
25 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Robust Statistics method applied in the Kalman filter: theory and application / Carosio, A.; Cina, Alberto; Piras,
Marco. - (2005), pp. 525-535. (Intervento presentato al  convegno ION GNSS 2005 tenutosi a Long Beach, CA (USA) nel
SEPT.13-16, 2005).

Original

The Robust Statistics method applied in the Kalman filter: theory and application.

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1409289 since:



The Robust Statistics method applied to the 
Kalman filter: theory and application 

 
 

Alessandro Carosio, IGP ETH – Swiss Federal Institute of Technology Zürich, Swiss   
Alberto Cina, DITAG – Politecnico di Torino, Italy 
Marco Piras, DITAG – Politecnico di Torino, Italy 

 
 
BIOGRAPHY   
 
Alessandro Carosio is a full professor at the Institut for 
Geodesy and Photogrammetry of ETH Zurich. He is in 
charge of teaching and research on GIS and the Theory of 
Errors. Alberto Cina is a  professor at the Politecnico di 
Torino. He works on GPS networks, Theory of Errors and 
Surveying. Recently, he has been developing GPS networks 
in Piedmont, Italy. Marco Piras is Ph.D student in Geodesy 
and Geomatic at the Politecnico di Torino. He works on real 
time deformation monitoring, the treatment of GPS measures 
and the Kalman Filter at the Politecnico di Torino. 
 
ABSTRACT  
 
This research deals with the possibility of using the robust 
methods, particularly the Huber-estimator, in a sequential 
approach. The Kalman filter is a frequently used sequential 
technique, which foresees the use of velocity filter in the 
algorithm. The disadvantage, as in all non robust methods, is 
that any possible errors , that are not removed in the original 
dataset, could lead to an incorrect solution. There are 
different methods in literature devoted to analyzing  and 
detecting  of outliers, that can be applied the Kalman filter. 
In robust statistics, the Huber estimator foresees three ways 
of verifying the basic conditions in the objective function: 
the first is to modify the normal matrix, the second is to 
modify the weight matrix and the last is to modify the 
observation vector. The last method  has been applied to the 
Kalman filter and a particular Robust Kalman Filter has been 
generated. This method is based on sequential calculus using 
the Kalman filter applied to robust statistics. This operation 
makes the relative residual equal to the k parameter, for each 
modified observation. In this situation the Least Squares 
method can also be applied for these observations. The RKF 
has also been applied to a dataset with different outlier and 
the results obtained with other typical sequential techniques 
(Sequential Least Squares) have been compared. The 
method, using the robust statistics, suffers less from the 
presence of outlier because it has a breakpoint of about 0,2. 
This allows many errors to be present in the data, in the same 

epoch, but a correct solution to be obtained. The technique 
could play an important role in sequential applications, for 
example in the control of area correction parameters, 
calculated from a control center. which manages a GPS 
stations permanent network. Another possible case is that of 
real time deformation control. The implemented method 
could therefore be a good solution for outlier detection or for 
to calculate the estimated solution with a low dependence on 
the outliers. 
 
INTRODUCTION  
 
The Kalman filter is satisfactorily used in different 
disciplines (i.e. economy, engineering, etc) as it is a useful 
tool for the recursive treatment of dynamic linear systems. 
The value of an estimated parameter can usually change 
epoch by epoch, but not in number. These models are called 
“static systems”. In other cases, called dynamic, the 
estimation of parameters [m] depends both on the 
observations and on the motion model (usually when there 
are deformations phenomena or estimation of the  
positioning of the vehicles). In these case, the unknown of 
motion model are added to the unknown parameters of 
system. The solution is then calculated by applying the 
Kalman Filter (KF). If there is a dynamic linear system, the 
state vector estimation problem is solved using the Kalman 
Filter through the linear observation model: 

kkkk xFx ε+= −1   (1) 

 kkkk exAy +=     (2) 

where: 
xk: state vector at epoch k [m]; 
yk: observation vector at epoch k [n]; 
Fk-1: transition matrix  [m, m]; 
Ak : design matrix [n, m]; 
εk and ek system and observation noise, where  E(εkεk

T)=Cεk; 
E(ekek

 T)=Cek; E(εk) = 0; E(ek) = 0. Assuming that the initial 
values of x0 and its cofactor matrix Qx0 are known and ε0 and 
e0 are equal to white noise, which are uncorrelated to xk and 
to other values, the estimated Kalman Filter is given one 



prediction step and one correction step, for the model 
described in (1) and (2).  
In the prediction step: 

1/11/1/ ˆˆ −−−− = kkkkkk xFx    (3) 

k
T

kkkkkkkk CFQFQ ε+= −−−−− 1/1/11/1/   (4) 

in the correction step: 
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The classical KF foresees a normal distribution of the errors 
ε and e. The hypothesis of normalized residuals is not always 
verified, as in the case where an outlier or other 
contaminations of the data are present. The purpose of this 
research is to have a correct estimation of parameters in 
sequential way and a Robust Kalman Filter (RKF) is 
therefore required. In literature there are several different 
procedures to make the previous sequential technique robust. 
Some of these are very hard to apply in practical cases for 
example in geodetic problems. Some practical Robust 
Kalman Filter are here described and after a brief description 
of the Huber Estimator and the derived method, called 
BIBER Estimator, a new approach is proposed. 
 
ROBUST KALMAN FILTER USING WEIGHTS 
 
The first method  that is here dealt was described by Kubik 
and Wang [32] and it is used in kinematic GPS positioning. 
This method is based on an algorithm which consider the 
variance-inflation outlier modelling. An outlier often means 
that the residual distribution ,v, has tails longer that those of 
the normal Gaussian distribution. One of these distributions 
is the variance-inflation model: 

),0(),0( 2211 ekvekvk CNCNv αα +≈  (7) 

where Nv(0, Ce) defines the normal probability density 
function  (p.d.f) with zero-mean, variance matrix Ce, 0<α1<< 
1, α1 + α2 = 1, Cek2 > Cek1. This model was opportunely 
studied  and modified by Kubik e Wang, so that it could be 
applied to geodetic problems. 
 
The model expressed in (7) is considered and if we assume 
the “a posteriori” density distribution, p(x1|Y1) which is the 
conditioned probability of x1 (the single parameter that has 
to be estimated) Y1 is known (the observations vector) and 
this probability follows a Gaussian distribution, it is possible 
to show that for each k >> 1, p(xk|Yk-1) can be close to 

Gaussian density measured in terms of the Kullback - Leiber 
distance. Under this hypothesis, the foreseen yk  distribution, 
given Yk-1, is:  
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where 

c is a constant,  

Rki =     (9) eki
T
kkkk CAQA +−1/

And the expected residual is: 
vk = yk – Akxk/k-1      (10) 
 
| Rki| is the determinant of Rki 
 
Equation (10) describes the term of innovation.
Thus 
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12 1 kk αα −=      (13) 
Considering what has been shown until now, equation (5) 
and (6) can be redefined as follows: 
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where 
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The Covariance matrix is: 
 (16) 1/1/1// )( −−− −= kkkkk

T
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where 



Gk is the score function matrix. 
 
This Robust Kalman Filter can be defined applying 
Masreliez’s theorem, with a score function derived from 
variance-inflation model. In the previously mentioned 
algorithm, the state vector is estimated from a weighted 
summation of two standard KFs. The weights are described 
by αk1 and αk2 which are the “a posteriori” probability of 
events that the observations noise come from N1(0, Cek1) and 
N2(0, Cek2) respectively. The score function estimate is a non 
linear estimate of the observations as the weights α1 and α2 
are non-linear functions of the observations like the 
estimates values (14) and (16).  
 
ROBUST KALMAN FILTER AND HUBER 
ESTIMATOR 
 
There are different robust estimation and outlier detection 
methods, where the purpose is both the definition and 
detection of the outliers and an estimation without being 
influenced by outlier effects. It is very important to have a 
special tool that is able to define them effectiveness of the 
method in relation to the different purposes. The Huber 
Estimator is classified as an optimal robust procedure to 
solve problems with outlier defined in the "y-direction". This 
means outliers located in direction y, considering the 
observation space (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Least Squares fit with outlier in the obs. space 

The estimation of unknown x parameters is usually solved 
by the Least Squares, minimizing the sum of residual 
squares. Huber, instead, proposes to minimize: 
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where ρ is the convex function of the residual, which 
increases less quickly than the squared function. The term σ 
represents the deviation standard of the observations. 
Making the partial derivative of previous function with 
respect to x1,..., xm and defining ψ as the influence function, 
it is possible to obtain the following system of equations:  
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The solution of system (18) is called “M-Estimate” from x1 
to xm of the Huber type, where the ρ function is an arbitrary 
function that must be chosen. Huber proposes  the following 
function: 
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The term c is called  the tuning constant and its value 
depends on the data dispersion. This function is identical to 
the Least Squares objective function in the interval (-c; c) 
and outside this interval corresponds to a linear function. 
The estimator defined by functions ρ, ψ and equations (19) 
is called the Huber Estimator. If c  ∞ the Huber estimators 
coincides with the Classical Least Squares estimator. The ρ 
and ψ functions of the Least Squares and Huber Estimator 
are compared and drawn in (Fig. 2) and (Fig.3). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: objective function of Least Squares and Huber 
estimator 
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Fig. 3: influence function of Least Squares and Huber 
estimator 

The normal equation can be defined by differentiating (19) 
from the unknown parameters and considering the partial 
derivative equal to zero. A system composed of three 
different cases: v ≤ -c, -c  ≤ v ≤ c and v ≥c is made through 
this operation. Initially it is not known in which of the 
previous intervals the residual v will be. The problem is 
numerically solved thanks to the help of some iterative 
solution of calculus. The first solution is calculated through 
an iterative process using the Least Squares estimator, but 
the result might not be satisfactory. The process continues, 
moving the value with an outlier towards the fixed values, 
modifying the values continually  until convergence is 
obtained. Assuming σ equal to 1, the Huber estimator is 
defined as the solution of (18). Studying this approach, the 
authors understood that this method limits the influence of 
the outliers to just in y-direction, but it does not consider the 
outlier position, in observation space. Another approach was 
developed from the Huber Estimator and M estimator to give 
robustness to Kalman Filter. This method was described by 
Cipra and Romera [9]. The relation (5) can derive, known 
the values (3) and (4) and described the current values yk, by 
the next  minimizing procedure: 
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where argmin is defined in the whole . Argmin 
represents  the value of the variable with which the function 
value concerned reaches its minimum. This procedure can be 
considered as the weighted Least Squares method, but in 
reality it is equivalent to a non-weighted Least Squares in the 
case of a linear regression model: 
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where the residuals wk and ηk are defined as: 
ψ(v) 

E(wk) = 0;   E(ηk) = 0;   var  (22) I
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Furthermore, comparing (21) with (1) and (2), the following 
equations are obtained: 
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therefore a possible contamination of εk results in a 
contamination of wk without affecting ηk. There is a similar 
behaviour in the second equation, (23), because a probable 
contamination of ek damages ηk without corrupting wk. The 
model defined in (21), can now be rewritten distinguishing 
for particular row as: 
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The model described in (24) is comparable to the Gauss-
Markow model, where the system solution is: 
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that can be robustifyied using (25) with: 
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where i1ρ  and j2ρ  are opportune robustness functions with 

derivative equal to ),...,1(1 nii =ψ  and ),...,1(2 mjj =ψ  as it 
is used in the M-estimator method. 
The application of the robustness function in (26) leads to 
the contamination effect of εk and ek being eliminated. The 
normal function of , given by (26), is: kkx /ˆ
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which can only be solved explicitly in some special cases. In 
general, it is possible to apply the following approximate 
normal equation:  
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where the weights w1ik (i = 1,..., n) and w2jk (i = 1,..., m) are 
defined as:  
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Equations (29) follow from (27) only if is 
approximated with . This method can be considered  
as a recursive variant of the normal equation of the IWLS 
(Iterated Weighted Least Square). 

kkx /ˆ

1/ˆ −kkx

Using (26) and applying some algebraic operations,  the next 
robust relation is extracted from equations (5) and (6): 
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where  and are given in (3) and (4) and W1/ˆ −kkx 1/ −kkQ 1k 
and W2k are respectively: 
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The covariance matrix estimation by means of an non 
approximate approach is much more complex, thus it is 
usually better to use equation (6). The most frequent case of 
contaminated data is called ε-contaminated normal data, 
where a normal distribution with an acceptable variance is 
contaminated by a small value of ε (usually 0.05)  with a 
symmetrical distribution and heavy tails. For this kind of 
data, with an ε-contaminated distribution N(0, 1), Huber’s 
function ψH is: 
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The constant value c depends on ε (it is advisable to use 
c=1.645, for ε=0.05). In the case without any errors,  the 
classical Least Squares approach is used, where: 

vvH =)(ψ    (34) 
 
If the Huber Estimator is applied the following 
considerations can be made. Relation (1) and (2) are 
generally considered in the Kalman Filter. In the normal 
equation, (24), ψHi = ψHL(i=1,...,n) and ψ21 = ψH are 
considered. A new recursive robust relation, applying to  KF, 
can be described,: 
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With (30), relation (32) can be rewritten as: 
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where: 

vp = expected residual =  )ˆ( 1/ −− kkkk xAy
(IA.37) is used when the following relation is verified:  



)( 1/
5.0

k
T
kkkkkp vAQAcvv +≤ −

−   (38) 

In the other cases (IIA.37) is used. If we consider a general 
function  ψ instead to ψH, in according with (27) and (28) the 
solution can now be definied as: 
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There is the recursive estimation of parameter x, in a linear 
regression model (1) and (2), with observations  y affected 
by errors. The easiest case could have a transition matrix F, 
equal to the unitary matrix. 
 
ROBUST KALMAN FILTER WITH BIBER 
ESTIMATOR 
 
The proposal here is to give robustness to the Kalman filter 
starting from BIBER estimator. This estimator belongs to M-
estimator family, in particular the Schweppe type. 
 
 
The estimator is defined as the solution of the system: 
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where the deviation standard of residuals is employed as 
additional weight µi. This weight is: 
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The functions ρ and ψ are represented by: 
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there are three different cases, that depend on the 
standardized residual: 
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(III) ⎟⎟
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≥ c 

Case (II) coincides with the Least Squares method. The user 
chooses the value of constant c, but the recommended value 
in literature between 2,5 and 4 generally falls. 
Equation (45) can only depend on the residual vi: 
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where ki = vic σ⋅ . This limit results to be different for each 
residual, but it is unchanged during the process of 
computational process, once viσ ”a priori” is estimated. The 
solution is sought by minimizing function (47), in three 
different intervals. The calculus procedure is composed of 
three steps: 

• Least squares fit 

• Choice of the observation with the largest ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

vi

iv
σ

 

• Calculation of the unknown parameters and new 
residuals 

 
Assuming the number of outliers not too high, a first 
compensation can be effected by Least Squares method, 
which offers the chance of classifying all the observations 
inside interval (II). In the second step, the observation with 
the greatest absolute standardized residual value, is removed 
from interval (II). When the residuals are correlated,  it is 
difficult to individualize the observation affected by outlier, 
thus the one with the most elevated absolute residual value is 
chosen. When this observation has been identified, it is 
possible to estimate the unknown parameters and the new 
residual, thus giving a reduced influence to the marked 
observation. The different influence can be considered 
through one of the following methods:   

• Recalculation of some parts of the normal matrix;   
• Correction observation yi;   



• Decrease of the weight of observation yi. 
 

These methods lead to the same result. In the case of 
corrected observations, an attempt is made to modify the 
observations which are outside the interval (II.46). In this 
way the residual of those observations correspond exactly to 
- ki or +ki. The modified observation, yi(mod) has therefore 
less influence on the calculation of the unknown parameters. 
From an algebraic point of view, the problem is described 
with the following equations. The residuals of yi can be 
expressed as: 

ninvviiivvi yqyzyqv )(......)( 11 −−−−−=  (48) 
and for the modified observations, becomes: 
 

ninvviiivvii yqyzyqkv )(......)()sgn( (mod)11 −−−−−=  
(49) 
 
Placing di: 

iiii kvvd )sgn(−=  for ii kv >  (50) 
and comparing (48) with (49), the modified observation 
results to be equal to: 
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After the observation has been modified, the new parameter 
xrob and the respective residual can be estimated. In this way 
it is not necessary to invert the normal matrix, because the 
draw matrix and the weights matrix do not change. 
The unknown parameters and the correspondent residuals 
are: 
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After this first calculation, it is necessary to establish 
whether the new residual falls into the interval (II.46). This 
procedure is applied iteratively to all observations with 
residuals outside this interval. After this iterative process, the 
parameters are estimated through a robust technique. The 
residuals calculated for each observation yi, step by step, are: 
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where s is the number of iterations. 
The total residual is: 
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The estimation obtained from the Least Squares is:  2
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In the same way the proposal with the BIBER estimator is: 
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where β is a constant that is defined by: 
))(2)1)(2)(1(( 22 ccccc ϕβ −−Φ++=  (58) 

In (58), Φ is the normal standard distribution, while ϕ is its 
density. An attempt was made to apply the BIBER estimator 
principle to the Kalman filter. Starting from the correct 
solution of Kalman filter (5), it can be rewritten as: 
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equation (59) can also be reduced to: 

)ˆ(ˆˆ 1/1// −− −+= kkkkkkkkk xAYKxx  (60) 

 
where Kk is called gain matrix. The technique that needs to 
be applied in the BIBER estimator is that of defining 
solution (60) with a classical approach of estimating the 
residuals (48) and classifying them according to (46). An 
iterative process is followed which leads the observations to 
be modified, solving the problem with Least Squares, at the 
last step. Recalling (5) and using K term equal to: 

1
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T
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a solution is obtained that is described by: 

)ˆ(ˆˆ 1/(mod)1// −− −+= kkkkkkkkk xAYKxx  (62) 

The calculus of the covariance matrix can be developed 
using (6), because no term is modified. Equations (56) and 
(57) need to be recalculated for the  estimations. 2

0σ
In the sequential approach, relation (56) can be rewritten as: 
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where  
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with T obtained from: 
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Rewriting (57), using (63) the following is obtained: 
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This method is very adapt in sequential calculations, in 
particular with KF. Using the KF, the normal matrix is only 
sequentially adjourned and not recalculated. Some 
applications of this method, concerning problems of GPS 
positioning, are now shown. 
 
APPLICATION AND CASE STUDIES 
 
The previously described algorithm has been developed in 
MATLAB and applied to some sequential problems in 
Geodesy, particularly when operating with measurements 
GPS. The first problem concerns the parameter estimation of 
differential corrections in a network of GPS permanent 
stations. In recent, the number of GPS stations has increased, 
leading to necessity to build a control network that can 
manage and check the correctness of operations. It performs 
a real time service, which offers different kinds of real time 
positioning (VRS, FKP, MAX, etc), using the network 
information. The main concept consists  in using a correction 
model to replace single corrections generated from each 
station. The reliability of the data transmitted is very 
significant because users are not able to decodify the 
received message and there is not always the possibility of 
obtaining raw data. The FKP method is an example, which 
through a particular polynomial, all differential correction 
generated by a single stations of the network are 
interpolated. It is possible for various reasons, to have an 
outlier to remove that has to be removed, so as not to have a 
wrong real time positioning. The main cause of this incorrect 
parameters estimation is the absence of one or several 
measurements that arrive at the control center. This absence 
can be caused both by the absence of differential correction 
or high latency in the communication network. With this 
problem the data cannot be used, because the control centre 
receives the single differential correction when it is 
unusable. Without spending too time to explain the 
principles of this method, the interpolation model, using 
FKP method, is represented in the following and the kind of 
phenomenon that is obtained when the data are affected by 
outlier is also given. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Interpolation model FKP (Flächen-Korrektur-
Parameter) 

The interpolation model is composed of different parameters 
which considers the signal GPS behaviour along the 
satellite-receiver track. 
The absence of one or several differential corrections leads 
to a different interpolation model, thus the parameters, which 
describe the model changes brusquely. Most users are not 
able to understand what has happened. Let us simplify this 
model and consider a bidimensional case, where a series of 
GPS stations are lined up. Each station transmits the 
differential corrections. In a normal situation there is a 
regular model (blue) defined by all the corrections, while in 
the case where a correction (ref2) is missing, the model is 
again recalculated (red). 
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Fig. 5: FKP definition: with and without re

If one parameter is analysed which defines th
be observed that in the normal case, while th
points some spikes, which are caused 
previously described.  
This phenomenon can be seen in fig. 6. 
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Fig. 6: dr1 vs time 

The parameters estimation can be defined by a sequential 
method. The problem has been solved both with sequential 
Least Squares and Robust Kalman Filter (RKF). Raw data 
have been generated in order to have an "exact" solution 
available and to be able to control the position and number 
of the outliers. The raw data represent the trend of one of the 
parameters of interpolation model, which is calculated using 
the sequential approach. In the observations (around 100), 
10% are outliers. The implemented RKF  has a breakpoint 
equal to 0,20. The same breakpoint is contained as the case 
of the Huber Estimator. The entity and position of the 
outliers change but these, considering the results, do not 
influence the final solution. Let ε be the value correlated to 
the problem. A comparison has been made between Least 
Squares solution, that it coincide with classical Kalman 
Filter, and RKF method. The traditional Kalman Filter might 
not be influenced by the presence of outliers if the outlier is 
occurred many epochs before and, above all, if it is a rare 
case. The problem becomes worse when the number of 
outlier increases and the distribution is random, therefore 
each solution could be contaminated by gross error.  
Comparing the solutions, the following is obtained:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: LS solution vs RKF solution 

The estimated solution, epoch by epoch, using the Robust 
Kalman Filter is almost perfectly overlapped by the raw data 
trend, while the Least Squares solution results, during the 
time, to be worse and leads to an incorrect solution. 
 
Another possible application exists, which is also related to 
real time GPS positioning, but which is in this case, applied 
to deformation monitoring. This case considers a particular 
approach developed at the Politecnico di Torino, which 
foresees the use of a special phase combination, called triple 
differences, to obtain a positioning and the identification of 
movements in the first step. After, it is necessary to apply a 
more precise method to control the deformation: the double 
differences are used. Triple differences are more convenient 
because they constitute an easy combination to use during 
the data treatment. Triple differences, in fact, do not suffer 
from phase ambiguity and they also have a more regular 
trend, which permits eventually cycle slips phenomena to be 
identified in the raw data. This phenomenon is described by 
an high peak. The RKF method is also fundamental in this 
case, because it allows the triple differences trend to be 
redefined, without the influence of small noises or gross 
error. In pre-analysis, where triple differences are used, the 
real time correct position estimation of  the monitored point 
is very important, to avoid false alarm process or some panic 
situations. The Kalman Filter is a good sequential tool, but it 
is not sufficient. It is also necessary to have a good outlier 
identification tool. In the raw data, in particular when the 
triple differences are used, there is both cycle slips and some 
errors caused by external phenomena. The triple differences 
trend is the following: 
 
 

 

 

 

 

 

 

Fig. 8: Triple differences 

The regularity is interrupted by the presence of outlier, 
which if not preventively individualized, could cause an 
incorrect position estimation. 
 
CONCLUSION 
 
Many different kinds of methods exist in literature to make a 
Robust Kalman Filter. Not all approaches are easy to apply 



in geodesy, in particular concerning real time GPS 
positioning. It is clear that it is very important to have both a 
sequential calculus and a robust method there are not 
influenced by outliers or other effects in the measurements. 
Frequently, many process are developed in real time, 
therefore the main purpose is a good data analysis, to remove 
all the gross error in the raw data or to have a good tool 
which also works in a non perfect Gaussian distribution.  
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Conditioned probability 
 
A and B are events from random test with P(B)>0. The 
conditioned probability of A, given B, is defined as: 

P(A | B) = P(A B) / P(B)  (67) 
This concept is based on the axiomatic definition of 
probability. The conditioned probability concept is analyzed, 
starting from the less formal notion and the most intuitive 
relative frequency. In a particular event  C, with Nn(C) 
number of times, C  has been verified in the first n test. If 
Nn(B) is high, the conditioned probability that A will be 
verified B having been verified, Nn(B) must be close to the 
conditioned relative frequency of A given B. In other words, 
the relative frequency of A, when B has been verified, is: 

Nn(A B) / Nn(B)   (68) 
However, another application of relative frequency concept 
is considered: 
 
Nn(A B) / Nn(B)  
= [Nn(A B) / n] / [Nn(B) / n]    (69) 
 
P(A B) / P(B) as n . 
 
This leads to the same definition. 
Sometimes, the conditioned probability can be directly 
calculated. 
 
Kullback-Leibler distance 
 
The Kullback-Leibler distance (KL-distance) is a natural 
distance function from a "true" probability distribution, p, to 
a "target" probability distribution, q. It can be interpreted as 

the expected extra message-length per datum due to using a 
code based on the wrong (target) distribution compared to 
using a code based on the true distribution. For discrete (not 
necessarily finite) probability distributions, p={p1, ..., pn} 
and q={q1, ..., qn}, the KL-distance is defined to be  

   
KL(p, q) = Σi pi . log2( pi / qi )   (70) 

For continuous probability densities, the sum is replaced by 
an integral.  

   
KL(p, p) = 0                 (71) 
KL(p, q) ≥ 0  
 

Note that the KL-distance is not, in general, symmetric. 
 
Masreliez’s theorem 
 
Assuming that p(xk|Yk-1) is a Gaussian density, with the 
mean equal to xk/k-1 and covariance matrix Qk/k-1 and with 
E(ekek

T)= Cek, the conditioned value of xk and its conditioned 
covariance Qk/k satisfy: 
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where gk(yk) is also called the “score function”, in vector 
form, with components: 

[ 1
1

1 )|(
)(

)|(
))(( −

−
−

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−= kk

ik

kk
ikk Yyp

y
Yyp

yg ]  (74) 

and Gk is a matrix with elements: 
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if equation (69) and (72) are compared with (3) and (9), it 
can be seen that this theorem preserves the recursive Kalman 
filter structure, but it replaces the linear score function with a 
non-linear score function gk(yk). The density not Gaussian 
observations can be manipulated by (71) and (72). 
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