-sharing scheduler reconciles delay with link-

sharing capabilities by allowing a “Priority Queuing”-like
service without starvation for lower priority classes.

2.1 General scheduler
General scheduler is usually made up of a set of

cascading WRRs with different priorities. High priority
classes are served using the first WRR until they are
backlogged. A cascading WRR (strictly respecting
priority) can start servicing its classes either when higher
priority classes do not have any more packets in queue or
none of these classes are allowed to transmit (because of
the link-sharing scheduler).

In WRR each class can send a certain number of bytes
(allocation) of data in each round. This number depends
on the bandwidth allocated to the class and on how many
bytes that class sent previously. The allocation is
increased by a certain value (allotment, specific to each
class) at the end of each round. Allotment is based on the
bandwidth guaranteed to the class; therefore classes with
large bandwidth can send more data each round. Alloca-
tion is decreased by the amount of bytes transmitted each
time a class sends a packet; a class is allowed to transmit
when its allocation is positive. Allocation can assume
negative values (packets are non-divisible entities) but it
cannot assume values larger than the class allotment.

Ideal rate

Current rate

Ideal Interdeparture time

tideal = Packet Size / Reserved Rate

Current Interdeparture
time: tcurrent

Idle
period

Figure 3. idle variable computation.

2.2 Link-sharing scheduler
CBQ uses several parameters in order to control the

output pattern. Idle (Figure 3) is computed by difference
from the current inter-departure time (IDTcurrent) and the
ideal one (IDTideal):

(1)
fr

p
IDTIDTIDTidle currentidealcurrent ⋅

−=−=

where p is the size of the packet being transmitted, r is
the output link bandwidth and f is the faction of the link
bandwidth allocated to the selected class.

Idle takes into account whether the class is sending
more (idle<0) or less (idle>0) than its allocated rate.
Nevertheless, the most important variable is avgidle
that keeps track of the actual rate of the traffic. It is
calculated by means of an EWMA function (of weight w):

(2) idlewavgidlewavgidle nn ⋅+⋅−=+)1(1

Each class is suspended for a certain amount of time
(extradelay) as soon as avgidle becomes negative;
this forces the class rate to be compliant with the allocated
bandwidth. Extradelay is calculated in order to allow
the class sustaining a steady state burst on m packets after
the suspension; therefore the suspension time must be:

0
1

1)1(

...

1
1)1(

1
10)1(

1

12

01

=







−⋅⋅+⋅−=









−⋅⋅+⋅−=

















−⋅+⋅+=⋅+⋅−=

− fr

p
wavgidlewavgidle

fr

p
wavgidlewavgidle

fr

p
extradelaywidlewavgidlewavgidle

mm

(3)








−⋅
−−+⋅








−⋅=⇒ −

−

1

1

)1(

)1(1
11

1
m

m

ww

w

fr

p
extradelay

A bigger extradelay makes the run-time allowed
burst larger because that class can send more back-to-
back packets before being suspended. This burst should
be kept small at run time to permit a good level of
multiplexing among the sessions that are using the same
link. A suspended class will finally send a packet at time:

(4) extradelaytimelastundertime += _

where last_time represents the exit time of previous
packet (belonging to that class) from the scheduler.

Finally, variables minidle and maxidle define a
minimum and maximum bound to avgidle. The former
avoids punishments for the excess service a class got in
the past when other sessions were idle. Minidle was
presented for the first time in [8] and it was set to zero.
Maxidle sets a maximum value for avgidle to avoid
that a previously idle class could send unpunished for too
much time. Maxidle can be derived in a similar way to
extradelay by taking into account that maxidle is
reached after the first packet of a burst is being scheduled:

0
1

1)1(

...

1
1)1(

)1(

1

2

01

=







−⋅⋅+⋅−=









−⋅⋅+⋅−=

≥⋅+⋅−=

− fr

p
wavgidlewavgidle

fr

p
wmaxidlewavgidle

maxidleofftimewavgidlewavgidle

MM

(5)








−

−
⋅







−⋅=⇒ − 1

)1(

1
1

1
1Mwfr

p
maxidle

This Equation is different from the one derived in [8]

because that Equation assumed avgidle = maxidle
when first packet is scheduled.

Network managers usually do not set maxidle and
extradelay because of their small degree of
intuitiveness. These parameters are substituted by
maxburst and minburst, which are respectively the
maximum number of back-to-back packets that the class
is allowed to send after a long idle period and the
maximum number of back-to-back packets that a class is
allowed to send during steady state. Maxidle and
extradelay can be easily derived from maxburst and
minburst: minburst is variable m in Equation (3), while
maxburst is variable M in (5).

2.3 Distributing the excess bandwidth
In CBQ, a class is allowed to transmit if (1) the class is

not overlimit or (2) the class has a non-overlimit ancestor
at level i, and there are no unsatisfied classes in the link-
sharing structure at lower levels than i (leaf classes are at
level 0). These guidelines, called Formal Link-Sharing
(more details in [1]), prevent a class from sending more
than its allocation whenever another leaf exists that is
backlogged and underlimit. Such a class is defined as
unsatisfied.

Classes that are allowed to exploit excess bandwidth
are called unbounded2 classes [1]. They could make use
of the excess bandwidth by sending at higher rates than its
allocation and by consuming part of the excess bandwidth
available on the parent class. Vice versa, a bounded class
does not exploit second guideline because it cannot send
more than its allocated bandwidth even if the output link
is idle and the class is backlogged. Bounded classes can
be useful to keep high priority traffic under control, aside
of some economic issue (a customer who wants to have
an unbounded class should pay more).

3 CBQ: An in-depth analysis
The most common CBQ implementations3 can be

found in the ns-2 simulator and ALTQ tool, although both
of them present some discrepancies from the original
specification (some have been pointed out in [3]).
However an in-depth analysis of the CBQ behavior shows
some weakness that will be briefly pointed out. This
analysis is focused particularly on the ns-2
implementation, although differences between ns-2 and
ALTQ are negligible.

3.1 Formal link-sharing guidelines
Sometimes formal link-sharing guidelines have a too

conservative approach in allowing underlimit classes
transmitting. Figure 4 shows an example in which C2 (a

2 Bounded classes are often called “without borrowing” classes,
whereas unbounded classes are often called “borrowable” classes.

3 Linux also has CBQ support, written by Alexey Kuznetsov.

CBR session whose rate is 40% of the total link
bandwidth) is every now and then suspended because
link-sharing guidelines detect that there is an unsatisfied
class (A1) in the hierarchy. From formal link-sharing
guidelines, C2 (that is an overlimit class) is allowed to
transmit only if there are no unsatisfied classes at a level
below of the class it is borrowing from (Agency C).
However this is not correct from the link-sharing
perspective: Agency C is underlimit because it owns 50%
of the total bandwidth while C2 is using only 40% and
there is no other traffic in there, therefore C2 should be
allowed to send without limits.

Imprecise results obtained by formal link-sharing
guidelines during small-scale intervals can be problematic
when customers are willing to have their guaranteed
bandwidth according to the amount of money they paid
for.

C
50%

C2
1%

C1
49%

Root
100%

A
45%

A2
25%

A1
20%

Input traffic: 40% of
the link bandwidth

Input traffic: 20% of
the link bandwidth

B1
5%

Input traffic: 70% of
the link bandwidth

B
5%

Figure 4. Formal link-sharing guidelines problems.

3.2 Decoupling bandwidth and delay
Due to the several prioritized and cascading WRR

schedulers, excess bandwidth is assigned to high priority
unbounded classes first. In this way bandwidth and delay
are not decoupled because high priority classes get a
better service from both the viewpoints of delay (high
priority classes are served first) and bandwidth (excess
bandwidth is shared among high priority classes first).

We argue that bandwidth and delay must be set (and
assigned) independently each one from the other in order
to provide a more predictive (and fair) service.
Furthermore this approach simplifies network
management because it is easier to control the amount of
high priority traffic flowing through the network.

Surprisingly (Table 2), high priority classes tend to
exceed their allocation even when there is no excess
bandwidth to distribute. This is due to some problems in
computing internal parameters and will be pointed out in
the next Section.

3.3 CBQ precision in the steady-state
Making CBQ respectful of given parameters has been

proved being a non-trivial task [3]. Table 1 shows an
example of a typical output trace of ns-2 in which the
imposed steady state burst (two packets) is not respected.
Of course, the suspension time is not respected either

(15.2 ms instead of 9.8 ms). Often this does not affect too
much the class throughput; however it remains the fact
that imposed parameters are not respected.

Simulations show that CBQ is largely imprecise and
each session has several problems in getting the exact
share assigned to it. Some results showing the low degree
of precision obtained by this scheduler will be shown in
Table 2. Particularly, bounded classes always tend to get
less than their share; in the meanwhile small classes tend
to exceed their bandwidth (and large classes tend to get
less) when borrow is enabled. Results get even worse
when the small class has highest priority.

Class Structure:
- root class 2Mbps, two leaf classes (1% and 99% shares)
- Traffic: 100Kbps inbound traffic, Class 1 only
- Traffic pattern: Constant Bit Rate, packet size 120 bytes
CBQ parameters:
- maxburst, minburst (M, m): 8, 2 packets
- Typical suspension time (extradelay): 9.821 ms
Packet # Exit time (ms) Inter-packet time (ms) Bursts

1 10.560 0.048
2 10.608 0.048
3 10.656 15.264

First

4 25.920 0.048
5 25.968 0.048
6 26.016 15.254

Second

Table 1. Suspension time and steady state burst duration.

3.4 CBQ minor issues
The link-sharing scheduler suspends a class only when

it is not allowed to transmit any further. This could
happen when a class becomes overlimit or, more likely (in
case of unbounded classes) when its parent is no longer
allowed to transmit. What is important, however, is that
parent class is never suspended; only leaf classes are. This
introduces a certain degree of unfairness.

3.4.1 Delay vs. Link-Sharing guarantees
We can imagine that A2 in Figure 5 is idle and that A1

is using all its parent bandwidth (80%). After a while A1
becomes overlimit; however it is still allowed to transmit
because of the excess bandwidth granted by Agency A. In
any case, soon or later, Agency A will become overlimit
and class A1 will be suspended.

B
20%

B2
10%

B1
10%

Root
100%

A
80%

A2
78%

A1
2%

Figure 5. Delay vs. Link-Sharing guarantees.

Let’s suppose that A2 starts having packets in queue:
A2 is underlimit; therefore it is allowed to transmit even if
its parent is not allowed to do the same. Since A2 has a

large amount of allocated bandwidth, Agency A is going
to use more bandwidth than the value allocated to it;
therefore punishment for Agency B could be significant.
This behavior is due to the formal link-sharing guidelines
that privileges delay (leaf-level) guarantees at the expense
of the link-sharing structure during small-scale intervals.

3.4.2 Suspending overlimit classes
This case is quite similar to the previous one: A2 is

using all the parent bandwidth, thus Agency A (as well as
A2) becomes overlimit. At that moment A1 starts
transmitting packets and it continues until it becomes
overlimit. As soon as this happens, A1 is suspended
because Agency A is overlimit as well. The result is that
class A1 is suspended even if excess bandwidth was
almost entirely consumed by A2.

This is unfair but still reasonable: the suspension
process for a leaf class is a matter of how much its parent
and its siblings transmitted in the past as well as its own
behavior. However there is another side effect. Since the
suspension time depends on the leaf class and it can be
quite large (in case of a class with small guaranteed
bandwidth such as A1), leaf classes can be punished for
the excess bandwidth that has been used by other sibling
classes. This is a common problem in hierarchical
schedulers (H-PFQ, for example) and it can be quantified
by a specific index (Worst-case Fair Index [2]).

Leaf bounded classes do not have this problem because
they are not allowed to transmit more than the allocated
bandwidth (they are not allowed to borrow); therefore
these classes are not influenced by other entities.

4 Decoupled Class Based Queuing
D-CBQ aims at the resolution of the problems pointed

out in previous Sections. The most important
modifications include new link-sharing guidelines, the
decoupling between bandwidth and delay, better delay
bounds and improved bandwidth precision. Minor issues
include fixing some inaccuracy and some optimizations.

4.1 New Link-Sharing Guidelines
New link-sharing guidelines require the definition of

the Bounded Branch Subtree (BBS). All the bounded
classes plus all the classes that are child of the root class
are called BBS-root. Each BBS-root generates a BBS that
includes the set of classes that share a BBS-root as
common ancestor plus the BBS-root itself; BBS can be
embedded (Figure 6).

Each BBS acts as a new link-sharing hierarchy that is
almost independent from the others. A class can belong to
several BBSs, therefore it can have several BBS-root
classes. Among these BBS-roots, the one with the lowest
level in the link-sharing hierarchy is called L-BBS-root.
The BBS generated by the L-BBS-root is called L-BBS.

The distribution of the bandwidth is done by means of

a two-step process that gives precedence to unsatisfied
leaf classes. According to the first rule, a leaf class is
allowed to transmit immediately if it is underlimit and its
L-BBS-root is underlimit as well. This prevents the L-
BBS from consuming bandwidth reserved to other
subtrees. When no classes are allowed to send according
to the previous rule, a second rule specifies that excess
bandwidth has to be distributed to the all the unbounded
classes according to their L-BBS. A class (unbounded) is
allowed to get more bandwidth when it has a non-
overlimit ancestor A4 at level i and there are no unsatisfied
classes in its L-BBS at levels lower than i. This
guarantees that the excess bandwidth is distributed inside
the L-BBS; therefore an overlimit class is allowed to
transmit if there is still bandwidth available in its L-BBS.

B
Bnd

B2
UnBnd

B1
UnBnd

Root
100%

A
UnBnd

A2
Bnd

A1
UnBnd

A1.1
UnBnd . . .

A2.N
UnBnd. . .

B1.M
UnBnd

B1.1
UnBnd . . .

B2.P
Bnd

B2.1
UnBnd . . .

Bounded Branch
SubTrees

BBS-root classes

Figure 6. Bounded Branch Subtrees.

First rule allows a leaf class that is underlimit and
bounded to send without constraints, while an underlimit
and unbounded leaf class can be delayed when its L-BBS-
root is overlimit. Bounded leaf classes are not influenced
by the behavior of other classes, while unbounded classes
are. This does not represent a problem because an
unsatisfied class that is delayed will be served as soon as
its L-BBS-root becomes underlimit. No starvation risks
exist and underlimit leaf classes are always able to get
their allocated rate, provided that the time-interval used to
determine their throughput is appropriate (larger than the
one used for bounded classes).

Unfortunately, these rules do not guarantee that any
BBS-root never becomes overlimit. For instance, Agency
B could become overlimit when class B2.P in Figure 6
sends data, therefore Agency B could get more bandwidth
at the expense of Agency A. This is the common problem
of hierarchical schedulers: link-sharing and leaf-class
guarantees cannot always be met at the same time. D-
CBQ chooses to privilege bounded classes that are always
able to send (if they are respectful of their service rate).
On the other side, these classes are not allowed to exceed

4 The class must be able to borrow from ancestor A. Basically, A can
be either a generic ancestor belonging to the L-BBS or the root class (in
case the L-BBS-root is unbounded).

their assigned rate.

4.2 Decoupling Bandwidth and Delay
D-CBQ distributes bandwidth by using two distinct

systems of cascading WRR schedulers; the first one is
activated when bandwidth is distributed according to the
first link-sharing rule; the second one distributes excess
bandwidth and it is enabled when bandwidth is allocated
according to the second rule. First WRR uses priorities
and guarantees each class to be able to get its allocated
rate; second WRR does not take care of priorities and it
serves classes according to their share.

This mechanism is rather simple but effective: network
managers can assign each user a specific value of
bandwidth and delay and they will be certain that,
whatever the priority is, excess bandwidth will be
distributed evenly to all the currently active classes.

4.2.1 Suspending overlimit classes
Suspending an overlimit class is a critical issue and it

requires deciding when and how long a class has to be
suspended.

D-CBQ suspends a class when, according to the
second rule, the class is not allowed to transmit. D-CBQ
can suspend any class (CBQ suspends leaf only);
particularly D-CBQ suspends the highest-level ancestor
whom the class is allowed to borrow from and that is
overlimit. The problem pointed out in Section 3.4.1 does
no longer exist: ancestor class is suspended; therefore all
unbounded leaf classes that share this ancestor are no
longer allowed to transmit. Bounded classes, of course,
are still allowed to transmit (first link-sharing guideline).

A suspended class forces all its children (except
bounded classes) to be “suspended”. Suspension time
(extradelay) will be the one that makes the subtree
conformant to its allocated rate, i.e. it will be the one of
the class that is being suspended. Since the suspension
time depends on the bandwidth allocated to the
intermediate class (“upper overlimit ancestor”) instead of
the one allocated to leaf classes, this modification is able
to solve the problem pointed out in Section 3.4.2.

4.3 D-CBQ minor issues
A first modification is the definition of a criterion for

setting minidle (Section 2.2) that was not completely
specified in [1]. We assume that avgidle cannot become
smaller than the one obtained by sending two back-to-
back packets with size equal to the network MTU
(Maximum Transfer Unit). Therefore the computation is
based on the same steps that lead to Equation (3):

(6) () 







−⋅⋅−⋅= 1

1
2

fr

MTU
wwminidle

This value was chosen to differentiate the behavior of a
class that is using excess bandwidth from the one that is
just exceeding its allocation (when the last packet makes
WRR allocation negative). Since a class cannot send more
than one packet (of size MTU) beyond its WRR
allocation, differentiation among these cases can be
obtained by using two packets for setting minidle.

A second modification concerns the suspension time
that takes into account that a class may send more than its
allocation (packets are non divisible entities), therefore
getting a negative avgidle. The modification (already
included in ALTQ) adds a new variable tidle that
represents the time a class has to be suspended in order to
get the right share (i.e. the time needed to make
avgidle=0). This variable takes into account how much
the class exceeded its allocation during previous period,
therefore:

(7)

n

nn

avgidle
w

w
tidle

tidlewavgidlewavgidle

1

)1(01

−=⇒

⋅+⋅−==+

and the resume time (for a suspended class) becomes the
previous one (last_time + extradelay) plus this
new term (tidle). This modification (coupled with the
new event handler for waking up a sleeping class) is able
to solve the precision issues, pointed out in Section 3.3.

4.4 D-CBQ optimizations
Some optimizations have been added to the original

CBQ code. The first one allows D-CBQ to resume each
suspended class at its correct time5 by means of a new
item into the ns-2 event queue. A second optimization is
the implementation of WRR scheduler in a more precise
form6. A third one consists in the initialization of some
variable to their proper value, for example avgidle and
undertime7. These modifications, although marginal,
concur to guarantee the improved behavior of D-CBQ
compared to CBQ.

5 Results
Results (obtained through ns-2 simulations and ALTQ

tests) confirm that link-sharing has been improved, the
decoupling between delay and bandwidth works well,
bandwidth assignments are respected and delay bounds
are tighter.

5 CBQ resumes classes when another event occurs in the simulator, for
example when a new packet arrives.

6 CBQ increases the WRR allocation of each class only when it is non-
positive, making almost impossible to reach a full allocation. Moreover,
the number of rounds needed to reintegrate the allocation is wrong
because the allocation is sometimes set to zero arbitrarily.

7 avgidle is initialized to its maximum allowed value (maxidle)
instead of zero; see [8] for more details. undertime is initialized to a
negative value in order to be able to schedule the first packet at once.

Table 2 reports the results obtained by CBQ and D-
CBQ with a simple 1-level hierarchy (all classes are child
of the root class). Even if these results are very limited,
they show that priority does not influence bandwidth. In
case of all classes competing for the bandwidth (first two
tests), the classes get the assigned share. Moreover, last
test shows that D-CBQ assigns the excess bandwidth to
all the classes proportionally to their share (CBQ assigns
that to the high priority class). The result is that D-CBQ
looks more like a Weighted Fair Queuing than a Priority
Queuing schema from this point of view and it is able to
force malicious users not to send more than their allocated
rate. Setting higher priorities (than means lower delays) in
D-CBQ is no longer a way to obtain more bandwidth.

Traffic (Kbps)Class Share Priority

In CBQ out D-CBQ
out

Theor.

A 1% LOW 100 55.25 21.46 20
B 99% LOW 2000 1944.77 1978.56 1980
A 1% HIGH 200 181.82 21.41 20
B 99% LOW 2000 1818.19 1978.61 1980
A 10% HIGH 2000 604.08 250.37 250
B 20% LOW --- --- --- ---
C 70% LOW 2000 1395.94 1749.65 1750

Table 2. Decoupling bandwidth and delay; all classes are
allowed to borrow.

An extended characterization of D-CBQ can be found
in [12]. Due to the high number of simulations, results
have been summarized by means of appropriate Quality
Index. The quadratic quality index (Q2) limits the
influence of small deviations from the expected value;
therefore it tends to highlight tests in which the behavior
is significantly different from the expected value and it is
used to identify any idiosyncrasies between theoretical
and real behavior. Vice versa, linear index (|Q|) is the
relative difference of the simulation results compared to
the theoretical ones and it can be used to show the
precision of CBQ and D-CBQ against the expected result.
Best results are obtained when these indexes tend to zero.

The comparison between CBQ and D-CBQ is
summarized in Table 3, which shows the results of the
link-sharing and delay bounds tests respectively. Results
are extremely interesting and prove that D-CBQ performs
far better than CBQ in all the cases.

Quadratic Quality Index Linear Quality Index

Test CBQ D-CBQ CBQ D-CBQ

Link-Sharing 73.1666 0.0815 14.0525 1.7387

Delay 67.756 0.047 3.749 0.064

Table 3. Link-sharing and Delay test results (values * 100).

ALTQ tests confirm that D-CBQ has approximately
the same complexity of CBQ, even in presence of non-
optimized code. Moreover real D-CBQ implementation
forced to keep in mind the scalability issues of our

approach. For instance, classes cannot be waked up as
soon as their undertime becomes positive because the
system could be overloaded by several interrupts. D-CBQ
adopts the same solution already proposed in ALTQ, i.e.
it exploits the granularity of the kernel timer (usually 1
KHz) of a FreeBSD system in order to approximate the
wake-up time in the best way.

6 Conclusions and future work
This paper presents D-CBQ, a CBQ-derived algorithm

that decouples bandwidth and delay, sets new rules for the
distribution of excess bandwidth, and improves both
bandwidth precision and delay characteristics. D-CBQ
has three main points. First, a new set of link-sharing
guidelines that change the way service is allocated to each
class and the way link-sharing is respected. Second, it
includes a decoupling mechanism that allows high
priority classes to consume only their allocated bandwidth
and that allocates excess bandwidth to all classes no
matter of their priority. Third, it defines a new algorithm
that keeps rate under control by suspending classes that
are directly responsible for exceeding their rate. Finally, it
fixes several minor problems of CBQ.

All the modifications together guarantee a sensible
improvement of link-sharing, decoupled capabilities,
delay bounds. However, as stated in [9], link-sharing and
leaf-classes properties cannot be guaranteed at the same
time. D-CBQ makes no exception to this rule. D-CBQ
tends to privilege leaf-classes properties for bounded
classes, while it privileges link-sharing properties for the
others. Bandwidth guarantees for unbounded classes are
respected over larger scale intervals; these classes might
not be allowed to send at their allocated rate in small
intervals because the behavior depends on their ancestors
as well. On the other side, link sharing has to be “relaxed”
in case of bounded classes, because they do not depend on
their ancestor for being able to transmit. However, this
guarantees that bounded classes have better delay bounds
because they are not influenced by the behavior of other
sibling classes.

Summarizing, D-CBQ has different objectives and
different management structures between bounded,
devoted to traffic that requires strong service guarantees
(for example real-time services), and unbounded classes,
devoted to elastic traffic that can tolerate occasional
delays and that could be willing to transmit data as much
as possible. Bounded classes are able to exploit the
allocated bandwidth quite precisely and they have better
delay characteristics compared to CBQ; moreover they
are not influenced by the behavior of other sibling classes.
Vice versa, unbounded classes can go up to their share but
other sibling classes can influence their behavior. Delay
objectives can be reached by changing the priority of the
class. Results confirm that both absolute and 99-percentile
delay bounds are greatly improved, particularly the

former. Delay distribution has been improved as well but
we are not able, at this stage, to quantify the
improvement. Excess bandwidth is now distributed
independently of the priority; therefore setting highest
priority for unbounded classes does no longer make sense.

Future work deserves several interesting points
because an in-depth analysis of D-CBQ is still far from
being completed. D-CBQ should be proper characterized
in a multi-path environment, particularly for aspects
concerning delay bounds. In order to make D-CBQ
suitable for deployment in real networks, further studies
about the statistical distribution of the delay experimented
by high priority packets are desirable.

Acknowledgements
The author thanks Salvatore Iacono, Giordana Lisa and

Kenjiro Cho for many discussions about CBQ internals,
Ivan Ponzanelli and Lucio Mina for their help in testing
and validating the prototypes, Panos Gevros, Mario Baldi
and Jon Crowcroft for their comments.

This work has been partially sponsored by Telecom
Italia Lab, S.p.A., Torino (Italy).

Bibliography
[1] Sally Floyd and Van Jacobson, Link Sharing and Resource

Management Models for Packet Networks, IEEE/ACM Transaction
on Networking, Vol. 3 No. 4, August 1995.

[2] Jon C.R. Bennett and H. Zhang, Hierarchical Packet Fair Queuing
Algorithms, IEEE/ACM Transactions on Networking, 5(5):675-
689, Oct 1997.

[3] Fulvio Risso and Panos Gevros, Operational and Performance
Issues of a CBQ router, ACM Computer Communication Review,
Vol. 29 No 5, October 1999.

[4] J. Nagle, On packet switches with infinite storage, IEEE
Transactions on Communications, 35(4):435-438, April 1987.

[5] A. Demers, S. Keshav, and S. Shenker, Analysis and Simulation of
A Fair Queuing Algorithm, ACM Computer Communication
Review (SIGCOMM ’89), pp. 3–12, 1989.

[6] A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-node Case, IEEE/ACM Transactions on Networking, vol.1,
no. 3, pp. 344–357, June 1993.

[7] A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Multiple Node Case, IEEE/ACM Transactions on Networking, vol.
2, no. 2, pp. 137–150, Apr. 1994.

[8] S. Floyd, Notes on Class Based Queuing: Setting Parameters,
Informal notes, September 1995.

[9] Ion Stoica, Hui Zhang, T. S. Eugene Ng, A Hierarchical Fair
Service Curve Algorithm for Link-Sharing, Real-Time and Priority
Service, in Proceedings of SIGCOMM ‘97 September 1997.

[10] Fulvio Risso, Delay Guarantees in D-CBQ, Draft Paper,
Politecnico di Torino, April 2001.

[11] Mario Baldi and Fulvio Risso, Efficiency of Packet Voice with
Deterministic Delay, in IEEE Communications Magazine, vol. 28
n° 5, pg. 170-177, May 2000.

[12] Fulvio Risso, Implementation and Characterization of an
Advanced Scheduler, in Proceedings of 1st International Conference
on Networking (ICN ’01), Colmar, France, July 2001.

[13] Francois Toutain, Decoupled Generalized Processor Sharing: a
Fair Queueing Principle for Adaptive Multimedia Applications,
Proceedings of INFOCOM '98, Volume 1, pg. 291-298.

