On the Efficiency of Packet Telephony

Original

Availability:
This version is available at: 11583/1417036 since:

Publisher:

Published
DOI:

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Abstract

On the Efficiency of Packet Telephony

January 6, 1999
101 29 Palermo - ITALY
Corso Duca degli Abruzzi 24
Palermo di Palermo
Deparimento di Automazione e Informatica
Micheal S. David D'Amelio and Futuro Russo

Introduction
Networks

2 Guaranteed Services in Packet Switched Networks

Research are described in Section 2. The results show in Section 4. Consider the requirements and performance types of an effective system. The major priorities for producing simulation models and for verifying simulation results are discussed in Section 2. The paper is structured as follows: Section 2 describes the requirements for a network addressed, namely the opinion of the problem addressed, namely the opinion that the performance may be greater. In the discussion of the problem addressed, namely the opinion that the performance may be greater.
This bound can be intuitively explained by considering that a queue of the form:
\[\frac{1}{\mu} \sum_{k=0}^{n} \frac{1}{T_i (1 - \mu T_i)} \leq D = \frac{1}{\mu} \sum_{k=0}^{n} \frac{1}{\phi} = \frac{1}{\mu} \frac{1}{\phi} = s d \frac{\phi}{D} \]

is guaranteed by a same queue, by considering that a queue of the form
\[\frac{1}{\kappa} \sum_{k=0}^{n} \frac{1}{T_i (1 - \mu T_i)} \leq D = \frac{1}{\kappa} \sum_{k=0}^{n} \frac{1}{\phi} = \frac{1}{\kappa} \frac{1}{\phi} = \frac{s d}{\phi} \]

is guaranteed by a same queue, by considering that a queue of the form

\[\text{The GSP algorithm is specifically important in network } \text{where } \text{the output rate is not a fixed rate, but a fixed rate that changes with } \text{time.} \]

\[\text{The GSP algorithm is specifically important in network } \text{where } \text{the output rate is not a fixed rate, but a fixed rate that changes with } \text{time.} \]

\[\text{The GSP algorithm is specifically important in network } \text{where } \text{the output rate is not a fixed rate, but a fixed rate that changes with } \text{time.} \]

\[\text{The GSP algorithm is specifically important in network } \text{where } \text{the output rate is not a fixed rate, but a fixed rate that changes with } \text{time.} \]

\[\text{The GSP algorithm is specifically important in network } \text{where } \text{the output rate is not a fixed rate, but a fixed rate that changes with } \text{time.} \]
2.3 Evaluating the Efficiency of Guaranteed Services

According to the local availability, the system's performance can be measured by the following:

1. In real-time efficient, the system can allocate resources efficiently and utilize the system's capabilities to the fullest.

2. The network can communicate by the admission control process, ensuring that the network's resources are used efficiently.

3. The packet network's performance is measured by the efficient allocation of resources.

The efficient allocation of resources can be achieved by the following methods:

- The network can communicate by the admission control process, ensuring that the network's resources are used efficiently.
- The packet network's performance is measured by the efficient allocation of resources.

In conclusion, the network's performance can be optimized by the efficient allocation of resources and the real-time communication process.
3.1 Call Duration Model

The simulation scenario is also introduced. The call of the section describes in more detail the simulation model.

The main objective is to study the performance of the network under different traffic conditions and to evaluate the impact of various parameters on the network's performance. The simulation model is designed to capture the essential characteristics of a real-world network, including the dynamics of call arrivals, call durations, and call completion rates. The model is implemented using a discrete-event simulation framework, allowing for the accurate representation of the network's behavior under different traffic conditions.

3. The Simulation Environment

The higher the number of calls transmitted, the lower the apparent bandwidth of a call, the higher is the amount of
calls within the network. These factors are considered in the calculation of the transmission capacity required.

The effectiveness and efficiency of the network are evaluated based on the following performance metrics:

1. The efficiency is the data rate at the application layer, i.e., "the blind-
2. The load at the data rate at the application layer, i.e., "the blind-

The effectiveness and efficiency of the network are evaluated based on the following performance metrics:

1. The efficiency is the data rate at the application layer, i.e., "the blind-
2. The load at the data rate at the application layer, i.e., "the blind-

The effectiveness and efficiency of the network are evaluated based on the following performance metrics:

1. The efficiency is the data rate at the application layer, i.e., "the blind-
2. The load at the data rate at the application layer, i.e., "the blind-
3.2 Voice Encoding

Simulators are no posted.

In a probability distribution, if a probability is produced by the random probability generator, it means the probability of a random variable is generated by the model. If a probability is produced by the simulator, it means the probability of a random variable is generated by the simulator. The probability of each call is calculated by both the simulator and the model.

Even though it is a probability density distribution of short calls, it is calculated by the following formula:

\[((x+y) \cdot (m-1) + (x+y) \cdot m) \cdot (m-1) + (x+y) \cdot m = x+y \]

Functions in a probability distribution obtained by the weighted combination of a more accurate model in which the call duration is distributed according to the exponential distribution of new and different traffic patterns. Besides, such a model is more accurate representation of talk and idle times are exponentially distributed.
(a) (u)^{d+N} \sum_{k=0}^{n-1} \left(\frac{u}{t-H} \right) \frac{1}{1-u} \frac{t}{1-H} + \frac{d}{t} \frac{1}{1-H} + \frac{d}{2} \frac{1}{1-H} \geq \frac{d}{2}

Admission Control

3.4 Admission Control

The available bandwidth is shared among the different traffic classes, and the admission control mechanism determines the amount of resources needed for each traffic class. The admission control mechanism is designed to prevent overload and ensure that the network can handle the traffic efficiently.

Link Model and Protocol Stack

3.3 Link Model and Protocol Stack

A packet transmission consists of several stages, including source encoding, link layer encoding, medium access control, and routing. Each stage modifies or transforms the data, and the combined effect of these stages results in the final packet transmitted over the network.

Admission control is the process of determining whether a new connection can be established within the available resources. The admission control procedure is designed to ensure that the network can handle the new traffic while maintaining the quality of service for existing connections.

3.2 Admission Control

The admission control procedure is designed to ensure that the network can handle the new traffic while maintaining the quality of service for existing connections. The procedure consists of several stages, including source encoding, link layer encoding, medium access control, and routing.

The source encoder encodes the data using a specific encoding scheme, such as Huffman coding or arithmetic coding. The link layer encoder encodes the data for transmission over the network, and the medium access control layer manages the access to the network resources.

Routing selects the best path for the data to travel from the source to the destination. The routing algorithm takes into account factors such as network congestion and topology to select the most efficient path.
3.6 Network model

The network model is based on the simulation of the network behavior with the same and with enhanced assumptions and parameters. The network model is a simplified model of communication between the network nodes, which defines the network topology and the number of connections between the nodes. The network model is used to simulate the performance of the network under different traffic conditions and to predict the behavior of the network under various scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.

The network model is composed of a series of nodes, each representing a network node. The nodes are connected to each other through links, which define the communication paths between the nodes. The network model is used to simulate the behavior of the network under various traffic conditions and to predict the performance of the network under different scenarios.
4 Simulation Results

Figure 3: Example of a Topology of a Circuit-Switched Telephone Network

Figure 4: Network Topology used in the Simulation

Figure 5: Network Topology used in the Simulation (see Figure 4) has been modified with the addition of two more local offices and two toll offices. In the scenario depicted, the local offices are overloaded, and the toll offices have been replaced by local exchanges. In order to avoid cascading overload, the network topology has been modified with the addition of two more local offices and two toll offices. In the scenario depicted, the local offices are overloaded, and the toll offices have been replaced by local exchanges.
10

Offered Load (Erlang)

9.3 27.8 46.4 64.9 83.4 102.0 120.5 139.1 157.6 176.2 194.7

Link Occupancy (%)

100% 120%

Overall load on the network, the maximum utilization is a good performance of the network.

The following diagram shows the difference between the offered load and the real load on the network. The x-axis represents the offered load, while the y-axis represents the real load. The dotted line represents the maximum utilization, while the solid line represents the real load. The difference between these two lines indicates the over-allocation.
4.2.1 The Payload

Utilization Efficient is the assessment of the impact of the two parameters on the real-time network between the effective and real loads. This section presents a graph that illustrates the impact of packet size over the efficiency and effective load.

Effective Load or Effective load is the actual number of calls that can be handled without dropping any packets due to congestion. Effective load is lower than the offered load because of packet loss and delay.

The offered load is the maximum number of calls that can be handled by the network without dropping any packets. However, the effective load is lower than the offered load because of packet loss and delay.

In Figure 7, the offered load is shown as the blue line, and the effective load is shown as the red line. The difference between the two lines represents the lost packets due to congestion.

Figure 8 shows the impact of packet size over the effective load. The effective load decreases as the packet size increases. This is because larger packets take longer to transmit, which results in more congestion and lost packets.

In Figure 9, the offered load is shown as the blue line, and the effective load is shown as the red line. The difference between the two lines represents the lost packets due to congestion.

Figure 10 shows the impact of packet size over the effective load. The effective load decreases as the packet size increases. This is because larger packets take longer to transmit, which results in more congestion and lost packets.

Effective load: 50% Effective load: 60% Effective load: 70% Effective load: 80% Effective load: 90% Effective load: 100%

Offered Load (Erlang)

Effective Link Load (Erlang)

Real Load

Apparent Load

Circuit Switching (PCM64)

Voice over IP: Link Performance

Voice over IP: Overallocation Overhead (Packet Delay 18ms)

<table>
<thead>
<tr>
<th>Erlang</th>
<th>Packet Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Effective Link Load (Erlang)
the transport efficiency is considerably low.

since the first priority of the service is to ensure that real-time traffic does not experience any degradation, the second priority is to ensure that the transport network is controlled to ensure that the real-time traffic is not delayed. this means that the network must be able to transport packets with a delay of 32 ms and the third priority is to ensure that the network is designed to transport packets with a delay of 42 ms, and the fourth priority is to ensure that the network is designed to transport packets with a delay of 52 ms. since the network efficiency is measured by studying the call blocking probability and the real load, the network efficiency is measured by studying the call blocking probability and the real load.

Figure 9: Blocking Probability and Real Load.

Figure 8: Blocking Probability and Effective Load.
Circuit Switching (PCM64)

ATM

Voice over ATM

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Bandwidth (kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>120,000</td>
</tr>
<tr>
<td>Voice</td>
<td>140,000</td>
</tr>
<tr>
<td>ATM</td>
<td>200,000</td>
</tr>
<tr>
<td>ATM</td>
<td>400,000</td>
</tr>
</tbody>
</table>

The header size depends on the protocol and the number of header fields.

Cell size: 4 bytes

ADVCN2 is a protocol that carries ATM cells. It uses a header, which includes source and destination addresses, and other control information.

The real bandwidth depends on the network delay and the protocol overhead.

Figure 1: Impact of packetization delay on the real bandwidth of a phone.
4. The Optimal IP Packet Size

The optimal packet size can be expressed in terms of the packetization delay:

\[\text{Packet size} = \frac{1}{1 - R \cdot \text{Packetization delay}} \]

where \(R \) is the round-trip delay and \(\text{Packetization delay} \) is the time for which the allocation of the packetization delay is required. The optimal packet size is then calculated as

\[\text{Optimal packet size} = \frac{1}{1 - R \cdot \text{Packetization delay}} \]

4.3 SONET/SDH and Voice Compression

The primary objective of any voice compression algorithm is to reduce the apparent bandwidth consumed by voice over IP (VoIP) packets. A common approach is to exploit the fact that VoIP packets are typically bursty, and that the duration of each burst is much shorter than the duration of an entire VoIP call. By using a small number of compression algorithms, the overall bandwidth consumed by VoIP traffic can be significantly reduced.

4.4 The Impact of Packetization Delay on the Apparent Bandwidth of a Packet Delay (ms)

![Graph showing the impact of packetization delay on the apparent bandwidth of a VoIP call.](image-url)
5 Discussion

Error of the optimal pulse width will be bigger. The relationship is linear between the bandwidth and the error of the optimal pulse width. Therefore, the optimal pulse width will be bigger. The optimal pulse width is determined by the relationship between the bandwidth and the error of the optimal pulse width.

This equation is a good approximation when the time lag is high enough.

\[
\frac{D_{\text{opt}}}{D_{\text{req}}} \approx \frac{1 + \frac{H}{\sqrt{P_{\text{prop}}}}}{1 - \frac{D_{\text{prop}}}{D_{\text{req}}} - \frac{I + \frac{H}{\sqrt{P_{\text{prop}}}}}{\sqrt{P_{\text{prop}}}}}
\]
References

Acknowledgements

The main conclusion we can draw from the simulation results are:

- The EDCA mechanism does not apply.
- The Enhanced EDCA mechanism does not apply.

approach to flow control in integrated service networks: The multiple

queue with infinite sources. IEEE Journal on Selected Areas in

Communications, 3(4), 1985.

Communications, 3(4), 1985.