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Abstract  -  A Monte Carlo simulation is proposed to 
represent the electromagnetic environment of mode 
stirred reverberation chambers. The proposed method is 
based on a plane wave model and allows us to simulate 
both the point statistics and the spatial correlation of 
the electromagnetic distribution inside an ideal 
reverberation chamber. By means of this approach, it is 
possible to predict the electromagnetic coupling to 
electrical devices. The application of the proposed 
method to predict the electromagnetic coupling to a 
transmission line inside a reverberation chamber is 
proposed, and prediction results are compared with 
measurements. 
 
I. INTRODUCTION 
 
Different approaches have been used to simulate the 
reverberation chambers (RC) electromagnetic (EM) 
environment. Deterministic approaches allowing the 
simulation of EM fields distribution inside a RC have 
been investigated by a Ray Tracing method [1], by the 
FDTD method [2], and by the Finite Element method 
[3], for a two-dimensional case. On the other hand, a 
statistical approach has been proposed in [4], 
describing how to generate stochastic fields by using a 
random numbers generator. This approach was applied 
in [5] to predict the coupling of fields to an electrical 
monopole by using the method of moments. By this 
statistical approach, random fields are generated for 
each spatial point following ideal RC probabilistic 
distributions, and a spatial correlation is imposed on 
the random generator, in order to satisfy the spatial 
correlation existing in a RC. Mean values of EM 
quantities over one stirrer rotation are found as mean 
values over a set of random fields superposition.  
A different approach is investigated in this work, which 
combines the plane waves integral model for RC and a 
Monte Carlo (MC) statistical approach. Drawing on 
Hill’s plane wave model for a RC [6], the RC EM 
environment is recreated in this work by a 
superposition of a finite number of random plane 
waves. The statistical properties attributed to the fields 

by the stirrer rotation are taken into account by suitably 
modelling the probabilistic distribution of plane waves 
parameters: a random number generator is adopted to 
produce such parameters. Mean values for EM 
quantities are then found as mean values over a set of 
random plane waves superposition. This novel 
approach allows a simple simulation of the EM 
conditions of the ideal RC environment. It will be 
shown that resulting fields point statistics satisfy ideal 
RC statistics, and that fields spatial correlation intrinsic 
to this approach naturally reproduce RC spatial 
correlation. The interest of this approach lies in the 
application of the method to the prediction of EM 
quantities coupled to electrical devices. It will be shown 
how to predict mean values of EM coupled quantities 
inside a RC by disposing of a set of responses of the 
device to offending random plane waves. The 
applicability of the method is thus relied to the ability 
of predicting the response of the device to offending 
plane waves. For distributed devices, this method can 
be readily applied, since the theory of plane waves 
coupling to transmission lines is well established [7]. 
As an example, the case of induced current into the 
terminal load of a single wire over a ground plane will 
be investigated in this work. 
The work is organised as follows. Section II proposes 
the fundamentals of the method: plane waves random 
properties assumptions and resulting fields probabilistic 
description. Section III is focused on the application of 
the method to predict coupled EM quantities into 
electrical devices, and discusses a “complete” and three 
“fast” MC methods. Finally, in Section IV such 
methods are applied to the prediction of the induced 
current flowing in the terminal load of a single wire 
transmission line exposed to RC fields. 
 
II. PLANE WAVE MONTE CARLO 
METHOD FOR A REVERBERATION CHAMBER 
 
Ideal properties of the working volume of a RC are 
modelled here by a superposition of random plane 
waves. A finite number of plane waves is considered 
and the integral representation contained in [6] is 



approximated by a finite sum of plane waves 
contributions. Repeated trials of a superposition of 
random contributions allow us the estimation of EM 
quantities mean values according to a MC approach. 
The first step in performing a MC simulation of a 
physical process is to establish the probabilistic 
distributions of parameters that must be randomly 
generated. In this case, the parameters are the 
propagation direction, field polarisation, amplitude and 
phase of the contributing plane waves. In an isotropic 
environment, as in the case of the working volume of a 
RC, plane waves are supposed to have no preferred 
propagation direction and no preferred field 
polarisation. This means that uniform distributions are 
chosen for propagation direction angles and for the 
polarisation angle, over the solid angle and over π2 , 
respectively. Additionally, multiple scattering 
phenomena inside a RC result in the fact that the phase 
of plane waves has no preferred value; thus, a uniform 
distribution is chosen.  Finally, constant amplitude is 
chosen for all plane waves, equal to E0 , for 

conveniently matching simulations with experiments. 
Probabilistic distributions for plane waves parameters 
are summarised in Table 1. 
_____________________________________________ 

Table I – Plane waves probabilistic distributions 
_____________________________________________ 
Parameter   Distribution 
Propagation direction ( )ϕθΩ ,  [ ]π4,0U  

Polarisation Pθ    [ ]π2,0U  

Phase φ     [ ]π2,0U  

Amplitude E    ( )0EE −δ  

  
In Table 1, U stands for uniform distribution. 
According to the assumptions of Table 1, it is possible 
to analytically determine the mean value and variance 
for one rectangular component of the electric field 
resulting in one point of the space by  the contribution 
of one random plane wave. For example, it can be 
shown that for the z component of the electric field in 
the origin of a Cartesian system, mean value and 
variance of real and imaginary parts are given by 
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Then, by applying the central limit theorem (CLT), the 
probabilistic distribution of real and imaginary parts of 
the same field component given by the superposition of 
n random plane waves can be determined. The CLT 
states that for a great number of contributing plane 
waves, real and imaginary parts of the resulting field 
component are distributed as a normal distribution, 
whose mean value µ  and variance σ  are given in the 

following equation. 
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Equation (2) allows us to characterise fields in one 
spatial point of an ideal RC working volume. Finally, 
the isotropy and homogeneity properties of fields inside 
the RC working volume allow us to extend these results 
to any electric field rectangular component at any point 
inside the volume. 
As a result, the distributions of the amplitudes of a 
generic field rectangular component Ei  and of the total 

electric field Etot  at any point inside the chamber, can 

be shown to be in agreement with RC statistics 
contained in [6], [8] and [9]. Furthermore, as each 
plane wave contribution concerns the entire working 
volume, spatial correlation for fields is also in 
agreement with RC model contained in [6]. 
The interest of the proposed approach is that it is 
possible to relate mean values for fields inside a RC to 
the constant chosen plane waves amplitude E0  and to 

the number n of plane waves considered. In fact, 
starting from equation (2) and indicating mean values 
in RC as , it is possible to obtain:  
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Furthermore, the advantage of keeping E0  constant is 

that it becomes a free parameter to be matched with 
measurements of the mean field level inside the 
chamber, thus allowing for comparisons between 
simulations and measurements. 
 
III. MONTE CARLO “COMPLETE” AND 
“FAST” METHODS FOR EM COUPLED 
QUANTITIES MEAN VALUES PREDICTION 
 
According to the approach formulated in Section II, 
MC predictions of EM quantities coupled to electrical 
devices in RC can be obtained as superposition of plane 
waves coupling contributions. In particular, if x is a 
generic coupled complex quantity (current or voltage), 
its mean value in RC can be computed as: 
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where xRC  is the coupled quantity in RC, iPWx ,  is the 

coupled quantity corresponding to the i-th random 
plane wave,  stands for mean value over a stirrer 



rotation, and Ε  is the expected value. The MC 
“complete” method consists in estimating the expected  
value in (4) by taking the arithmetic mean value of 
several (let us say m) simulation trials of the sum in the 
right-hand term of (4). This means that m × n 
simulations are required. In this case, each of the m 
simulation results (i.e. each of the m sums of the right 
term of (4)) correspond to one position of a virtual 
stirrer. If plane waves parameters are chosen as 
described in Table 1, and plane waves amplitude is 
chosen according to equation (3), matching between 
simulation and measurements made in a real chamber 
can be obtained. 
If we are able to numerically simulate the response of a 
device to one offending plane wave, i.e. iPWx , , 

equation (4) can be used in a MC simulation method to 
predict mean value of the response in RC. The 
inconvenience of this method is in the large computing 
time required by the m × n simulations. The possibility 
of simplifying the general method of equation (4) is 
investigated in the following. 
If we are looking for mean value of the received power, 
which is proportional to the squared magnitude of 
coupled current (voltage), (4) can be written as 
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where the expected value in the last term of (5) is taken 
with respect to the squared amplitude of a coupled 
quantity due to one random plane wave. It can be easily 
shown that the last equality in (5) is valid for any 
complex random quantity iPWx ,  that has zero mean 

value for the real and imaginary parts. This last 
assumption can be considered true for any linear 
electrical device. 
Last equality in (5) gives thus a means to simplify the 
“complete” method of equation (4) by replacing the m × 
n simulations described above by simply n simulations 
(the expected value in the last term of (5) is estimated 
as mean arithmetic value over n plane waves 
contributions), and multiplying the result times the 
number of simulations n. We will call this procedure 
“fast1” MC method. An important physical implication 
of (5) is that it equals mean value in MSRC and mean 
values over plane wave incidence times n, provided that 
plane waves amplitude is chosen according to mean 
fields values inside the MSRC as in (3). The same 
result was obtained by a different approach (see 
equation (39) in [6]). 
To obtain an equivalent result for mean value of 
induced current amplitude prediction, it is not sufficient 
to take the square root of (5). Two different solutions 
can be used to obtain an equivalent “fast” method. Such 
solutions are shown by (6) and their validity domains 
are discussed in the following. 
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It can be shown [10] that (6.a) is valid only when real 
and imaginary parts of the quantity xPW i,  are normally 

distributed with zero mean and equal variance, which is 
not true in a general case1. In cases where this 
assumption is verified, (6.a) equals mean value in RC 

and mean values over plane wave incidence times n . 
Of more general validity is (6.b), which is valid for any 
random complex quantity xPW i,  which has zero mean 

value and equal variance for real and imaginary parts. 
In conclusion, four different MC methods are proposed. 
The “complete” method in (4) can be used to predict 
any EM quantity inside a RC (amplitude or squared 
amplitude); mean values over one stirrer rotation as 
well as values for single stirrer positions can be 
predicted by this method (this implies that also 
maximal values can be predicted). Three “fast” 
methods for the prediction of only mean values are also 
proposed. For squared amplitudes mean values 
predictions, “fast1” method in (5) can be used if the 
predicted quantity has zero mean value for real and 
imaginary parts over random plane waves. For 
amplitudes mean values predictions, “fast2” method in 
(6.a) can be used for quantities whose real and 
imaginary parts are normally distributed with zero 
mean and equal variance over random plane waves 
incidence; “fast3” method in (6.b) can be used for 
quantities whose real and imaginary parts have zero 
mean and equal variance over random plane waves 
incidence. 
 
IV. MONTE CARLO PREDICTION OF THE 
COUPLED CURRENT FLOWING  IN A 
TRANSMISSION LINE 
 
The interest of the MC prediction method discussed in 
sections II and III lies into the ability of predicting EM 
coupled quantities to an electrical device excited by an 
offending plane wave. One case of interest is coupled 
current to multiconductor transmission lines, for which 
coupling theory is well established [7]. An application 
example is considered in this section, considering a 
single lossless transmission line over a ground plane. 
The different MC methods discussed in Section III have 
been applied to the prediction of the induced current 
flowing in the terminal load of a single wire running 
over a ground plane when it is tested inside a RC. For 
                                                        
1 It is helpful to notice that normal distribution is 
required here for xPW i,  and not for x PW i,∑  which is 

always normally distributed according to the CLT. 



the simulation, each plane wave coupling contribution 
was computed by means of the conventional theory of 
fields coupling to transmission lines [7]. One further 
consideration must be made concerning computation of 
random plane waves contributions. According to 
physical properties of RCs, independent frequencies of 
excitation of the chamber correspond to independent  
exited modal structures, and, in a plane wave model, 
correspond to different plane waves patterns. This 
means that for a proper MC simulation, a different 
pattern of random plane waves should be generated for 
each independent frequency. However, as plane waves 
are random and independent, the solution of keeping 
the same random pattern for the entire frequency range 
can be adopted, thus reducing computational time. 
In the following, a 50 cm long single wire running at a 
height of 3 cm above the chamber floor is considered 
both for measurement and simulation. Several 
experimental transmission line devices were tested in 
two different chambers [11], and experimental results 
compared with simulation results.  
At first, the induced current was predicted according to 
the “complete” method of equation (4). The “complete” 
simulation was made by illuminating the line 144 times 
by packets of 20 random plane waves, and the mean 
value of one electric field rectangular component was 
measured inside the chamber and used to set the value 
for the simulated plane waves amplitude, according to 
equation (3).  For the purpose of comparison, the mean 
value of the induced current in the line termination was   
calculated over 144 stirrer positions. Fig. 1 shows the 
comparison between predicted and measured mean 
values and maximal values of the induced current 
amplitude as a function of frequency; Fig. 2 shows 
cumulative density functions for prediction and 
measurement of current amplitude, both compared with 
an ideal 2χ  distribution. 
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Figure 1: MC “complete” method: amplitude of 
induced current at the transmission line terminal load – 

mean current value as a function of frequency 
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Figure 2: MC “complete” method: amplitude of 
induced current at the transmission line terminal load – 

cumulative density function at a single frequency 

Results of Fig. 1 and 2 show a good agreement between 
prediction and measurement. Furthermore, Fig. 2 
shows that the coupled current follows a 2χ  

distribution, both for prediction and measurement 
results. Visual agreement for cumulative density 
function as well as statistical goodness of fit tests are 
passed.  
Once validated the “complete” method by comparison 
with measurement, “fast” methods of equations (5) and 
(6) can be validated with respect to the “complete” 
method. 
The same transmission line of the previous case was 
analysed with “fast” methods. This time, a constant 
plane wave amplitude was chosen as a function of 
frequency, since we are not attempting to compare 
simulation results to measurements. Plane waves 
amplitude was chosen  equal to 1 V/m for the entire 
frequency range. 
Results in Fig. 3 show the comparison between the 
“fast1” method for the prediction of mean value of 
squared current amplitude and the “complete” method, 
as in equation (5). Results for the “complete” method 
where obtained by estimating expected value of 
equation (4) as mean value over 1500 trials, where each 
simulation was carried out by superposing 20 plane 
waves contributions. Results for the “fast1” method 
where obtained  by estimating expected value of 
equation (5) as mean value of 1500 trials. Simulation 
results obtained with the two methods are within the 
random simulation uncertainty and validate theory.  
Results in Fig. 4 show the comparison between the 
“fast2” and “fast3” methods for the prediction of mean 
value of current amplitude and the “complete” method, 
as in equations (6.a) and (6.b). Simulations of 1500 
times 20 plane waves contributions for the “complete” 
method and of 1500 plane waves contributions for the 
two “fast” methods were carried out. 
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Figure 3: MC “complete” and “fast1” methods: 
prediction of the mean squared amplitude of coupled 

current 
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Figure 4: MC “complete”, “fast2” and “fast3” 
methods:  prediction of the mean amplitude of coupled 

current. Differences between "fast2" and "fast3" 
methods are outlined in the text 

Results show that the “fast3” method prediction 
according to eq. (6.b) matches the “complete” method 
prediction, while “fast2” method prediction according 
to eq. (6.a) doesn’t match the “complete” method 
prediction for all frequencies. 
To evaluate the correctness of hypothesis discussed in 
Section III and laying at the basis of equations (6), 
induced current statistical properties, with respect to a 
random incident plane wave, were investigated by a 
numerical approach. Results of this analysis show that 
real and imaginary parts of coupled current have indeed 
zero mean value and equal variance, but the 
probabilistic distribution of real and imaginary parts 
are frequency dependent (see also [12]). Thus, “fast3” 
method of equation (6.b) is applicable, while “fast2” 
method of equation (6.a) is not generally applicable, 
except for frequencies where real and imaginary parts 
approach a Normal distribution. As shown in Fig 4, for 
frequencies far from resonance and anti-resonance of 
the line, where Normal distribution is better 
approached, the “fast2” results better match “complete” 
method results. 

The uncertainty associated with simulation results was 
also estimated according to the classical statistical 
theory of inference on mean value and variance 
estimation. Uncertainty for simulation results of Fig. 4 
are proposed in Fig. 5. Results are proposed as the total 
95% confidence interval ( %95∆ ) of mean estimated 

values, and must be interpreted in the following way: 
mean values results (Fig. 4) 2/%95∆± (Fig. 5) give the 

95% confidence interval of simulation results.  
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Figure 5: Uncertainty of MC “complete”, “fast2” and 
“fast3” methods (1500 trials of 20 plane waves 

superposition for “complete” method and 1500 plane 
waves contributions for “fast2” and “fast3”methods) 

Uncertainty results in Fig. 5 are obtained with a large 
number of simulation trials. This was made to strongly 
reduce uncertainty and thus  evidence as much as 
possible the differences in “fast2” and “fast3” method 
results in Fig. 4. Uncertainties for more realistic trials 
numbers are reported in Fig. 6, where “complete” 
method is applied with 50 trials of 20 plane waves 
contributions and “fast2” and “fast3” methods with 50 
plane waves contributions. 
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Figure 6:  Uncertainty of MC “complete”, “fast2” and 
“fast3” methods (50 trials of 20 plane waves 

superposition for “complete” method and 50 plane 
waves contributions for “fast2” and “fast3” methods) 



Results in Fig.6 evidence that acceptable uncertainty is 
obtained by “complete” and “fast3” methods, even for a 
reduced number of plane waves contributions. 
 
V. CONCLUSIONS 
 
A Monte Carlo simulation method based on a 
superposition of random plane waves has been 
proposed to represent reverberation chamber 
conditions. The generation of random plane waves 
parameters has been discussed and it has been shown 
that the resulting fields agree with the reverberation 
chambers fields statistics. Additionally it has been 
shown how to relate mean fields values measured in 
reverberation chamber and constant plane waves 
amplitude used in simulation. The proposed method 
can be used to predict electromagnetic coupling to 
electrical devices, provided that their response to an 
offending plane wave can be numerically computed; in 
particular the method is advantageous when this last 
computation can be obtained at a low cost. The method 
has been applied to predict the current induced into a 
single wire running over a ground plane inside a 
reverberation chamber. In this case transmission line 
theory was used to predict current induced by an 
offending plane wave. A good agreement was obtained 
between prediction and measurement results. The 
proposed method allows us the prediction both of mean 
and maximum values of coupled electromagnetic 
quantities over one stirrer rotation. 
To reduce computational time, three faster methods 
have been proposed to predict only mean values over 
one stirrer rotation. Basing on simple statistical 
assumptions about real and imaginary parts of 
electromagnetic coupled quantities distribution, mean 
value for amplitude (current or voltage) and squared 
amplitude (power) of such quantities can be predicted 
by faster methods. 
Uncertainty associated with Monte Carlo simulation 
results was also addressed in this work. Uncertainty 
decreases as the number of simulation trials increases, 
and it has been shown that, for the reasonable number 
of 50 plane waves contributions, the uncertainty is of 
the order of 5.1± dB, that is of the same order of 
measurement uncertainty inside a reverberation 
chamber. 
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