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Abstract

Behavioral models of digital devices based on Radial Basis
Functions (RBF) are incorporated into a Finite-Difference
Time-Domain (FDTD) solver for full-wave analysis of in-
terconnected drivers and receivers. This modeling strategy
allows a very accurate and efficient full-wave solution of
interconnection structures with possibly complex geometry
including the nonlinear and dynamic effects of real-world
digital devices, without the need of detailed transistor-level
models. Examples of signal integrity and field coupling
analysis are shown.

1. Introduction

The high complexity of modern electronic systems re-
quires careful modeling strategies at early stages of the de-
sign process. This is particularly important for the char-
acterization of interconnected structures loaded by digital
drivers and receivers. Indeed, it is well known that Elec-
tromagnetic Compatibility (EMC) and Signal Integrity (SI)
are strongly affected by the geometry of the interconnects
and by the possibly complex nonlinear/dynamic behavior of
the electronic devices collocated at their terminations. An
accurate solver must combine a rigorous full-wave scheme
together with precise models of digital ports.

Two main approaches for the simulation of a loaded in-
terconnected structure can be devised. Their suitability de-
pends on the particular type of analysis that is considered,
as briefly described in the following paragraphs.

The first option is to retain the full complexity of the
components using their transistor-level model, attempting
the derivation of simple macromodels for the description of
the signal propagation paths. This approach is particularly
suited when the signals propagate along transmission lines
with controlled geometry (e.g., parallel lands on PCBs or
MCMs), but can also be applied to packages, vias, and in
general to interconnection structures with complex geom-
etry by applying suitable linear macromodeling algorithms
based on some model order reduction technique. This is a
very active research area, as demonstrated by the large num-
ber of recent papers on the subject (see, e.g., [1, 2, 5] and

references therein). We remark that this modeling strategy
is best suited for pure SI analysis since only the port be-
havior of the interconnection structure at few selected loca-
tions is modeled. Obviously, if the macromodel is properly
derived, this port behavior includes all relevant effects in-
cluding radiation losses. Consequently, this strategy can be
used, e.g., for a precise characterization of some intercon-
nection part of a system during the design stage of the active
drivers and receivers, which requires a detailed knowledge
of what they ”see” at their terminals. However, if the near or
far fields are desired for an EMC characterization of the en-
tire structure, the port voltages and currents obtained with
a circuit simulation are not sufficient. A full-wave solu-
tion must then be performed, since the distribution of the
currents throughout the entire interconnection structure will
affect the radiated fields.

This paper concentrates on a second complementary
modeling strategy, which allows both SI and EMC anal-
ysis in a single simulation step. A conventional solver
based on the well-known Finite-Difference Time-Domain
(FDTD) scheme [4, 9] is used to discretize the electromag-
netic fields within the computational domain, and suitable
models for the nonlinear/dynamic components loading the
interconnects are inserted as lumped elements within the
computational mesh. We remark that the procedure for
inclusion of lumped elements within the FDTD mesh has
been developed by several researchers during the past ten
years for standard circuit elements. For a review see [9] and
references therein. Since the entire simulation is run us-
ing the main FDTD solver, all field variables are available
during the simulation. This allows for susceptibility anal-
ysis (if some external incident field is applied as an addi-
tional source) and radiation analysis (through standard post-
processing of transient fields computed during the FDTD
simulation).

Digital ports are best represented by means of detailed
transistor-level models. However, the complexity of such
models can be very different according to the specific tech-
nology and application under consideration. For example,
on-chip drivers may be represented by few transistors, re-
sulting in quite simple circuits. In such cases a transistor-
level simulation is affordable. On the other hand, off-chip
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transceivers for generation of signals travelling over long
propagation paths at MCM or PCB level may be extremely
complex and may require very long simulation times. In
such cases a behavioral model is highly desirable in order
to speed-up system-level simulations.

We focus here on the use of behavioral models of real-
world digital I/O ports based on Radial Basis Functions
(RBF) expansions [6, 7, 8]. The device is modeled through
a discrete-time nonlinear dynamic parametric macromodel
leading to a virtually undistinguishable response under very
different loading conditions with respect to the transistor-
level model. The parameters are computed only once
through a rigorous identification procedure and are used for
all subsequent simulations.

There are several advantages beyond accuracy in this ap-
proach. The computational cost required for the transient
simulation of such a macromodel can be much less than for
the transistor level circuit [6]. In addition, due to the in-
trinsic nature of the model representation, each device is
represented by its own set of parameters. This allows the
macromodel implementation to be quite general, since the
same computational code can be used for very different de-
vices simply feeding it with the proper model parameters.
It is also conceivable to setup libraries of components that
can be arbitrarily selected and included by the user.

The RBF macromodels used in this paper are discrete-
time nonlinear models, consisting of a set of difference
equations relating present and past samples of port voltage
and current with fixed sampling time. The latter is usu-
ally defined in the model identification stage and is one
of the key parameters that characterize the device. On
the other hand, transient field solvers like FDTD often re-
quire a proper time step determined by the spatial mesh size
through the Courant condition. Therefore, discrete-time
macromodels can in principle be included within a FDTD
mesh only if the model sampling time and the transient time
step are matched. We solve this problem by presenting a re-
sampling strategy for RBF models, which is proved to pre-
serve time stability. We will first recall the basics of RBF
parametric macromodels in Section 2, and we will discuss
the hybridization with FDTD in Section 3. Numerical re-
sults and validations are presented in Section 4.

2. RBF Parametric Macromodels

We review in this section the basic definition of RBF
parametric macromodels. Further details can be found
in [6, 7, 8] and references therein. Let us consider the volt-
age and current waveforms v(t) and i(t) of some digital
I/O port under modeling. All the macromodels considered
in this paper are discrete-time models, therefore we sample
the time axis with given sampling time Ts. This sampling
time must be carefully determined on the basis of the dy-

namic features of the device. We will indicate the voltage
and current samples as vm = v(mTs), im = i(mTs). A
general form of parametric macromodel for the device can
be expressed as

im = F (Θ;xm−1
i , vm,xm−1

v ;m) , (1)

where xm−1
v and xm−1

i are regressor vectors collecting the
past r voltage and current samples,

xm−1
v =

[
vm−1, vm−2, . . . , vm−r

]T
,

xm−1
i =

[
im−1, im−2, . . . , im−r

]T
. (2)

These vectors act as discrete-time internal states of the
model, with r indicating its dynamic order. The function F
is a nonlinear mapping from �2r+1 to � defining the model
representation and Θ is the vector of model parameters.
Note that F depends also on time m, since digital drivers
must be modeled as time-varying components in order to
capture switching behavior. Also, we remark that Eq. (1)
is suitable for the description of typical digital drivers and
receivers. Nonetheless, in case of particular devices for
which Eq. (1) results ill-defined, alternative forms can be
conceived, e.g., by exchanging the role of port voltage and
current.

In this work we mainly concentrate on model representa-
tions F based on Gaussian RBF expansions. Such represen-
tations provide approximations of the mapping F through
expansion into L multivariate Gaussian functions of suit-
able width β centered at appropriate points c in the regres-
sor space of dimension 2r + 1. A general form of such
expansion can be expressed by

G =

L∑
l=1

θl Ψl(m− 1) exp

{
−

(vm − c0l )
2

2β2

}
, (3)

where the term Ψl(m − 1) collects all contributions due to
past voltage and current samples,

Ψl(m− 1) = (4)

exp

{
−
||xm−1

i − ci
l ||

2 + ||xm−1
v − cv

l ||
2

2β2

}
,

and || · || denotes the Euclidean norm.
The general form can be further specialized to drivers

and receivers. One of the main difficulties in macromod-
eling output ports of drivers arises from the time-varying
nature of the devices due to switching. Our proposed strat-
egy amounts to using two separate Gaussian RBF submod-
els accounting for both static and dynamic effects of the
port behavior at a fixed logic state, henceforth labeled imu
for HIGH and imd for LOW state. These two submodels
are time-invariant. A piecewise linear combination through
time-varying weight functions wm

u,d provides a model for
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Figure 1. Collocation of the lumped element
in the FDTD mesh.

the evolution of the port logic state, acting as a switch be-
tween submodels imu,d, i.e.,

im = wm
u imu + wm

d imd . (5)

Macromodeling of receivers input ports follows a similar
approach. However, receivers are not time-varying compo-
nents, therefore simpler models can be devised. The pro-
posed structure for a receiver model is

im = imlin + imnl,u + imnl,d (6)

where imlin is a linear parametric submodel accounting for
the mainly linear behavior of the port for voltage values
within the range of the power supply voltage, while imnl,u

and imnl,d are Gaussian RBF submodels taking into account
both the nonlinear static and dynamic effects of the up and
the down protection circuits, respectively.

3. Hybridization of FDTD and RBF macro-
modeling techniques

We consider a locally uniform medium in the vicinity
of a ẑ-directed lumped element, with permettivity ε, per-
meability µ, and conductivity σ. The entire computational
domain is discretized with a FDTD mesh size ∆x, ∆y, ∆z
along the three Cartesian coordinates (see Fig. 1). The re-
sulting time step from Courant condition will be denoted as
∆t. Note that the FDTD time step is generally unrelated
to the characteristic sampling time Ts of the RBF device
model to be inserted in the FDTD mesh. Therefore, we
will denote the FDTD time iteration with a different index
n. The current and voltage of the lumped element may be
defined, respectively, as

i = ∆x∆y J · ẑ , v =

∫
∆z

E · ẑ dz , (7)

where E and J are the total electric field and the cur-
rent density at the considered mesh location, indexed by
{i, j, k}. The expression of the discretized Maxwell-
Ampere curl equation modified to account for the lumped
element with split incident and scattered fields (subscripts
{i, s}, respectively) reads [4, 9]

α0v
n+1 − α1v

n + α2 [ẑ · ∇ × Hs]
n+1/2

ijk + (8)

α2ε0

∂Ei,z

∂t

∣∣∣∣
n+1/2

ijk

− α3

(
in+1 + in

)
= 0 ,

where

α0 = 1 +
σ∆t

2ε
, (9)

α1 = 1 −
σ∆t

2ε
, (10)

α2 =
∆z∆t

ε
, (11)

α3 =
∆z∆t

2ε∆x∆y
. (12)

Equation (8) must be coupled with the i− v port character-
istic of the lumped element, which is expressed by Eq. (1).
However, care must be taken in case the time step Ts char-
acteristic of the RBF model is different from the time step
∆t induced by the FDTD mesh size. Actually, the lat-
ter is much smaller than Ts for typical structures found in
the applications. This problem may be solved by a resam-
pling procedure of the RBF model. First, the discrete-time
RBF model is converted into a continuous-time model us-
ing a forward finite-difference approximation. Then, the
continuous-time model is resampled with the FDTD time
step ∆t, using the same forward finite-difference approx-
imation. A straightforward derivation leads to the general
expression

xn+1
i = Qxn

i + τ er F (Θ;xn
i , v

n,xn
v ;n) ,

xn+1
v = Qxn

v + τ er vn ,
in = F (Θ;xn

i , v
n,xn

v ;n) ,
(13)

where the time step of the RBF model is now ∆t. Matrix
Q is banded with non vanishing elements qii = 1 − τ and
qi,i−1 = τ , with τ = ∆t/Ts, and er = (1, 0, . . . , 0)T . This
system can be solved at each time step through the Newton-
Raphson algorithm.

This modeling strategy has two remarkable features.
First, the time-domain conversion preserves time stability.
A complete proof is detailed in Section 3.1. Second, the
RBF model representation F is generally quite smooth and
well-behaved, while the inverse of the Jacobian matrix of
system (8)-(13) can be computed analytically. As a con-
sequence, the Newton-Raphson iterations required for con-
vergence at each time iterations are very few. We remark
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Figure 2. Stability of the time conversion ap-
plied to the linear test problem. The three
panels show the eigenvalues of the discrete,
continuous, and resampled test problem.

that this smoothness is controlled by choosing an appropri-
ate sampling time Ts for the RBF model during the identi-
fication stage. Therefore, the nonlinearity is weak by con-
struction for the entire class of devices herewith considered.
Note that this is true also for state-of-the-art fast digital
drivers and receivers for very high speed applications. Il-
lustrative numerical examples are provided in next section.

3.1. Resampling and stability

This section investigates the time stability of the resam-
pled macromodels above described. We show in the follow-
ing that the time conversion steps leading to the resampled
model preserve stability. Therefore, if the original macro-
model is stable, also the resampled one will be stable.

Stability of resampling is best illustrated by the behavior

of a standard test problem, namely

ζ̂m+1 = λ ζ̂m, |λ| < 1 . (14)

The results presented in [3] show that the above test prob-
lem is appropriate since all the eigenvalues associated to the
original RBF model before resampling have magnitude less
than one, i.e., the criterion on λ is unconditionally satisfied.
If we now apply the proposed discrete-to-continuous time
conversion procedure we get

d

dt
ζ(t) = η ζ(t) , η =

λ− 1

Ts
, (15)

where a first-order forward approximation of the time
derivative has been used. The relationship between dis-
crete and continuous state variables is ζ(mTs) � ζ̂m with
first-order accuracy. Due to the stability constraint on the
original system (14) we conclude that the eigenvalue η of
the continuous system has negative real part, allowing us
to prove stability. Applying now the continuous-to-discrete
time approximation with sampling time ∆t, and using again
a first-order forward difference approximation, we get the
resampled system

ζ̃n+1 = λ̃ ζ̃n , λ̃ = 1 + τ(λ− 1) . (16)

Figure 2 depicts the region of the complex plane with possi-
ble values of λ̃, i.e., a circle centered at (1 − τ) with radius
τ . Stability is guaranteed when |λ̃| < 1, i.e., when the re-
sampling factor satisfies

τ ≤ 1 . (17)

This is quite natural since the overall resampling process
can be interpreted as the application of a linear interpola-
tion scheme. If the resampling factor becomes larger than
one this scheme becomes an extrapolation, which is always
to be avoided. Also, due to the usual size of the intercon-
nect structures where the devices under investigation can
be found, the required cell size for FDTD must be very
small in order to describe the geometry with sufficient ac-
curacy. Therefore, the resulting time step ∆t is generally
much smaller than the time scale of typical driver/receiver
responses. We conclude that the requirement of Eq. (17) is
not restrictive in any case of practical interest.

4. Numerical Results

The first example is intended to validate the mixed RBF-
FDTD modeling procedure. The structure that we chose for
validation is a simple transmission line depicted in Fig. 3.
The computational domain is 180×24×23 cells, with mesh
size ∆x = ∆y = ∆z = 0.723 mm, and is terminated
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Figure 3. Transmission line structure used for
validation.
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Figure 4. Termination voltages for the trans-
mission line structure with switching driver
at near end and with a RC load at the far end.

by absorbing boundary conditions. The strips are imple-
mented as zero-thickness conductors and are 4 cells wide
and 160 cells long. The separation between the two strips is
3 cells. The effective characteristic impedance of the result-
ing transmission line is Zc ∼ 131 Ω, while the line delay
is TD ∼ 0.4 ns. The line is excited at the near end by the
lumped RBF macromodel of a commercial device, namely
a high-speed CMOS driver (power supply: Vss = 0 V,
Vdd = 1.8 V) used in IBM mainframe products. The driver
forces a bit pattern ’010’ at its output port, with a bit time
of 2 ns. The far end termination is varied in order to illus-
trate load insensitivity of the proposed modeling strategy. In
particular, we consider both a linear capacitive load (shunt
connection of a 1 pF capacitor and a 500 Ω resistor) and
a RBF macromodel of a receiver (same technology as the
driver). The simulation results are depicted in Figures 4
and 5. All the different curves are very consistent, although
they have been computed using very different simulation
engines. Namely: (i) SPICE with ideal TL and transistor-
level models of the devices; (ii) SPICE with ideal TL and
RBF models of the devices; (iii) 1D-FDTD for the TL and
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Figure 5. Termination voltages for the trans-
mission line structure with switching driver
at near end and with a RBF receiver load at
the far end.

RBF models of the devices; (iv) 3D-FDTD for the TL and
RBF models of the devices. Only the 3D-FDTD result has
a marginal deviation from the other curves due to numerical
dispersion. We remark that the number of Newton-Raphson
iterations required to solve the RBF model equations never
exceeded a maximum number of three, whereas the accu-
racy threshold was set to the very stringent value of 10−9.

We turn now to a more realistic application. The
5 cm × 5 cm PCB structure depicted in Fig. 6 is con-
sidered. This configuration is similar to the one analyzed
in [2]. Three 400 µm-wide coupled strips run parallel to
each other on the top (along x coordinate, length 4 cm) and
bottom (along y coordinate, length 4 cm) of the PCB sig-
nal layer. Three vias connect the orthogonal sections of the
strips. Top and bottom glue layers cover the signal layer,
and the entire PCB is metallized on both sides. The rela-
tive permettivity for all layers is εr = 4.3, with a single
layer height of 400 µm. The innermost strip is driven by
the RBF macromodel of the driver on one end and is ter-
minated on the other end by the RBF macromodel of the
receiver. All the other terminations consist of 50 Ω resis-
tors. The driver forces a ’010’ bit sequence at its output
port. In addition, an external wave Gaussian pulse impinges
on the structure from a direction {θ = 90o, ϕ = 180o}
with θ-polarized electric field in standard spherical coordi-
nates. The amplitude of the pulse is 2kV/m, with a band-
width of 9.2 GHz. Fig. 6 shows the termination voltages
for the driven line with and without incident field. This ex-
ample illustrates that the proposed modeling strategy can
be effectively employed for the complex task of predicting
incident-field coupling effects on interconnected networks
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Figure 6. PCB structure for illustration of in-
cident field coupling.

loaded by real-world components.

5. Conclusions

We have presented an effective strategy for the full-wave
modeling of interconnected structures loaded by real-world
components like digital drivers and receivers. The complex
nonlinear and dynamic behavior of such devices is modeled
using approximate behavioral models based on Radial Ba-
sis Functions (RBF) expansions. These are discrete-time
parametric models, capable of reproducing with very high
accuracy the port behavior of the devices. A discrete-time
resampling strategy has been presented in order to allow the
direct insertion of a RBF behavioral model within the com-
putational mesh of a standard field solver based on finite
differences. The presented numerical results confirm the
high degree of accuracy of the method.
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