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Design of switches with reconfiguration latency
Valentina Alaria, Andrea Bianco, Paolo Giaccone, Emilio Leonardi, Fabio Neri

Dipartimento di Elettronica, Politecnico di Torino, Italy

Abstract— Optical switching fabrics (OSF) are considered to
be appealing solutions for the design of high speed packet
switches, due to their excellent scalability in terms of bandwidth
and power consumption. Candidate technologies are MEMS,
bubble switches, broadcast-and-select networks with tunable
devices. All of them suffer a reconfiguration latency each time
the input/output connections are changed, due to technological
constraints; unfortunately, this latency is not negligible with
respect to the packet transmission time, and can adversely affect
performance, especially delay and throughput.

When scheduling the transmission of packets across an OSF,
the multi-hop approach was shown to be a promising way to
control the tradeoff between delay and throughput. In this case,
the OSF is configured just once in a while, on a time scale much
larger than the packet transmission time, and packets may be
recirculated across the ports to provide full or partial connectivity
among ports. Previous works have investigated this approach
when a physical ring topology is used for the interconnection.

Here, we extend the multi-hop approach to multidimensional
regular topologies, which offer a better tradeoff between through-
put and delay. We discuss not only the scheduling problem for
these topologies, but also the design of routing. We investigate
performance by simple analytical models and show the design
tradeoff among throughput, speedup and delays.

I. INTRODUCTION

1 All-optical switches are considered a very appealing so-
lution for the design of ultra-high speed networks. Their main
advantage is the avoidance of optical-to-electronic conver-
sions, which is a technological issue limiting the performance
in current switches to hundreds of Gbps. Unfortunately, all-
optical switches are practically infeasible for the lack of simple
“optical memories” able to mimic the buffers used in electronic
switches to solve temporary congestion.

Hybrid optical/electronic switching architectures are today
the most promising approach to design routers able to reach
aggregate bandwidths up to 100 Tbps [1]. In these designs,
the switching fabric is fully optical and is typically located
in a different rack with respect to the switch line-cards.
Packets arrive at the router through optical links, and, after the
optical/electronic conversion, they are processed and buffered
in the line-card; after an electronic/optical conversion, packets
are sent over optical fibers to the optical switching fabric. Note
that the use of optical switching fabrics may be convenient
also to reduce power consumption, since in optics power
consumption is largely independent from the transmission rate.

Optical switching fabrics (OSF) may be based on several
different technologies, such as MEMS [2], bubble switches [3],
broadcast and select networks with tunable devices [4], etc.

1This work was (partially) supported by the EU FP6 Network of Excellence
e-Photon/ONe (through WP4)

However, most of these technologies share a common fea-
ture, i.e., whenever the OSF configuration (input/output ports
connections) is changed, a reconfiguration latency is required
before communication takes place. At least the ports involved
in such reconfiguration must refrain from transmission; in
many technologies, all the ports of the switch are blocked
during the reconfiguration, and we make this assumption in
this paper. The reconfiguration latency, due to technological
constraints like mechanical inertial effects in MEMS, or tuning
times of tunable devices in broadcast and select networks, is
usually not negligible with respect to the packet transmission
times (which are in the order of few ns at very high line rates),
and can adversely affect the switch performance.

As a consequence, the scheduling algorithm, whose task
is to select the switching configuration of the optical de-
vice, should take into consideration reconfiguration latency
constraints so as to minimize the number of reconfigurations
required to efficiently transfer a given traffic pattern. To the
best of our knowledge, only few works have been proposed
that consider the additional constraints due to reconfiguration
latency when defining the scheduling problem (see [5], [6], [7],
[8]). All these works assume that, when input i is connected
to output j, only packets stored at input port i and destined to
output port j can be transferred through the switching fabric,
i.e. all the packets cross the switching fabric only once. In
other words, when N packets are present at one input and
destined to different N outputs, at least N switching fabric
reconfigurations are required to allow the full connectivity
between all inputs and outputs to be obtained, and to transfer
N packets in sequence.

Scheduling algorithms must carefully balance two main
performance objectives: throughput and delay. This balance
becomes fundamental when reconfiguration latency is not
negligible. Indeed, to obtain high throughput, the scheduling
should keep for long time the same switching configuration,
so as to reduce the negative effect of inactivity periods due
to the reconfiguration overhead; however, low delays imply to
change quickly the switching configuration, so as to allow the
full connectivity between all ports to be obtained in a short
time interval.

Consider the following scenario, with an optical switch with
N = 1024 ports, with a reconfiguration latency T = 1 ms;
assume that the link speed is 10 Gbps, and that internally
the switch operates on fixed-size data-unit of 64 bytes (a
convenient format to transfer minimum size TCP/IP packets);
thus, the data-unit transmission time is δ = 51.2 ns. Assume
that, on an empty switch, N packets arrive, each at a different
input, all destined for the same output. Even when keeping
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each switching matrix configuration for the minimum time
required to transmit a single data-unit, thus obtaining a very
low throughput efficiency, the k-th packet will be transferred
at time k(T + δ) after arrival, because of the k reconfigura-
tions needed before the connectivity to the desired output is
provided to the input where packets are waiting. Hence, the
worst delay for the N packets is N(T + δ) ≈ NT ≈ 1s,
which is obviously unacceptable for any realistic application;
thus, if we do not take a different approach, this result may
compromise the hopes towards the use of optical devices in
routers in the future.

To overcome this problem, we exploit a multi-hop approach,
which was proposed in [9] and derived from the same approach
studied in the context of WDM/TDM networks [10]. The main
idea of multi-hop scheduling, better explained in Section II, is
to configure the switching matrix once in a while, on a time
scale significantly larger than packet transmission time, and to
re-circulate packets among ports, i.e. a packet at input port i
may reach its destination port j via successive transmissions
through one (or more) intermediate ports. Thus, we exploit
the fact that input port i and output port i reside always in
the same line-card, and a packet arrived at output i can be
reconsidered for retransmission across the switching fabric at
negligible extra cost. Note that this architectural assumption
is fairly common; e.g., see the single-stage switch described
in [1]. In the same scenario previously considered, the worst
case delay for a multi-hop approach can be simply T +Nδ ≈
T = 1 ms, a much smaller value than the one obtained with the
traditional single-hop approach; this delay can be acceptable
for practical implementations.

Clearly, sending packets in multi-hop increases the overall
load of the switching fabric; we show in this paper that we
can deal with this issue, and that significant benefits in terms
of delay can be obtained.

II. THE MULTI-HOP APPROACH

We assume that the switch is built around a single optical
switching fabric, running on fixed size packets, on a time
slotted base. This switching fabric behaves as a buffer-less
crossbar, i.e. at each time no more than one packet can be sent
from an input port and can be received at an output port. A
feasible switching configuration is equivalent to a matching in
a bipartite graph, in which left-most nodes represent the input
ports and right-most nodes the output ports; an edge connects
left node i to right node j if input port i is connected to output
port j. A matching in a generic directed graph is a set of edges
which do not share the same start point or the same end point.

We consider a switch with N ports, each running at the
same line rate; all the packets arriving at the same input port
and directed to the same output port belong to the same flow.
Input queues are used to solve contentions among packets
contending for the same output, and are organized according to
the Virtual Output Queue (VOQ) buffering scheme, with one
FIFO queue for each flow, to achieve high throughput [11].

A centralized scheduling algorithm is in charge to select the
sequence of appropriate switching configurations (matchings)

that allow an efficient transfer, through the switching fabric, of
packets residing at the input cards. Since, at each reconfigu-
ration, a penalty in terms of latency has to be paid, to achieve
high throughput the same matching must be held for a duration
which is at least comparable with the reconfiguration latency.

To transfer all the packets according to a classical single-hop
approach, full connectivity among switching ports is necessary
(i.e., each input port has to be connected to every output
port); as a consequence, the scheduling algorithm must cycle
among at least N switching configurations. By doing so,
however, the access delay can increase to unbearable values, as
already shown in the introduction. On the contrary, according
to the multi-hop approach, only a partial connectivity may
be sufficient to guarantee the transfer of any packet through
the switching fabric. Through a reduced set of switching con-
figurations, input port i is directly connected by the scheduler
only to a subset of other ports to which it can directly transmit
packets. Packets directed to port j which is not connected to
the port i, reach the destination in a multi-hop fashion, i.e.
through some intermediate ports.

More formally, the multi-hop approach can be modeled
in the following way. A connected virtual interconnection
topology is overlaid to the set of switch ports; each node
of the topology corresponds to a switch port. Let σ be the
correspondence between the topology nodes and the switch
ports; let σ(i) be the node associated to port i.

Consider now two generic nodes σ(i) and σ(j). If σ(i) and
σ(j) are adjacent (i.e., it exists an edge in the virtual topology
between them), then port i will be directly connected to port
j by a proper matching chosen by the scheduler; indeed, the
scheduling process is induced by the adopted topology. If node
σ(i) and σ(j) are not adjacent, port i and port j will not be
directly connected; however packets will flow from port i to
port j though a set of intermediate ports which correspond to
a path of the topology connecting node σ(i) and node σ(j).

Note that more than one path may connect two generic
nodes, but we assume that a deterministic routing algorithm
chooses only one of the possible shortest paths, to prevent mis-
sequenced delivery of packets belonging to the same flow.

Depending on the chosen virtual topology and routing
scheme, the scheduler selects the matching to transfer the
packets from input to output ports. Let η be the efficiency
of the switching fabric, defined as the percentage of time in
which the switching fabric is available for packet transfer; it
results

η =
P

P + T

being P the average holding time of matchings and T the
reconfiguration latency. We denote with the term “epoch” a
time interval comprising a matching holding time followed
by reconfiguration time. As already stated, to achieve an high
efficiency from the switching fabric, the same matching must
be held for a duration which is larger than the reconfiguration
latency.

We assume stationary traffic and we consider only pe-
riodic scheduling, in which a precomputed, fixed periodic
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Fig. 1. Ring topology with 6 nodes

scheme [12], [13] is adopted with constant holding time P .
Given the overlaid virtual topology, the scheduler computes a
minimal set of matchings, called covering matchings, which
covers all the edges of the topology. Let Mc be the resulting
number of matchings for a particular topology; note that Mc is
equal to the maximum between the in-degrees and out-degrees
of all the nodes of the topology, thanks to the Birkhoff von
Neumann theorem [14]. These Mc matchings are sequentially
selected to configure the switching fabric according to the
periodic scheme. We define as frame a time horizon of length
Mc(P+T ) in which a complete scheduling cycle is performed.
Note that a fixed periodic frame scheduling allows an easier
implementation at high speed and can be designed to support
efficiently uniform traffic.

Two types of internal bandwidth speedup S are allowed.
In the case of temporal speedup, the switching fabric runs
S times faster than the line rate and during each epoch up
to SP packets are served at each port; note that the frame
duration remains the same. In the case of spatial speedup, S
switching fabrics run in parallel (spatial speedup), configured
with different covering matchings; thanks to this, the frame
duration is reduced by a factor S; in addition, when S = Mc

there are enough switching planes to cover all the topology
without reconfiguration and the reconfiguration latency is null:
T = 0. Finally, note that temporal and spatial speedup can be
also combined together.

In summary, to design an efficient multi-hop scheduler the
following issues should be considered:

• definition of the virtual interconnection topology and its
mapping to the switch ports;

• definition of a suitable routing strategy of packets on the
virtual topology;

• definition of the frame scheduling plan.

Of course all the three previous issues are not independent.
The definition of the virtual interconnection topology has a
direct impact both on the definition of the scheduling plan
and on the definition of the packet routing strategy.

A. Multi-hop for Manhattan topologies

Many interconnection topologies can be mapped onto the
switching ports. Previous work [9] has considered ring topolo-
gies, as the one depicted in Fig. 1. We present here an
example of different topology, and in the following sections we
generalize to any regular topology. We consider a bidirectional
regular square grid topology depicted in Fig. 2, known in the
literature with the name of Manhattan Street topology, overlaid
to a 16 × 16 switch. Each input/output port corresponds to

Fig. 2. Bidirectional Manhattan Street topology with 16 nodes

a node of the Manhattan topology, according to the following
bijective mapping: node (i, j), located in row i and column
j, with 0 ≤ i, j ≤ 3, corresponds to port k = 4 × i + j,
0 ≤ k ≤ 15.

Given that we rely on a regular topology with node degree
4, port k = (i, j) can directly (i.e. in single-hop) reach four
ports: k1 = (i, |j + 1|4), k2 = (i, |j − 1|4), k3 = (|i + 1|4, j),
k4 = (|i− 1|4, j); 2 all the other destinations must be reached
in a multi-hop fashion. The scheduling frame is partitioned
in four fixed epochs: in the first scheduling epoch every node
(i, j) is connected to (i, |j+1|4) for a time equal to P and we
say that the direction followed in the topology is “down”; in
the second scheduling epoch, every node (i, j) is connected to
(i, |j − 1|4), for a time equal to P (following “up” direction);
in the third scheduling epoch every node (i, j) is connected to
(|i+1|4, j), for a time equal to P (following “right” direction);
in the forth scheduling epoch every node (i, j) is connected to
(|i− 1|4, j) for a time equal to P (following “left” direction).
In this case the frame duration is 4P + 4T ; each scheduling
epoch, lasting P + T , is associated with a specific direction
and, hence, with a matching.

This example can be extended to multidimensional Manhat-
tan topologies of generic dimension c, with degree 2c at each
node; in this case, each side of the corresponding hypercube
is c

√
N nodes and the frame duration is 2c(P + T ). Note that

a bidirectional ring topology is obtained by setting c = 1.
Many routing algorithms on a Manhattan network can be de-

vised. In our work we consider the following routing scheme,
called “Privileged Directions Routing” (PDR), described for a
bi-dimensional Manhattan network for simplicity, but that can
be easily extended to multidimensional networks. Among all
the possible shortest paths from a node (i, j) to a node (k, l),
consider the path through node (i, l), following (possibly) first
the row direction and then (possibly) the column direction.
Fig. 3 shows the minimum distance paths from the central node
of a 5× 5 Manhattan topology reaching all other nodes. Note
that the PDR scheme has the following properties: (i) unique
routing path between any pairs of nodes, (ii) easy computation

2We denote with | · |n the modulo-n operator, i.e., the remainder of the
division by n.
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Fig. 3. Routing paths, according to PDR, for the central node of a 5 × 5
Manhattan network corresponding to a 25 × 25 switch; at most 2 directions
are needed to reach any destination node.

and (iii) the load across all edges is balanced under uniform
traffic.

Packets could be stored according to a classical VOQ
scheme: in the example of Fig. 3, the “right” direction allows
the central node to reach 10 destinations nodes; hence, during
the matching corresponding to the “right” direction the pack-
ets present in 10 VOQs are served. However, to allow fair
and easier access to the switching fabric, we adopt a FIFO
selection among all the packets served in the same input and
following the same direction; this is equivalent to consider just
2c queues per input, one for each possible direction, instead
of N VOQs at each input port, with evident benefits for the
scalability of the queueing system to large switches.

III. THEORETICAL PERFORMANCE ANALYSIS

In general, a given topology affects significantly the maxi-
mum throughput reachable in the switch architecture. Equiv-
alently, when an internal speedup is allowed, the topology
affects the minimum required speedup to achieve 100%
throughput. Here we consider only some examples of reg-
ular topologies, derived from the most common families
of interconnection networks: rings, Manhattan (derived from
torus networks), Shuffle (derived from butterflies) [16] and
Kautz [17] (derived from De Bruijn graphs [18]).

Let Λ be the N × N traffic matrix whose element λij

corresponds to the average traffic load from input port i to
output port j. We assume that the switch is fed by a uniform
traffic, i.e. λij = λ/N , ∀i, j. In Sec. III-C we will discuss
how to design switches fed by non-uniform traffic.

We assume also that routing in the topology is able to
distribute the traffic uniformly among all links; when the
topology is symmetric, this assumption is usually met. Then,
the average traffic offered to a port is due to the traffic entering
the port from outside and the traffic traversing that port to
reach its final destination. Given a topology mapping σ, let dσ

ij

be the length of the path (in terms of number of hops/edges)
along which traffic from port i to port j is routed; dσ

ij can be
seen as the distance between ports i and j (or equivalently,
between nodes σ(i) and σ(j)) under the particular σ chosen.

The total traffic flowing on the topology is:

ρtot =
∑

i,j

λijd
σ
ij =

∑

i,j

λ

N
dσ

ij

and the overall load offered to a port is:

ρ =
ρtot

N
=

∑
i,j λdσ

ij

N2
= λE[d]

being E[d] the average overall nodal distance according to the
selected routing strategy. The diameter dmax of the topology
is defined as the maximum distance among any pair of nodes:
dmax = maxi,j{dij} .

As a consequence, an upper bound λ̂ to the maximum
throughput is given by the traffic load at which the port load
equals the port capacity. Since during an epoch of duration
(P + T ), the port is able to serve the traffic for a duration P ,
then the port capacity is given by:

µ =
P

P + T

By imposing ρ < µ, the maximum offered load to a port is:

λ̂ =
P

P + T

1
E[d]

(1)

The minimum speedup necessary to achieve 100% through-
put is 1/λ̂; in other words, the maximum throughput achiev-
able can be bounded by min{1.0, λ̂S} being S the adopted
speedup.

We now estimate the worst case access delay, i.e. the delay
experienced by a generic packet entering an empty switch. Of
course, this is only a lower bound (i.e. optimistic bound) on
the average delay experienced by a packet in generic traffic
conditions. For simplicity, we neglect propagation delays. As
already discussed, a frame lasts Mc(P + T ). When a packet
enters the switch, the routing process computes a path (i.e.,
an ordered sequence of edges) to transfer the packet from its
input port to its output port. All the edges of the routing path
are included, by construction, in the covering matchings inside
a frame. Hence, during each frame at least one matching is
employed to forward the packet along its path; if two or more
adjacent edges of the path appear in the same order as in the
corresponding matchings inside the frame, then they can be
served during the same frame. Note that the average number
of covering matchings necessary to serve a path is always not
greater than E[d], since it cannot be larger than the number
of ports to traverse; on the contrary, during a single epoch
a packet may be transferred across many ports in multi-hop
fashion if a sequence of adjacent edges in the path is included
in the matching. Let nd be the maximum number of covering
matchings necessary to switch a packet; note that nd can be
upper bounded by the diameter dmax of the topology. The
worst case access delay W can be computed by considering
a packet that has to traverse a number of edges equal to
the diameter of the topology in different epochs. Two main
contributions must be added: (i) the time to transfer the packet
for dmax times across the switching fabric; (ii) the delay to
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wait for the matchings serving the edges in the routing path.
This second contribution is generally difficult to predict, since
it depends on the sequence of epochs in the frame and on
the routing strategy. But it can be bounded by considering the
worst case in which each edge in the path is served always in
different epochs and each time a new edge of the path should
be served, the packet must wait for a complete frame. This
bound can be estimated as (nd − 1) times the duration of a
frame, each time corresponding to the service of a particular
edge in the path, plus one additional frame in which the final
edge of the path is served at the beginning of the last epoch.
Hence, we obtain:

W ≤ dmaxδ + (nd − 1)Mc(P + T ) + (Mc − 1)(P + T ) =
= dmaxδ + (ndMc − 1)(P + T ) (2)

In all this computation we have assumed the fact that dmax �
P , which holds always in all the curves shown in the following
graphs. Note that, if some spatial speedup S is available, then
W is decreased by a factor S; as already mentioned, if S =
Mc, then T = 0.

A. Topologies for multi-hop

We now discuss some specific regular topologies, chosen
among the most common ones used as interconnection net-
works.

1) Unidirection and bidirectional ring: In a bidirectional
ring (RI), Mc = 2 since only two matchings are necessary to
cover the clockwise edges and the anti-clockwise edges. The
average distance is simply N/4, whereas dmax = N/2. Just
one matching is sufficient for a packet to reach the destination
port: nd = 1. Similarly, for a unidirectional ring (UR) it holds:
Mc = 1, E[d] = N/2, dmax = N and nd = 1; in this case, the
switching configuration is kept fixed and the reconfiguration
latency is null.

2) Multidimensional Manhattan: For multidimensional
bidirectional Manhattan (MN) topologies, under PDR routing,
the average distance can be estimated in the following way:
for each dimension, two possible directions can be chosen,
hence c

√
N/4 is the approximated3 average distance traversed

along the same direction; since c dimensions are allowed:

E[d] = c
c
√

N/4 (3)

It also holds: dmax = 2E[d]. Furthermore, the degree 2c of
the topology corresponds to the number of different matchings
to provide full connectivity; hence, Mc = 2c. The shortest
path between two generic nodes can be associated with an
ordered sequence of c directions (one for each dimension),
corresponding to c matchings: nd = c.

3) Shuffle networks: We consider a bidirectional shuffle
(SF) network (also known as wrapped butterfly network). A
shuffle network is a regular topology composed by N = kpk

nodes, organized in k levels of nodes; each node of a level is
connected to p nodes of the following level (nodes of level k

3Precise evaluation of the average distance is possible, but the approxima-
tion here provides an upper bound good enough for our purposes.

Parameter Symbol Value
reconfiguration latency T 0.12 ms

scheduling period P 1.2 ms
I/O link rate 10 Gbps
packet size 1500 bytes

packet transmission time δ 1.2 µs

TABLE I

PARAMETERS CONSIDERED FOR THE SWITCHING ARCHITECTURE UNDER

STUDY

are connected to nodes of level 1). We omit here the details
of the topology and the routing algorithm, well known in
the literature [16], [18]. Since the in/out degree for a node
is always 2p, then only 2p matchings are necessary to cover
the topology: Mc = 2p. Routing in the network can follow
the algorithm in [19] for which it has been shown that:

E[d] ≈ 5
4
k

It also holds: dmax = 2k − 1; nd can be upper bounded by
dmax.

4) Kautz networks: Kautz (KN) networks [17] derive from
De Bruijn graphs [18]; they are regular topologies, with
number of nodes N = pk + pk−1 where p is the degree of
the network and k is the diameter of the corresponding graph:
dmax = k. Routing is simple and is described in [17]. It can be
easily shown that for this topology: Mc = p, E[d] = Nd = k.

5) Single hop: Also the single-hop (SH) approach can be
studied under our general framework as a particular topology.
Indeed, we consider a frame scheduling approach for single-
hop, adopting a sequence of N disjoint matchings given by
the Birkhoff von Neumann decomposition [14] of the traffic
matrix. Under uniform traffic, the optimal frame is composed
by N scheduling epochs; during the k-th scheduling epoch
(0 ≤ k < N ), input port i will be connected to output port |i+
k|N for a duration P . In our framework, this case corresponds
to a fully connected topology, in which dij = 1 always. The N
disjoint matchings of the frame cover all the topology: Mc =
N . Trivially, nd = 1, E[d] = 1 and dmax = 1. Note that for
single-hop, the bound given by (2) is strict.

B. Topology comparison

To compare different topologies we show the performance
in terms of throughput, speedup and access delay for the
parameters setting of Table I. The main findings of this section
still hold qualitatively for other realistic scenarios. T is given
by technological constraints related to MEMS reconfiguration
latencies [7], and P is set to guarantee a switching efficiency
η ≈ 90%, corresponding to 10% of throughput reduction in
the single-hop case. With the packet set equal to the MTU of
Ethernet, the slot duration is 1.2 µs, corresponding to T = 100
timeslots and P = 1000 timeslots.

In our investigations we have compared the following
topologies: single-hop (SH), unidirectional ring (UR), bidi-
rectional ring (RI), Manhattan x-dimensional (MHx), Shuffle
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Fig. 5. Minimum speedup S necessary to achieve 100% throughput

x-dimensional (SHx) and Kautz x-dimensional (KNx), for
dimensions x = 2, 3, 4.

In Fig. 4 the values of λ̂ in Gbps are reported for different
topologies and different switch sizes, when no speedup is
allowed. Fig. 5 shows the necessary speedup required, under
the same conditions, to achieve 100% throughput; i.e., this
graph is obtained by computing the inverse of Fig. 4.

As expected, single-hop is the most efficient from the point
of view of the required speedup (and, hence, throughput),
since the required speedup is simply (P + T )/P = 1.1,
independently from the size of the switch. This is a big
advantage of the single-hop approach with respect to the multi-
hop, but this advantage is traded off with a much larger delay,
as shown later.

On the contrary, ring topologies (unidirectional and bidirec-
tional) require the highest speedup, which grows linearly with
the switch size; for this poor scalability, we exclude it from
our next investigations. We mention that [9] already discussed
the design issues related to such topologies.
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Fig. 6. Worst case access delay W in ms

Furthermore, for Manhattan, Shuffle and Kautz networks,
as the dimension of the topologies grows, a lower speedup
(larger throughput) is achieved, thanks to the reduced average
distance. Note that Shuffle and Kautz behave almost the
same. It is interesting to note the performance gain obtained
by increasing the number of dimensions from 2 to 3 for
Manhattan, Shuffle and Kautz; a limited speedup (< 10) is
required, even if the switch size is very large. Note also that
for all these x-dimensional networks, Mc is very small (equal
to x or 2x) and independent from the switch size; this allows
to exploit a limited spatial speedup to remove completely the
effect of the reconfiguration latency. This does not hold for
single-hop.

To understand how throughput is traded with delay, consider
the worst case access delays of Fig. 6, in which the curves for
the rings have been removed. Even for relative small switches
(N > 64), single-hop shows unacceptable access delays (recall
that W gives a strict bound on the performance of single-hop).
Manhattan networks show a delay almost constant with respect
to the switch size; indeed, by (2), W ≈ 2c2(P +T ) = 2.64c2

ms. All Shuffle topologies behave almost the same, and this
is also true for Kautz topologies, for which the access delay
is lower thanks to the smaller diameter.

From the previous results, the ranking of the studied
topologies is somehow arbitrary, since each of them shows a
different tradeoff between throughput and delay. But observe
that Fig.s 4, 5 and 6 show some performance limits with
different impacts in the design. Indeed, the throughput limit
(or the required speedup) can be considered a loose design
constraint, since technology is always pushing further speed
and packaging density; the optical domain, in particular, is
offering large transmission bandwidths at limited costs. On
the contrary, access delay is an hard design constraint, since
real-time applications running on any networks cannot accept
large delays; for example, worst case or average delays larger
than few tens of milliseconds can be considered unacceptable
in the Internet today. Recall also that W does not take into
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account queueing delay, which can be also much larger than
W when the switch is fully loaded. Hence, delays of Fig. 6
should be considered very optimistic.

C. Performance under non-uniform traffic

When the traffic is not uniform, to improve system per-
formance, both the virtual interconnection topology and the
routing strategy should be adapted to the traffic pattern. Indeed,
the goal of the virtual interconnection topology and routing
strategy design is to minimize the amount of packets sent in
multi-hop fashion. Intuitively, under non-uniform traffic two
ports exchanging a large amount of traffic should be placed
in topologically close nodes; whereas two ports exchanging a
very small amount of traffic can be placed far apart.

The placement problem of the switch ports into the virtual
topology, given the amount of traffic exchanged among the
ports, is equivalent to the problem of node placement and
wavelength assignment in WDM network [20], which has been
proved to be NP-hard. As a consequence, many sub-optimal
heuristics can be devised, for a particular topology, to solve
the placement problem. We leave this design aspect for future
works.

As an alternative solution, both the topology and the routing
could be devised as time-adaptive to match the actual traffic
conditions and hence to optimize performance. From practical
point of view, it is very difficult to know the actual traffic
matrix, mainly because traffic is not stationary with the time.
One possible solution could be to devise some dynamic mea-
surement schemes to estimate, in real time, the actual traffic
matrix, and change dynamically the topology placement: but
this solution introduces many other technical issues to solve,
for example, the possibility of out-of-sequence delivery of
packets when the topology changes. For this reason, we think
that it could be more feasible to consider the traffic matrix
as unknown, and to design the switch to perform well under
uniform traffic. A still open issue is to understand how robust
this design would be for varying traffic patterns.

IV. CONCLUSIONS

In this paper we studied the multi-hop approach to schedule
the packets across a switching fabric with very large recon-
figuration latency. The main idea is to send a packet from an
input port to an output port across the switching fabric through
(possibly) many intermediate ports, in order to reduce the
need of switching reconfiguration to provide full connectivity
between input and output ports.

We have investigated the multi-hop approach based on
common regular topologies, and have shown the tradeoffs
between throughput, speedup and access delays.

Main finding of our investigation is that, especially for
large switches, the multi-hop approach may become the only
feasible approach to exploit optical switching fabrics with
reconfiguration latencies, since delay performance is unaccept-
able for the single-hop approach. Depending on the design
constraints related to the allowed speedup and the maximum
access delay, a set of topologies can be considered for the

implementation. Many other design issues, which have not
been discussed here, should be taken into account like path
diversity for reliability and power consumption due to electro-
optical conversions.
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