
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Scalable Layer-2/Layer-3 Multistage Switching Architectures for Software Routers / Bianco, Andrea; Finochietto, J;
Galante, G; Mazzucchi, D; Mellia, Marco; Neri, Fabio. - STAMPA. - (2006). (Intervento presentato al convegno IEEE
GLOBECOM 2006 tenutosi a San Francisco, CA, USA nel 27-30 November 2006) [10.1109/GLOCOM.2006.343].

Original

Scalable Layer-2/Layer-3 Multistage Switching Architectures for Software Routers

Publisher:

Published
DOI:10.1109/GLOCOM.2006.343

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1532085 since:

IEEE

Scalable Layer-2/Layer-3 Multistage Switching
Architectures for Software Routers

Andrea Bianco∗, Jorge M. Finochietto∗, Giulio Galante†,
Marco Mellia∗, Davide Mazzucchi∗, Fabio Neri∗

∗ Dipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy, Email: {firstname.lastname}@polito.it
† Networking Lab, Istituto Superiore Mario Boella, 10138 Torino, Italy, Email: galante@ismb.it

Abstract— Software routers are becoming an important alter-
native to proprietary and expensive network devices, because they
exploit the economy of scale of the PC market and open-source
software. When considering maximum performance in terms of
throughput, PC-based routers suffer from limitations stemming
from the single PC architecture, e.g., limited bus bandwidth, and
high memory access latency. To overcome these limitations, in
this paper we present a multistage architecture that combines a
layer-2 load-balancer front-end and a layer-3 routing back-end,
interconnected by standard Ethernet switches. Both the front-end
and the back-end are implemented using standard PCs and open-
source software. After describing the architecture, evaluation
is performed on a lab test-bed, to show its scalability. While
the proposed solution allows to increase performance of PC-
based routers, it also allows to distribute packet manipulation
functionalities, and to automatically recover from component
failures.

I. INTRODUCTION

Software routers based on off-the-shelf personal-computer
(PC) hardware and open-source software are becoming ap-
pealing alternatives to proprietary network devices because
of the wide availability of multi-vendor hardware, the low
cost and the continuous evolution driven by the PC-market
economy of scale. Indeed, the PC world benefits from the
de-facto standards defined for hardware components, which
enable the development of an open multi-vendor market, and
the large availability of open-source software for networking
applications, such as Linux [1], Click [2] and the BSD
derivatives [3] for the data plane, as well as Xorp [4] and
Zebra/Quagga [5] for the control plane.

Several criticisms can be raised against software routers,
e.g., software limitation, lack of hardware support, scalabil-
ity problems, lack of advanced functionalities; even though,
performance limitations are compensated by the natural PC
architecture evolution. Current PC-based routers and switches
have a traffic-switching capability in the range of a few
gigabits per second, which is more than enough for a large
number of applications. However, when looking for high-
end performance, PC-based routers are affected by many
limitations. In [6], where commercial Network Interface Cards
(NIC) were used to build a router running both the standard
Linux and the Click Internet Protocol (IP) stack, we showed
that it is not possible to route a single 1-Gbit/s traffic flow

 0

 1

 2

 3

 4

 5

 6

 7

 8

 150 300 450 600 750 900 1050 1200 1350 1500
Sa

tu
ra

tio
n

fo
rw

ar
di

ng
 r

at
e

[G
bi

t/s
]

Ethernet frame size [byte]

Linux forwarding rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1500 64
Sa

tu
ra

tio
n

fo
rw

ar
di

ng
 r

at
e

[G
bi

t/s
]

Ethernet frame size [byte]

Linux forwarding rate

PCI-bandwidth Bottleneck
Forwarding-rate bottleneck

Fig. 1. Saturation forwarding rate vs. Ethernet-frame size for a Linux router
using commercial NICs

consisting of only minimum-size Ethernet1 frames, even if the
PCI bus bandwidth is 8 or 16 Gbit/s. The main limitations stem
from central-processing unit (CPU) overloading and from large
memory-read latency. In this paper we consider Linux kernel
as the software router Operating System.

Indeed, the performance of PC-based routers is mainly
limited by two factors, as shown in Fig. 1, which models the
saturation forwarding rate for a PC with a 8-Gbit/s PCI bus
versus the Ethernet-frame size. First, for small-size packets,
the forwarding-rate bottleneck, stemming from the maximum
packet rate (which was observed to be 640 kilo-packets per
second (kpps) in [6]) that the architecture can forward because
of CPU availability and memory-read-latency constraints. Sec-
ond, for large-size packets, the PCI-bus maximum bandwidth.
The 4-Gbit/s figure is due to the internal PC architecture,
which forces packets to go twice through the 8-Gbit/s PCI bus.
Therefore, while a rough capacity of 8-Gbit/s is available, the
real capacity of a high-end PC is limited to the operating area
highlighted by the shadowed pattern in Fig. 1.

Moreover, another important limitation of current PC based
architectures is due to the number of interfaces that can be
hosted in a single PC. Indeed, the number of PCI slots is
usually limited to 5 or 6 slots, and the number of Ethernet
ports per PCI card is limited to 4, therefore bounding to about
24 the number of ports a single PC router can host. Moreover,

1In this paper we refer to both “Ethernet 2.0” and “IEEE802.3” as
“Ethernet”.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 27,2010 at 07:24:26 UTC from IEEE Xplore. Restrictions apply.

Balancer

Router

Balancer

Balancer

Router

SwitchIn
te

rf
ac

es

L2−Balancers L3−Routers

Interconnection
 Network

Fig. 2. Schematic of the multistage architectures

by sharing a single PCI slot, multi-port PCI cards usually face
additional performance limitations.

Multistage architectures [7] have been studied to overcome
the single machine limitations. Initially studied in the context
of circuit oriented networks, they have been traditionally
used in the design of parallel computer systems, and lately
considered a viable mean to build large switching elements [8],
[9].

To overcome the single PC limitations, in this paper we
propose a multistage bidirectional architecture, in which layer-
2 (Ethernet) switching and layer-3 (IP) routing capabilities
are distributed among stages. Fig. 2 sketches the proposed
architecture. The idea is to use a front-end stage made of a
set of PCs that act as simple layer-2 switching elements that
load balance incoming packets. A back-end stage comprising
a second set of PCs is then used to perform more complex
operations, e.g., layer-3 forwarding, classification, filtering,
accounting, etc. We will refer to the first-stage elements as
L2-balancers, while the back-end elements will be referred to
as L3-routers. The two stages are interconnected by means of
one (or more) layer-2 switch, which offers a logically fully-
connected mesh between each balancer and each router.

The goal of the balancers is to uniformly distribute packets
to the back-end routers by correctly addressing (at layer-2) the
back-end NIC addresses. Considering the back-end routers,
they act as traditional layer-3 routers, which receive, manage
and forward packets using the traditional IP paradigm.

The proposed architecture allows to overcome the perfor-
mance limit of a single router by offering parallel paths. It
also allows to scale the total NIC number the node can host,
by offering a total number of PCI slots which grows linearly
as the number of L2-balancers. In addition, the multistage
architecture can be exploited to automatically recover from
faults, i.e., reconfiguration can occur in case of any PC/switch
failure.

In this paper we evaluate the scalability of this architecture
by measurements using a laboratory test-bed. Functionalities
distribution across layer-3 routers could be obtained as an
additional advantage of the proposed architecture, but it is
beyond the scope of this paper. Similarly, issues related to the
management of the architecture, i.e., to the “control plane” of
an IP router, are not discussed.

. NIC N

CPU RAM

FSB MB

CHIPSET

PCI BUS

NIC 2NIC 1

Fig. 3. Key components in a PC-based software router

The rest of the paper is organized as follows. Sec. II gives a
quick introduction to the PC architecture, describes the opera-
tions and the bandwidth limitations of its key components,
and explains how a PC can be used as an IP router and
summarizes its performance limits. Sec. III describes the main
features of the multistage architecture we propose. Sec. IV
introduces the experimental setup, describes the performed
tests, and comments on the obtained results. Finally, Sec. V
concludes the paper.

II. SOFTWARE ROUTER ARCHITECTURE

A. PC Hardware architecture

A PC comprises three main building blocks: central pro-
cessing unit (CPU), random access memory (RAM), and
peripherals, glued together by the chipset, which provides
complex interconnection and control functions.

As sketched in Fig. 3, the CPU communicates with the
chipset through the front-side bus (FSB). The RAM provides
temporary data storage for the CPU, and can be accessed by
the memory controller integrated on the chipset through the
memory bus (MB). The NICs are connected to the chipset by
the PCI shared bus.

Today’s state-of-the-art CPUs run at frequencies up to
3.8 GHz. High-end PCs are equipped with chipsets supporting
multiple CPUs connected in a symmetric multiprocessing
(SMP) architecture. Typical configurations comprise 2, 4, 8
or even 16 identical CPUs.

The front-side bus is 64-bit wide and is driven by a 100-
to 266-MHz quad-pumped clock, allowing for a peak transfer
rate ranging from 3.2 Gbyte/s to 8.4 Gbyte/s.

The memory bus is usually 64-bit wide and runs at
100, 133, 166, or 200 MHz with double-pumped transfers, pro-
viding a peak transfer rate of 1.6, 2.1, 2.7, or 3.2 Gbyte/s.
In high-end PCs, the memory bandwidth is further doubled,
bringing the bus width to 128 bits, by installing memory banks
in pairs. Note that this allows to match the memory-bus peak
bandwidth to that of the front-side bus.

The PCI protocol is designed to efficiently transfer the
contents of large blocks of contiguous memory locations
between the peripherals and the RAM, without requiring any
CPU intervention, i.e., using Direct Memory Access (DMA).
Depending on the PCI protocol version implemented on the
chipset and the number of electrical paths connecting the
components, the bandwidth available on the bus ranges from

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 27,2010 at 07:24:26 UTC from IEEE Xplore. Restrictions apply.

about 125 Mbyte/s for PCI 1.0, which operates at 33 MHz
with 32-bit parallelism, to 4 Gbyte/s for PCI-X 266, when
transferring 64 bits on a double-pumped 133-MHz clock.

Typically, Ethernet NICs operate as bus-masters to offload
the CPU from performing bulk data transfers between their
internal memory and the RAM. Incoming packets are first
buffered on the NIC, then transferred to to RAM in DMA
through the PCI bus, and packet descriptors are stored in ring
data structures implemented in RAM. Each NIC is connected
to one interrupt-request (IRQ) line, that is used to notify the
CPU of events that need service from the operating system.

Summarizing, common PC hardware enables to easily im-
plement a shared-bus, shared-memory router, where NICs
receive and transfer packets directly to the RAM, the CPU
routes them to the proper output ring buffer in RAM, and
NICs fetch packets from the RAM and transmit them on the
wire. In such configuration, each packet travels twice through
the PCI and the memory bus, effectively halving the bandwidth
available for routing traffic. Therefore, a high-end PC equipped
with a PCI-X bus should in principle be able to offer a
backplane throughput of up to 16 Gbit/s.

B. Single PC Performance

In this section, we briefly summarize the performance
limitation a single PC suffers when used as software router.
Readers interested in a deeper performance evaluation can
refer to [6]. We consider as baseline system a PC equipped
with PCI-X Intel PRO/1000 linecards, a single Intel Xeon CPU
running at 2.6 GHz, 1 Gigabyte double-pumped, 128-bit wide,
200 MHz DDR RAM and PCI-X bus running at 133 MHz.
We consider Linux kernel version 2.6.12 as reference archi-
tecture. NAPI is enabled at the NIC driver. An Agilent N2X
RouterTester 900 [10], equipped with 8 Gigabit-Ethernet ports,
which can transmit and receive Ethernet frames of any size at
full rate, was used to generate traffic as well as sourcing and
sinking traffic in routing tests.

Fig. 4 reports the throughput in packets per second (pps)
when a single flow is loading the router, i.e., packets enter
the router from a single Gigabit-Ethernet NIC and have
to be routed toward a different Gigabit-Ethernet NIC. Both
the theoretical throughput (dashed curve), and the measured
throughput (solid line) are reported, highlighting the impact of
optimized buffer management (black dots) or standard memory
allocation (white dots). The plot clearly shows the impact
of packet size on the performance, showing that a single
PC can only reach about 640 kpps considering 64-byte-long
minimum-size Ethernet frames. As pointed out in [6], the limit
stems from the high latency faced by the output NIC when
requesting (via a DMA operation) a packet from the main
memory. Moreover, when more complex operations have to
be performed by the CPU, e.g., imposing Access Control List
(ACL) rules, Network Address Translation (NAT) operations,
etc., the per-packet processing time can increase so as to
reduce even more the maximum throughput a single PC can
sustain. Since the optimized memory management is shown to

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1500102451225612864

T
hr

ou
gh

pu
t [

kp
ps

]

Ethernet Packet Size [bytes]

Theoretical
Buffer Recycling Enabled

Buffer Recycling Disabled

Fig. 4. Software Router Performance

guarantee (slightly) better performance, in the following tests
we will always adopt it.

III. MULTISTAGE ARCHITECTURE

The previously exposed limitations of a single PC drove the
design of a multistage architecture. The idea is to have a first-
stage of load-balancing switches (L2-balancers), and a back-
end stage of IP routers (L3-routers), which are interconnected
by means of standard Ethernet switches. Both L2-balancers
and L3-routers will be implemented by standard PCs equipped
with several linecards, and running a (possibly modified)
version of the Linux kernel. Fig. 2 sketches the architecture,
in which Input/Output cards are on the leftmost part of the
figure. Packets arriving at the router input ports will be

1) received by a L2-balancer front-NIC, processed by
its CPU to perform simple and fast load balancing
among the back-end routers, then transmitted by the L2-
balancer back-NIC toward the interconnection network;

2) switched by the interconnection network to the proper
L3-router NIC;

3) received by the L3-router and processed by its CPU to
perform the required packet operations, then transmitted
toward the interconnection network;

4) switched by the interconnection network to the proper
L2-balancer back-NIC;

5) received by the L2-balancer back-NIC, processed by its
CPU to switch the packet toward the proper L2-balancer
front-NIC, then transmitted toward the next-hop node.

Note that, being the ports of a router bidirectional ports,
packets are forced to enter and exit from and to the same
port.

A. L2-Load Balancer Operation

The operations at item 1) require the load balancer to
forward packets from the front-NIC to the back-NIC, possibly
adapting the layer-2 framing formats. Several algorithms can
be implemented, from a simple round-robin scheme to more
complex algorithms that, e.g., guarantee in-sequence routing

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 27,2010 at 07:24:26 UTC from IEEE Xplore. Restrictions apply.

of packets [9], or balance packets to a particular L3-router
based on QoS parameters. Load balancing is obtained simply
by setting the destination MAC address of the Ethernet frame,
so that the proper L3-router Ethernet NIC is addressed2.

For the sake of simplicity, in the paper we consider a simple
round-robin scheme, and detail three possible implementations
in the Linux kernel:

ODB — Output Driver Balancing: in this case, packets
follow the standard path in the Linux kernel, where they are
routed according the IP rules. When a packet is scheduled for
transmission to a back-NIC via the hard start xmit()
function call, the load-balancing code that changes the desti-
nation MAC address according to the round-robin scheme is
executed. A static balancing table, that stores the L3-router
NIC MAC addresses, and a simple pointer-based scheme is
adopted. By managing packets at the IP layer, the routing
table of the L2-balancer must be configured to allow the
Linux kernel to correctly route packets to the output NIC.
The major advantage of this solution is that any advanced
packet manipulation feature available in the Linux kernel can
be adopted (e.g., filtering, QoS scheduling, etc.) before the
load-balancing. Similarly, any layer-2 format can be used,
as long as it is supported by the Linux kernel. The major
drawback is the unneeded complexity of operations performed
in the kernel.

DTX — Direct Transmission: in this case, packets re-
ceived by the front-NIC are processed directly by the front-
NIC driver code, which, after changing the destination MAC
address according to the load balancer algorithm, calls the
hard start xmit() function addressing the back-NIC di-
rectly. By managing packet at the Ethernet layer, there is no
need to correctly set-up the IP routing tables. This solution
minimizes the packet processing, but does not allow to exploit
any advanced packet manipulation functionality. Moreover, it
works only if the front-NIC layer-2 format is Ethernet based.

DTX-n — Direct Transmission with n back-NICs: this is
the same scheme as DTX, but several back-NICs are used.
Therefore, the input driver performs two round-robin schedules
to balance packets: i) on the n back-NICs and ii) on the L3-
router MAC addresses. This solution has the same advantages
of the DTX one, but it permits to obtain better performance,
e.g., overcoming the maximum throughput limit a single NIC
solution faces.

Considering operations involved at step 5), packets received
by L2-balancer back-NIC must be switched according to the
destination MAC address to the corresponding front-NIC. We
implemented a solution similar to the DTX one, in which the
back-NIC driver has a static forwarding table storing next-
hop MAC addresses. When a packet is received by the back-
NIC driver, a look-up in the forwarding table is performed
to call the proper front-NIC hard start xmit() function,
causing therefore a direct transmission of the (unmodified)
frame toward the next-hop. An additional entry is used to deal

2In case both front- and back- NICs are Ethernet NICs, a simple re-write
operation of the MAC address is required.

with broadcast/multicast messages, so that they are correctly
duplicated to all front-NICs. This is useful, e.g., to correctly
broadcast ARP queries an L3-router generates. Possibly, the
L2-balancer can directly reply to the ARP request, by using
information in the forwarding table.

B. Interconnection Network Operations

Operations involved at items 2) and 4) are implemented
by standard Ethernet Switches, that perform normal backward
learning and switching operations. Indeed the load-balancing
among L3-routers is achieved by addressing the proper L3-
router input NIC MAC address. Therefore, there is no need to
change the normal operation of Ethernet switches.

C. L3-Router Operations

Operations involved at item 3) are implemented by L3-
routers. Since classic IP routing and packet manipulation
operations are used, no changes are required compared to the
standard feature set a single-box router implements. All L3-
routers must be correctly configured, e.g., IP routing tables,
firewalling rules, etc. must be correctly set-up.

In summary, both the interconnection architecture and the
L3-router stages require only standard functionalities, while
the only modification involves the L2-balancer implementa-
tion. While we propose here three possible software imple-
mentations using the Linux kernel, we point out that both the
load balancing and the switching capabilities a L2-balancer
requires can be easily implemented in hardware, since they
are very similar to the requirements of a standard L2 switch.

IV. PERFORMANCE RESULTS

We implemented the ODB, DTX and DTX-n L2-balancers
in a Linux kernel version 2.6.12. We then set-up a testbed
involving PCs with the same hardware configuration as the
one used as baseline reference. An unmanaged 3Com “Of-
ficeConnect” Gigabit Switch equipped with 8 ports was used
to build the interconnection network. In this section we present
performance measurements obtained on the resulting test-bed,
considering only minimum-size Ethernet frames.

A. L2-balancer Performance

We first tested the performance of a L2-balancer by loading
a front-NIC using the router tester sources, and then directly
connecting the back-NIC(s) to the router tester sink(s). To
stress the system, we considered only minimum-size Ethernet
frames. Fig. 5 reports the results by comparing the perfor-
mance of both the ODB (dark gray) and the DTX-n (black)
solutions versus the number n of back-NICs. As reference
values, also the theoretical maximum of 1488 kpps is reported
(light gray). The ODB solution is not surprisingly limited at
about 640 kpps which has been shown to be also the limit
of a single PC-router. The DTX solution (i.e., DTX-1) shows
little improvement, suggesting that the bottleneck is due to
the memory latency and not CPU overload. Increasing the
number of back-NICs to 3 guarantees to reach 100% of
throughput. This results shows that it is possible to achieve

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 27,2010 at 07:24:26 UTC from IEEE Xplore. Restrictions apply.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3

R
at

e
[k

pp
s]

Number of Balancing Ports n

Line rate
ODB

DTX-n

Fig. 5. Balancer Performance

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

kpps

Number of L3-routers

Number of
DTX-3 L2-balancers

kpps

Fig. 6. Router Stage Performance

line-rate balancing when considering minimum-size frames
with a software implementation, but at least 3 back-NICs are
required.

B. Scaling Performance of the Multistage Router

Given that a L3-router is identical to a standard router, its
performance limits have been already presented in Sec. II-
B. Similarly, the switches adopted in the interconnection
network proved to be able to sustain 100% of full-duplex
traffic when fully loaded. We therefore can only present
results of the complete multistage architecture. We set up a
testbed with 2 L2-balancers and 2 L3-routers. We measured the
maximum throughput performance considering minimum-size
Ethernet frames, obtaining a value of 1280 kpps, which exactly
matched the expected results of doubling the performance of
a single PC router, i.e., 2 × 640 kpps. Considering minimum-
size packets, Fig. 6 shows the maximum throughput (in

kpps) a multistage architecture offers versus the number of
L2-balancers (in DTX-3 configuration) and L3-Routers. For
example, it shows that to reach a 1 Gigabit Ethernet line rate
(1488 kpps), it is sufficient to use a single L2-balancer, and
3 L3-routers. Similarly, by considering a setup with 4 L2-
balancers and 10 L3-routers it is possible to route 4 Gigabit
Ethernet at line rate, i.e., 6 Mpps.

V. CONCLUSIONS AND FUTURE WORK

Based on standard PCs and open-source software, in this
paper we presented a multistage architecture that allows to
overcome the performance limitation of a single software
router. By combining simple layer-2 load-balancing capabili-
ties at the front stage and an array of layer-3 routers at the
back stage, the resulting architecture is shown to offer very
good scalability properties, e.g., allowing to route minimum-
size packets at line rate.

We are currently improving the load-balancer algorithm
to allow a more general distribution of functionalities and
automatic fault recovery. Similarly we are investigating how
to integrate automatic control capabilities that allow to control
both front- and back-stage PCs managing their configurations,
e.g., automatic distribution of routing tables, packet filtering
rules, etc.

ACKNOWLEDGMENTS

This work was performed in the framework of the Bora-
Bora [11] project funded by the Italian Ministry of University,
Education, and Research (MIUR), and developed in the high-
quality lab LIPAR at Politecnico di Torino.

REFERENCES

[1] L. Torvalds, “Linux OS.” [Online]. Available: http://www.linux.org
[2] E. Kohler, R. Morris, B. Chen, and J. Jannotti, “The Click modular

router,” ACM Trans. on Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[3] “BSD Unix.” [Online]. Available: http://www.bsd.org
[4] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for

network research,” in Proc. of the 1st Workshop on Hot Topics in
Networks, Princeton, NJ, US, Oct. 28–29, 2002.

[5] GNU, “Quagga.” [Online]. Available: http://www.quagga.net
[6] A. Bianco, R. Birke, J. M. Finochietto, G. Galante, M. Mellia,

M. Prashant, and F. Neri, “Click vs. Linux: Two efficient open-source
IP network stacks for software routers,” in Proc. of the IEEE Workshop
on High Performance Switching and Routing (HPSR 2005), Hong Kong,
P.R. China, May 12–14, 2005, pp. 18–23.

[7] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach. Los Alamitos, CA, US: IEEE Computer Society
Press, 1997.

[8] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load balanced birkhoff-von neu-
mann switches, part i: one-stage buffering.” Computer Communications,
vol. 25, no. 6, pp. 611–622, 2002.

[9] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” in Proceedings of IEEE INFOCOM, New York, NY, US, June
23–27 2002, pp. 1032–1042.

[10] Agilent, “N2X RouterTester 900.” [Online]. Available: http://advanced.
comms.agilent.com/n2x

[11] “BoraBora: Building Open Router Architectures Based on Router
Aggregation.” [Online]. Available: http://www.tlc-networks.polito.it/
borabora

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 27,2010 at 07:24:26 UTC from IEEE Xplore. Restrictions apply.

