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Modeling of interconnect junctions from

measured scattering responses

F. G. Canavero,∗ S. Grivet-Talocia∗ I. A. Maio∗ and I. S. Stievano∗

Abstract — This paper addresses the development

of lumped equivalent circuits of interconnect junc-

tions from their measured or simulated scattering

responses. Two methods for the identification of

linear dynamic systems are applied and their per-

formances are compared for accuracy and efficiency.

1 Introduction

Today’s tendency towards an increasing use of
higher frequencies both for RF and digital applica-
tions results in unwanted parasitic electromagnetic
effects on the interconnection structure of digital
and telecommunication systems. Signal distortions
are introduced due to the mutual coupling among
different conductors. Therefore, the modeling of
these structures has become an unavoidable step
in the analysis and design of high speed electronic
systems.

In most cases, a complete electromagnetic simu-
lation of the entire structure could be unaffordable
(both in terms of computer memory needed and
CPU time required). Therefore, it becomes cru-
cial to derive equivalent models of subparts of the
system. Such models must retain, in a given band-
width, the major features of the details they repro-
duce, and must be simple enough to be handled in
subsequent simulations. The possibility to gener-
ate circuit equivalents that are SPICE compatible
is usually sought for.

This contribution addresses the modeling of lin-
ear dynamic multiport elements from measured
or simulated responses, with the aim to generate
lumped wideband equivalents of generic junctions.
From a formal point of view, the modeling of mul-
tiport elements from their responses by means of
lumped equivalents is a parametric identification
problem and many different identification methods
could be tried [1]. In this paper, we assess the
performances of two identification approaches that
seem particularly suited to the application at hand:
the Block Complex Frequency Hopping (BCFH)
method [2, 3] and the subspace identification meth-
ods. The BCFH algorithm allows accurate approx-
imations of input data over wide frequency bands
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with simple models having a meaningful physical
foundation. On the other hand, in the control sys-
tem area, subspace methods are well established
as the most effective approach for the modeling of
multi-input multi-output linear systems from their
responses.
We test both methods on realistic structures by

using quasi-matched scattering responses. Such
network function are preferred because, for typical
interconnect structures, they have the simplest be-
havior and often allow the factorization of possible
ideal delay terms.

2 BCFH Method

The BCFH algorithm is a moment matching or-
der reduction method that can be exploited also
for system identification, because its inputs are the
moments of the response data [2, 3]. It works by
estimating the true set of poles of the modeled cir-
cuit element within the bandwidth of interest (i.e.,
in a region of the complex angular frequency plane
where σ < 0 and |ω| < ωMAX). This is achieved
by computing the moments of some input scatter-
ing functions at several complex expansion points.
The set of poles is then used to represent each scat-
tering function with a partial fraction expansion,
whose residues are computed by least square fitting
the function samples, as in [2].
The estimation problem defined by the BCFH

method is well conditioned and the obtained mod-
els have a solid physical foundation, because their
poles are approximations of the actual poles of the
modeled multiport element. This guarantees the
stability of estimated models and helps the control
of their passivity. In fact, as far as the accuracy of
the identified models is good, the passivity condi-
tion

∑

j

|Sij(jω)|
2 ≤ 1, ∀i, j, and ω (1)

where Sij(ω) is the scattering function describing
wave transmission from port i to port j, is guar-
anteed within the approximation bandwidth. Ac-
tive spurious behavior of estimated models can arise
only beyond ωMAX and can be compensated a pos-
teriori by extending ωMAX to the region where the
amplitudes of the scattering functions of the struc-
ture become negligible.



The applied approach can be extended to dis-
tributed structure whose scattering characteristics
allow the factorization of delay terms. For these
cases, mixed models composed of lumped parts and
of delay blocks can be used, thereby effectively in-
cluding propagation effects without losing the ad-
vantages of lumped equivalents.
Finally, for the implementation of models as

equivalent circuits, we replace wave variables with
voltages and currents in the scattering equations
and synthesize the resulting relations (e.g., see [5]).

2.1 BCFH results

The BCFH approach has been tested on simple
ideal multiport elements, obtaining good results.
Even if the poles of quasi-matched scattering re-
sponses are far from the imaginary axis, their esti-
mations via BCFH turn out to be sufficiently accu-
rate to yield good models.
In order to check the performances of the ap-

proach on a realistic test case we apply it to the
integrated circuit package of Fig. 1. This struc-
ture is composed of an ideal conductor reference
plane, a dielectric layer and metallic lands between
the chip and the board. It is characterized by the
wave variables measured at the ends of each land
with respect to the reference plane. The scatter-
ing characteristics of such a multiport element are
computed in the time domain by means of a three
dimensional electromagnetic simulator based on the
finite integration technique. The symmetry proper-
ties of the structure are exploited and its complete
104×104 scattering matrix is obtained in 3.5 hours
of computation by a Pentium PC @ 450 MHz.

Figure 1: 52-pin package modeled by scattering
data and BCFH

The input data for the modeling process are the
input and output transient wave variables obtained
from the time-domain fullwave simulation. Such

responses are used to compute the moments of the
elements of the scattering matrix and to estimate
their poles via BCFH [4]. Time and frequency nor-
malization of responses as well as moment scaling
are used to generate well conditioned matrices of
moments.
The search for poles of a scattering matrix

element is computationally inexpensive, since it
amounts to compute its first 15 – 20 moments for
a few complex expansion points. Also, many poles
detected from different scattering matrix elements
are common and, therefore, only a subset of the
scattering matrix elements must be searched. The
complete set of estimated poles is then used to ap-
proximate every element of the scattering matrix
by a partial fraction expansion, whose residues are
obtained by least square fitting.
In this example, the BCFH search of the elements

Sij , i = 1, 2, 3, 4 and j = 1, 2, 3, 4 (ports numbered
in counter-clockwise direction as shown in Fig. 1)
leads to the same set of three couples of complex
conjugate poles. Such poles allow a good modeling
of all scattering matrix elements Sij , i = 1, 2, 3, 4
j = 1, 2, 3, 4 over the bandwidth of available data,
that is 7GHz. As an example, Fig. 2 shows the
amplitude of S11(jω) and the phase of S31(jω) ver-
sus frequency compared with the corresponding re-
sponses of the model defined by the mentioned set
of poles. The accuracy of the model can be clearly
appreciated.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

frequency    GHz

Figure 2: Reference (solid lines) and model (dotted
lines) values for |S11| (left scale) and 6 S31 (right
scale, rad)

3 Subspace Methods

In the last years, many contributions on the estima-
tion of time invariant, linear dynamic state-space



models of multi-input multi-output systems have
been published [6]. Such estimation approaches
are collectively named subspace methods and are
related to Matrix Pencil methods [7].
A discrete-time linear state-space model is de-

fined by

{

z(k + 1) = Az(k) +Bu(k)

y(k) = Cz(k) +Du(k)
(2)

where z ∈ <r is the state vector and matricesA, B,
C, D are the unknowns (parameters) of the model.
The key step of subspace methods to approx-

imate systems with model (2) is the estimation
of the column space of the extended observabil-
ity matrix from suitable matrices containing the
input/output perturbed data. The estimation is
performed by the span of the column or row space
of the matrices of input/output data. Then, the
model unknowns, i.e., the A, B, C, D matrices,
are directly obtained from the estimation of the
extended observability matrix. With the aid of
subspace methods, the estimation of state-space
models for circuit elements with a number of in-
put/output of 10 and a number of states of the
order of 100 is practicable and the numerical com-
plexity is not critical [6].

3.1 Subspace estimation example

One of the ideal multiport elements used to test the
modeling via subspace methods is the 2-port circuit
shown in Fig. 3.
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Figure 3: Example 2-port circuit element (R1,3 =
150Ω, R2 = 200Ω, C1 = 10µF , C2 = 1µF ).

The continuos-time state-space equations for
such a circuit (i.e., for the element under model-
ing) are

{

d
dt

z(t) = Acz(t) +Bcu(t)

y(t) = Ccz(t) +Dcu(t)
(3)

where the state vector is z = [va, vb]
T , the output

vector collects the outcoming voltage waves y =
[b1, b2]

T (bj =
1

2
(vj − R0ij), j = 1, 2 and R0 =

50 Ω), and the input vector collects the incoming
voltage waves u = [a1, a2]

T (aj =
1

2
(vj + R0ij),

j = 1, 2). With such definitions, the matrices of (3)
write

Ac =





−103 5 · 102

5 · 103 −104



 , Bc =





103 0

0 104





Cc =





0.25 0

0 0.25



 , Dc =





0.5 0

0 0.5





(4)

In order to apply subspace methods we need a
discrete-time representation like (2). This is done
by applying standard conversion routines such as
the Matlab function c2d [9] to (3) and (4). In such
a way, with a sampling time T = 30µs, the discrete-
time state-space representation (2) for this specific
example turns out to be defined by the following
A, B, C, D matrices

A =





0.97144550 0.01276185

0.12761851 0.74173217





B =





0.02956476 0.00202054

0.00202054 0.25927810





C = Cc, D = Dc

(5)

Such state-space equations are then used to com-
pute the response of the element under modeling
y(k) (output identification sequence) to suitable in-
put identification sequences u(k). Input and output
identification sequences are processed by the sub-
space algorithm to estimate the unknown parame-
ters of a state-space model. The algorithm [8] is ap-
plied to estimate matricesA andC. This is done on
the basis of the output identification sequence ob-
tained by driving the element under modeling with
white gaussian inputs u(k). Then, in order to get
the best model, matrices B and D are obtained by
minimizing the error between the model and the
reference responses to a different input identifica-
tion sequence (e.g., a multilevel waveform). It can
be shown that, once A and C are estimated, the
response of a model defined by (2) can be turned
into a linear combination of the elements of B and
D. In such a way, B and D can be obtained by
solving a standard linear least square problem.
We checked the ability of the estimation algo-

rithm to retrieve the parameters of the original sys-
tem (i.e., matrices (5)) when the identification out-
put signals are noise free or corrupted with a super-
imposed gaussian noise (SNR=26 dB).
In the first case (noise free identification), the al-

gorithm exactly estimates the matrices of the orig-



inal system (5). In the second case (noisy iden-
tification), the estimated model approximates the
original system very well, as shown by the valida-
tion response of Fig. 4.

The accuracy of the obtained model can be also
appreciated by comparing the eigenvalues of the es-
timated matrix Â to those of the original matrix A,
as shown below.

eig(A) = {0.97832914, 0.73484853}

eig(Â) = {0.97777425, 0.73098978}
(6)
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Figure 4: Discrete-time response y(k) of the origi-
nal system and of the estimated model to the input
sequence u(k) = [0, 0]T , k < 0; u(k) = [0, 0.5]T ,
k > 0. Solid line: reference response; dotted line:
estimated model response.

4 Conclusions

We apply the BCFH and the subspace methods
to the modeling of linear multiport elements from
their sampled scattering characteristics. In most
test cases considered, the accuracy of poles esti-
mated by both methods turns out to be sufficient
for a good fitting of the scattering characteristics.

From our tests, the poles estimated by BCFH
are usually more accurate than those estimated via
subspace methods. The main difficulty of BCFH
is the computation of moments of the scattering
characteristics and the large amount of time sam-
ples needed for such calculation. Such a difficulty,
however could be overcome by different approaches
to the evaluation of moments. On the other hand,
subspace methods sometimes leads to models with
spurious poles in the right half plane, whose elimi-
nation is an additional problem.

Though the present assessment is only prelimi-
nary, both methods seem well suited for the gener-
ation of models of linear junctions from measured
or simulated scattering data to be used in real sim-
ulation problems.
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