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Herringbone ordering and lattice distortions in a planar-molecule model
for Langmuir monolayers

C. Buzano, A. Pelizzola, and M. Pretti
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica del Politecnico di Torino, 1-10129 Torino, Italy

(Received 22 December 1999; revised manuscript received 23 May 2000

A model of planar molecules, made up of “atoms” interacting by Lennard-Jones potentials and arranged to
mimic the cross section of alkyl chains, is used to study the problem of backbone plane ordering in Langmuir
monolayers. It is shown that two minima of the interaction energy are reached if molecules lie on the sites of
a centered rectangular lattice in a herringbone configuration with two different dihedral angles. These orien-
tationally ordered phases can be related to the so-called herringbone and pseudoherringbone structures, whose
lattice distortions qualitatively agree with those determined by means of grazing incidence x-ray diffraction
experiments on Langmuir monolayers. A third energy minimum is obtained for a configuration of parallel
molecules on an oblique lattice, which has also been observed in some experiments. The competition between
the three phases is investigated, upon varying geometric parameters of the model molecules and surface
pressure. The effect of temperature is analyzed in a mean field approximation, by taking into account the
orientational entropy contribution on a lattice system with variable unit cell parameters. In this framework the
transition to an orientationally disordered phase is also pointed out.

PACS numbd(s): 68.10—m, 68.15+¢

I. INTRODUCTION In any case an important feature of lower temperature
phases is ordering of molecule backbone planes, which usu-
Monolayers of amphiphiles adsorbed at a water-air interally gives rise, at least in the case of nonchifacemig
face (Langmuir monolayenshave attracted considerable in- monolayers, to a herringbonelike structure. If a two-
terest, for instance, in biology, where they have been used aimensional crystalline phase is considefedmely, CS or
simple models of living cell membrangs], and for their | 7 phases for fatty acidsmolecules with opposite backbone
possible future applications, such as the construction of MOgentations are placed on two simple rectangular sublattices,
lecular electronic devices based on Langmuir-Blodgett film§, \yhich the centered rectangular lattice can be split. The

[2]'. The physics of Langmuir rnonola_yers ?5 intereStingordering of backbone planes can be inferred from knowledge
ms.'nrl]y becguse tgey are q_uaS|-twod-d|mens;]onal system%f unit cell parameters, which are usually measured by
which can be used to investigate ordering phenomena an o ) . : -

phase transitions in two dimensions. In addition Langmuirmeans of grazing incidence x-ray diffractiéBIXD) experi

monolayers are the only example of two-dimensional sys—ments[lo_12 (see Ref|6] for a review and must be ana-

tems on which it is possible to perform a direct mechanicafyzeOI after a projection along thi@veragg long axes of the

compression, which gives rise to peculiar phase transitionfolecules, in order to exclude dlstqrtlons caused by tilt. Re-
[3,4]. The thermodynamic behavior, which is thus controlled®ently Kuzmenko, Kaganer, and LeiserowjitZ3] have com-

by both temperature and surface pressure, turns out to J&red projected unit cell parameters extracted from GIXD
very rich and displays several condensed phfSgsharac- data on a large variety of amphiphilésot only fatty acids
terized by different degrees of translational and orientationaln different thermodynamic conditions, showing that in low
order. A considerable amount of work has been devoted itemperature phases molecules pack with two possible unit
recent years to the investigation of phase transitions an@ell distortions(toward nearest neighbors and next nearest
structural properties in Langmuir monolay¢f. Particular  neighbor$, whereas in mesophases the unit cell parameters
attention has been addressed to monolayers composed of tapproach those of a hexagonal lattice with a higher area per
simplest amphiphiles, that is, fatty acids, allowing a detailednolecule. The two different distortions can easily be related
determination of the phase diagradm]. Low temperature to two different packing modes of alkyl chains, which were
phases turn out to be crystalline phases, displaying translaready characterized several years ago for bulk crystals by
tional long range ordefin one or two directionswith mol-  Kitaigorodskii [14], on the basis of a simple close packing
ecules packed in a regulécentered rectangular or distorted theory, and can be defined respectively as herringlfbii
hexagonal lattice, whereas higher temperature phases arand pseudoherringbon@HB). Both close packing theory
mesophases, possessing partial orientational and translatioradd lattice energy calculations performed by Kuzmenko
disorder (hexatic phases[8]). Moreover, surface pressure et al. [13] predict that the two packing modes display two
drives tilting of molecule long axes, which can take place indifferent dihedral angles between backbone planes, namely,
different directions(mainly toward nearest neighbors and about 90° for the HB case and about 40° for the PHB case.
next nearest neighbgrbut usually preserving the symmetry Obviously neither of these two theories is suitable to repro-
of the rectangular unit cell. Apart from fatty acids, a largeduce higher temperatutenesophasebehavior, where mol-
number of amphiphiles have also been investigated at thecule cross sections are averaged to a circle because of ther-
water-air interfacd9], even if the phase diagram is not al- mal fluctuations, giving rise to a hexagonal unit cell. In the
ways perfectly known. case of chiral monolayers, in which enantiomer separation
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takes place, a third packing mode, with molecules arrangedntropy contribution. The paper is organized as follows. In
on an oblique lattice with parallel backbone planes, has beeSec. |l we give a description of the proposed model, starting
observed experimental[jL5]. The above cited lattice energy from molecule features, which are justified on the basis of
calculations[13] partially account for the stability of this qualitative arguments about the structure of alkyl chains. As-
configuration and a third energy minimum is actually dis-suming a Lennard-Jones potential to describe interaction be-
played for zero dihedral angle, even if the rectangular symiween the elementary constituents of the model molecules,

metry is imposed and hence no oblique lattice can be obthe total interaction energy of t_he model is deri_ved. In Sec.
served. Il we show that a stationary point of the energy is reached if

Several models have been proposed in the literature t@?lerI?s arel'ar'rang?d on algeneric two-?]i.mr(]ansiolnal lBra-
describe the finite temperature phase behavior of Langmu}f&iS lattice split into four sublattices on which molecules
monolayerssee Ref[6]), sometimes reproducing backbone must hqve_ the same onentatlons_, to be determined by_ means
plane ordering, too, and the transition to an orientationaII)Pf avarlatlona] procedurghe c_ieta|led pfoof’ togetherwnh.a.
disordered phase. Nevertheless, different packings of thg]ethoq to verify thgt the stationary point is actually a mini-
backbones and their relationship with different possible uni"ym: 1S presented in an AppenbinA grounc_i state analysis
cell distortions were usually not taken into account. For ex-> then performed, upon varying a geometrical parameter that

ample, some molecular dynamics simulations on atomié:h""r""cterlzeS model molecules, by carrying o(umerica)

models[16] have displayed herringbone ordering but havevariational procedure, which also returns the optimal lattice

been performed with periodic boundary conditions and Jarameters. These calculations actually show three different

fixed size of the simulation box, thus not allowing distortions minima, two of them corresponding to two herringbone con-

to be reproduced. Another approach, particularly devoted tggurations on the centereq rectangular Iatticg with different
the problem of backbone plane ordering, considers purel ihedral angles, and the third one corresponding to a parallel

two-dimensional models of noncircular particles, representé grflgat:;?zgtnerort] ?:Sog"?lig lgt;'gr%?;g?e”lﬁfclglee%‘teoenggtr”'
ing the projection of amphiphilic molecules in the plane or- p u u Iscrimi W 9y

thogonal to their long axes, and neglects all other degrees &onﬁguraﬂon. In Sec. IV a finite temperature analysis is car-

freedom. In this way it has been possible to reproduce foFIed out by minimizing a variatiopal mean field free energy
instance, by means of Monte Carlo simulatidid,18 a, evaluated for molecules constrained to lie on a Bravais lat-

phase transition between rotationally ordered and disorderetbce' The optimization is _carne_d out with rg_spec_t t(.) Ia;tlce
phases, but the fourfold symmetry of the model potentia arameters and to the orientational probability distributions.

employed did not allow a parallel alignment to be distin- he model is studied upon varying temperature and the re-

guished from a real herringbone ordering, which actuallysur[S of this investi_gation, namely, the temperature—surface-
needs a twofold symmetry. A model with such a symmetry,pressure phas_e dlagr_a_m, unit cell parameters, and_ orienta-
consisting of an effective quadrupole-quadrupole potentialthnaI probab_|I|ty densities, are then presented and dlscu_ssed
which depends on orientation variables, was developed quitié] Sec. V. Finally Sec. VI is devoted to some concluding
a long time ago by Mey€dr19], and subsequently studied by remarks.

various statistical mechanical technigy@9-27. For this

model the herringbone structure turns out to minimize the Il. THE MODEL

energy, if molecules are fixed on a hexagonal lattice, but the
effective potential is independent of distance and hence it is
not possible to take into account lattice distortions occurrin - S
in Langmuir monolayers. More recently Schofield and Ricee Vvertices of a rectangle, as shown in Fig. 1. We shall

have considered the problem of backbone ordering by mear&SSUme that each atom of a molecule interacts with the atoms
of a lattice density functional theof28], whereas Swanson, of all other molecules by means of a Lennard-Jones potential

Luty, and Eckhardt have employed an atomic model of mol-

ecules, calculating the energy of the uniformly strained lat- 1 2

tice (which allows them to take into account backbone pack- V(r)= r_lz_ r_‘i’ (2.7)
ings) and hence evaluating the partition function by

integrating over the straif29]. ) ) ) )

In this paper we shall approach the problem of unit cellwherer is the distance between interaction centers. Let us
distortions on the basis of a planar-molecule model, which ig'0te that Eq(2.1) has been normalized in such a way that
intended to exclude tilt effects and describe the monolayer ip0th depth and distance of the potential energy minimum
the plane orthogonal to the tilt direction, as in R¢fsz,1g.  turn out to be equal to 1, thus defining length and energy
Unlike that case, a particuldrotationally twofold symmet-  units. The circles in Fig. 1 have a conventional radius equal
ric) shape of model molecules is chosen, which tries td0 half _the_d|stance of the potentlal minimum (1/2 with our
mimic the cross section of alkyl chains and turns out to be aformalization. For calculations we shall actually cut off
important ingredient in reproducing backbone plane ordering/(r) at some distance,, and use as a potential enernggr),
with the different packing modes. The molecules have conédefined as follows:
tinuous rotational degrees of freedom and the possibility of
unit cell distortions is taken into account in the following V7R _
way. Unit cell parameters are calculated by finding the pack- VD=V =V(ro), r=fo,
ing mode that minimizes the free energy, which is evaluated .
in a mean field approximation, introducing the orientational V(r)=0, r>ry. (2.2

The basic objects of our model are planar molecules,
ade up of four interaction centers, or “atoms,” placed on
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y where the dependence on the characteristic lerdjtlasdd.,

is not explicitly denoted. The interaction energyof two
molecules, whose centers are placed at certain positions rep-
resented by vectons r’, and whose orientations are respec-
tively ¢,¢', can be easily calculated by summing all inter-
actions between pairs of “atoms” in opposite molecules,

ie.,
x E= E, , V(|£,_L_’_gsisé(w,)_gslsz(’ﬁ)b
=E(r'—r;¢,¢), (2.9

where summations are understood to run os€s;,S;,S;

==+1. As a direct consequence of molecule symmetries, the

pair interaction energy has the following properties: it is in-

variant under exchange of positions and orientations of the
FIG. 1. Model molecule and its degrees of freedom. Vertices ofWO interacting molecules,

the rectangle are interaction centécircles represent hard cojes

- Iy — . !

d, andd, are shape parameters. The degree of freedom is the angle E(-Ly ) =E(L ), (2.6
¢, denoting a(counterclockwisg rotation in thex,y plane. Unit o, _ . ,

vectors(; and(, define a frame of reference attached to the mol- By ) =By, 2.7
ecule.

whereas a change of sign in both orientations turns out to be

) equivalent to a mirror symmetry with respect to ther y
The particular shape chosen for the model molecules cagyis,

be motivated by the fact that, in a conformationally ordered

(all trans) alkyl chain, hydrogen atoms are placed in pairs E(r;— ¢, — ¢ ) =E(XX—YY)-1;4,4") (2.9
alternately on two opposite sides with respect to carbon at- - -
oms. Hence, on projecting the chain in a plane orthogonal to —E((=XX+9Y) -1 2.9

its axis, the positions of hydrogen atoms qualitatively corre-

spond to the interaction centers of the model molecule. Ongnotice that Eq(2.9) can be derived by Eq2.8) and(2.6)].

can object that this model is extremely rough, because, bequations(2.6), (2.7), (2.9), and (2.9 will be used later in
sides the hypothesis of conformational order, the contribuprder to simplify calculations.

tion of carbon atoms is completely neglected and hydrogen Considering many interacting molecules the total interac-

atoms are “squeezed” on a single plane. Nevertheless, Wgon energyU can be simply written as the sum of pair in-
believe that two main features are needed to make herrlngeraction energies in the fo”owing way:

bone packing possible: rotational symmetry breaking of mol-

ecules and the existence of small lateral “cavities,” accord- 1 — _

ing to the picture provided by close packing theory. Both Uu=3 E Omm E(Fmr —Im i éhm Ymr), (2.10
these characteristics are present in our planar model mol- mm

ecules. wherem,m’ label molecules$,,,y is a Kronecker delta, and

Assuming now that molecules can move freéhanslate
and rotate¢ in a plane, we calculate the interaction energy
between two of them as a function of théielative) position
and their orientations with respect to a fixed axis, which w
identify with thex axis. We can se@Fig. 1) that the positions
of the vertices of the rectangl&ith respect to the origin of

the overbar denotes a Boolean inversio_n=((1 and 0= 1);
rmandy,, (r, andiy,,) denote the position and orientation
eof moleculem (m’).

IIl. GROUND STATE ANALYSIS

axes can be written in vector form as In this section we shall perform a ground state analysis
but, in order to do so, we shall introduce two important sim-
d=s;d,0;+5s,d50,, S1,5,=*1, (2.3  plifying hypotheses, supported by experimental observations

and justified by analytical argumentsee the Appendix for
whered, andd, are geometrical parametefsalf sides of detaily. The two hypothe_ses reduce t_he_ energy minimization
. B ~ . to a tractable problem with a few variational parameters and
the rectangleand unit vectorsl; andu, defmeﬁa trame of consequently they do not consider the most general case, but
reference attached to the molecule. Expressingl, as & it is possible to provéAppendiy that the solutions found in
function of unit vectors,y defining the fixed frame, and of this way are actuallylocal) minima of the total energy, with

the angley, we can also write respect toall its independent variable@amely, molecule
positions and orientationsLet us now introduce and discuss
d=(s,d; cosy—s,d, Sin )X+ (s,d; siny+s,d, cosyy)y ~ the two assumptions.

—q _1 2.4 First of all we shall assume thaholecule centers are
=ds;s,(), s1,8=*1, (24 placed on the sites of a generic two-dimensional Bravais
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lattice (condition )). Notice, by the way, that this is a slightly which denotes explicitly that it is independent of Conse-
more general case than the centered rectanddiatorted quently, we can write
hexagonal lattice, the common lattice structure of low tem-
perature Langmuir monolayer condensed phases. ConditionE WE(R P ):EU (VW)
can be written in the following way: & Ty sy e By By g Ty Ry By
(3.6
'm=Rm, my=ma;+mya,, (3.9 _ o

whereN is the total number of lattice sites, and hence
where the molecule labeh is now understood as a two-
dimensional indexm.i(ml,mz) running over all integgr U|R\p:E Z Uy (W, ). (3.7)
pairs, a,,a, are basis vectors, arﬁ(ml,mz) is the generic 8
vector of the Bravais lattice.

From a purely geometric point of view the lattice can be
split into four (Bravai9 sublattices, defined, respectively, by
the parity of the two indicesn;,m,. There are just four
possibilities for (ny,m,), namely, (even,evejy (even,odd,
(odd,even, or (odd,odd. We shall assume thatl molecules
in a sublattice have the same orientati¢condition 1l). In

!

vy

The ground state energy, which we shall now denote by
Ulgy, turns out to be a function only of the lattice basis
vectors a; and a, and of the four anglesV, [y
=(0,0),(0,1),(1,0),(1,1), each one representing a whole
sublattice. It is possible to shoysee the Appendix again
that if the derivatives ofJ|zy with respect to the sublattice

order to display parity explicitly, from now on we shall anglesaU.lm,/a‘lfy vanish, themum%’ evalugted in the
modify molecule (or site labels into m=y+n, where v two con(_jlt_lons(S_.l) and(3.2) a'?’o vanistiym. .Th's ensures
=(0,0),(0,1),(1,0),(1,1) is a parity index amd=(n,,n,) f[hat a minimization Of.J|R\p , which we are going to perform
another two-dimensional index wherg ,n, are any even in the foIIovymg, provides also a stationary point of t.he total
integers. Condition Il can then be written as energyU with respect to all positions and orientations. A
straightforward way to verify whether this is actually a mini-

A (3.2 mum is discussed in the Appendix.

7 7 Before going on with the ground state analysis let us now

This hypothesis will be relaxed, at finite temperature, assumintroduce some symmetry properties of the previously de-
ing that molecules in a sublattice have not the same orientdined functionsv,,, (¥, W), which will allow us to simplify
tions but only the same orientational probability density. analytical and numerical calculations both here and in the
It is possible to showsee the Appendixthat the partial ~finite temperature analysis, which will be carried out in the
derivativesaU/dr ,, of the total energy with respect to the Next section. These properties come from the translation in-
position of each molecule, evaluated in the conditions | anyariance of the Bravais lattice and from the symmetries of
Il [Egs.(3.1) and(3.2)], turn out to be zero. This is not yet the pair interacion enerdy, defined by Eqs(2.7), (2.8), and
sufficient to guarantee that a stationary point of the tota(2.9. First of all, using the translation invariance of Eg.
energy is reached and an additional condition over orientat3.9, we can show that,,,, does not depend on both indices
tions is needed. Nevertheless, this condition will be auto-y,y" butonly on (y'—v),, that is,
matically supplied by the minimization with respect to sub- , ,
lattice orientationsl',, as discussed below. Vyy (W W) = 10,07 -, (W, W), (3.9
Introducing assumption@.1) and(3.2) in the total energy

expression(2.10, which we now rewrite in the new notation WNere (). denotes that the argument in parentheses is to be

considered modulo 2. This fact allows us to compute only
1 four out of 16 functions of two angular variables. Moreover,
U= > > > Oyy Onn E(C yrinr =T yinsWyin Uy inr) Eg. (2.7), together with Eq(3.5), allows us to show that
v,y nn’

3.3 Uy (U W) =0, (¥, V"), 3.9

[wherey andy’ can take the values (0,40,1),(1,0),(1,1), whereas, due to Eqé2.8) and(2.9) it can easily be proved

whereash andn’ run over all pairs of even integdrsve can  that, in the particular case of the rectangular lattice,
write

. v (—W,—W )=y (). (3.10
U|Bx1/=§ E 2 Oyy Onn E(Ryr — i —n iV, W), In view of the ground state analysis we now have to mini-
yy nn 3.4 mize the energy3.7) with respect to the angle¥ , and the

lattice basis vectora; anda, (actually we shall consider the
where the subscripts gy denote just that the two conditions direction of a, fixed along thex axis, so tha@lzb% and
(3.1 and (3.2 have been applied. Moreover, the transla-2a,=cx+ay, as shown in Fig. 2, whera,b,c are scalar
tional invariance of Bravais lattices allows us to write thevariationa| paramete)‘sWe perform a numerical minimum

inner sum(that overn’) in the following way: search, making use of standard optimization routines
(MATLAB), using a large number of guess solutions, chosen
S 5 ) - to cover as uniformly as possible the set of allowed values of
5 75 rE R [ ’_ ,‘I’ ,\If 1) =Vt \I’ ,‘I’ 1), ..
; vy O E(Ry —yin o iWy W) =0y (W, ) the variational parametefas far as angular parameters are

(3.5 concerned the set can be conveniently reduced using the
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Yy HB

T - 7. | O K
L

0 2.0161

FIG. 2. Two-dimensional Bravais lattice and a possible choice
of basis vectorsd;,a,). Solid circles denote sites and thin solid PHB
lines denote two-site unit cells. Cell parametersaigc. If b=c a
centered rectangular lattice is obtained.

symmetry property(3.9]. We choose a cutoff distanag 1.0321r

=10, which gives substantially correct results and avoids M \p
excessive computational effort, and the molecule geometrical ﬁ\ ﬁ
parameters of

1/d,=3, d,/d;e[0,1], (3.12)

representing a significant case in the framework of our
model. Remembering that the length unit is the distance of .
the Lennard-Jones potential minimum, we notice that the 0

choice ofd; is in quite good agreement with alkyl chain

parameters commonly used in the literatLird], whereas the =
values of the parameteat,/d;, which will be referred to as

the aspect ratiofrom now on, can also move away from
literature values. This is not so worrying because precise
values of this parameter are not extremely meaningful in
such a simplified model. As a result we obtain only three
different minima, corresponding to states of the system
sketched in Fig. 3 for the particular casdg/d;=0.16. In two

of them molecules are packed on a centered rectangular lat-
tice and display only two possible orientations, opposite with
respect to the sides of thigentered rectangular unit cell.
With the choice of basis vectors displayed in Fig. 2 we have

2.9787

1.51741

(=]

Yo00=V1o=VYon=—Yay, (3.12

0 2.02612.6525

that is, only two sublattices can be distinguished. Opposite . )

orientations characterize two different kinds of herringbone _FIG. 3. HerringbongHB), pseudoherringbon€”HB), and par-

ordering, the former with higher anglésbout 118° between aII_eI_ P) packmg modes, corresponding to the ground state energy

backbone plangsthe latter with lower anglegabout 35° ~ Minima in the case ;=30 andd,/d;=0.16. On the axes one

between backbone plane§hey can be naturally related to can re.ad t.he lattice parameters CorreSpond'ng {0 a nearest n.e'ghbor

HB and PHB packing modes, even if the angle values do n istortion in the HB_ case, a_next peare_st neighbor distortion in the
- . - . HB case, and an intermediate distortion for the P case.

coincide with those predicted by more detailed models

[13,14]. The numerical values of the lattice parameteas (

andb=c) are also reported to allow a comparison with ex- Voo=Ywo=Yon=Yauy- (3.13

perimentally observed lattice distortions. Precise values are

not quantitatively correct but we realize that the HB mini- As already mentioned in the Introduction, this kind of con-

mum_corresponds to a nearest neighbor distortidn ( figuration, which from now on will be referred to asrallel

<a\/3) and the PHB minimum to a next nearest neighbor(P), is rarely observed in Langmuir monolayers, except for

distortion (b>a+/3), according to experimental results. In the case of chiral resolved amphiphiles, in which our results

the third minimum the lattice becomes oblique and mol-about lattice distortions again qualitatively agree with those

ecules display equal orientations on the whole lattice, that ispbtained in experimentsee, for instance, Refl5]). Actu-
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0400 T Ty ecule, reported in Fig. (b). Generally the lowest energy
0.300'_ I/ ) phase(at zero pressujés also the one with the lowest area
I ',' ] per molecule, that is, the predominant phase at zero pressure
0.200 - K . is predominant at infinite pressure as well. A different behav-
01100'_ /’ ] ior is observed only for a range of values_ of the aspect ratio
AU/N I /,\ | aroundd,/d;=0.16, in which the P packing modaearly
0.000 degenerate with PHBhas the lowest energy but a slightly
I larger area per molecule than the HB mode. This fact gives
0100 / ] rise to a phase transition between P and HBl at53, as will
oo00b—— v 1 be pointed out more clearly in Sec. V, where the
temperature—surface-pressure phase diagram is presented.
0.004 T g
/
0.003- ! 7 IV. MEAN FIELD THEORY
]
0.002~ ':' 7 In this section we shall perform a finite temperature
0.001 i analysis of the model by means of a mean field approxima-
AA - 1 tion. We shall write an approximated Gibbs free energy for a
0.000 system of molecules constrained to lie on a generic two-
-0.001 _/ ] dimensional Bravais lattice and assumed to have only four
. 1 possible orientational probability distributions, depending on
002"~ 0'2 : 0'4 : ole ' 0'8 o the sublattice, as mentioned in the previous section. The free
' | ) ' ' ' energy is then a function of lattice parameteash(c) and
d,1d, probability densities on the four sublattices, which will be

used as variational parameters. Let us note that only orienta-
tions are assumed to be random variables and hence only the
orientational entropy contribution is taken into account.

The internal energy can be written as

FIG. 4. Energy(a) and area per moleculé) differences be-
tween P and HB phasdsolid lineg, and between PHB and HB
phaseqdashed lines plotted vs molecule aspect raiify /d;.

ally our model does contain a single type of molecule be-
cause there is nothing in the model potential that can distin- U=(Ulr)w
guish molecules of different chirality. All these results are -
quite interesting because they prove that the model, in spite _— S 5 ) L o
of drastic simplifying assumptions, can actually predict dif- 2 2 2 0y 0 {ERy iy —nitryen Uy )
ferent kinds of orientational ordering(herringbone,
pseudoherringbone, parallelnd also the corresponding lat-
tice distortions in a qualitatively correct way.

Taking into account values of energy and area per mo
ecule for the different packing modes, we realize that th

v,y n.n’

4.1

Iyvhere the energy|g is given by Eq.(3.3) in the condition
e(3.1), which is denoted by the subscriplz, and(- )y de-
notes a thermal average over orientation variables. As men-

aspect ratiod,/d; is relevant to discriminate between the tioned ab that th bability density of
modes. In Figs. &) and 4b) we report the differences be- loneéd above, we assume that the probability density of a
molecule orientation at sitg+n, which we may denote by

tween the PHB and HB and between the P and HB minima ; :
in terms of energy and area per molecule, respectively, aEV*”(’p)’ actually depends on the sublattice only, i.e.,
functions ofd,/d;. It turns out[see Fig. 4a)] that for low

values of the aspect ratitess than about 0.18) the PHB and frn()=Fy(-), Vy.n. (4.2)

P packing modes are energetically favored and nearly degen-

erate, with a slight predominance for the P packing; forAssuming that molecule orientations at different sites are sta-
higher values ofl,/d; (up to about 0.58) the HB minimum tistically independent variable@nean field approximation
takes on a lower energy; and finally, for still higher valuesthe pair probability density can be factorized to give

(up to 1), the P packing is again favored. The lowest energy
phase is the stable one at zéow low) surface pressure. On

1 (72
the contrary, if the effect of pressure has to be taken into ~ “=% 2 2 Syy' nn’f_ /2 d¥F,(¥)
account, the stable phase is determined by the lowest en- Y nn m
thalpy (U/N+IIA, 11 being the surface pressure itself, and /2 ) ) ’
A=ab/2 the area per molecyleln the high pressure limit X f—w/z d¥'F,(V)HERy —yin—n: ¥, W),

the pressure-aredlI(A) term becomes dominating and the

stable phase is simply determined as that with the lowest (4.3
area per molecule, which should be determined in principle

by repeating the above described variational procedure bwrhere, because of the twofold symmetry of the model mol-
searching for minima of the enthalpy, which we have actu-ecules, integrals can be evaluated overr/2,7/2] (instead
ally performed. Nevertheless, it has turned out that the sysef [ — a7, 7]). Probability densities must be normalized over
tem behavior is well predictefrom a qualitative point of [ —/2,m/2], too. Making use of Eq(3.6) with ¥, =¥ and
view) simply by the zero pressure value of the area per mol*¥ ,,=¥’, we obtain
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N w2 w2 In order to find the stationary pointactually the minima
-3 > f d‘I’Fy(‘I’)J dW'F ., (V') of the free energy functional we set to zero the derivatives
yy o2 2 (4.8) and (4.9). After some manipulation the first condition
XUy (W, W), (4.4  can be written as
. . . 2
As f_ar as the entropy is concerned, the mean field approxi- exp( _E f d‘I”Fy/(\I”)BvW/(\I’,\I"))
mation gives T w2
FAP)= exp(1— A\, ’
= NkBZ dqu V)InF 4 ’ (4.11)
= F WINFE(V), (4.9 :

where 8=1/kgT and, for normalization,
wherekg is the Boltzmann constant and an additive constant

/2 /2
has been_ neglected. ' . exp(l—,[:’)\,/)=f dW ex _2 f AW/ (W)
The Gibbs free energy functional is —wl2 y J-m2

ﬂlz/ d‘lny(\If)—l), Xﬁvyyr(‘l',‘lf’)>- (4.12
2

(4.6

N

G=U+NITA-TS= - > M( f

” _

This form naturally suggests an iterative humerical solution,

wherel/ andS are internal energy and entropy, respectively,in which the right-hand side is the current iteration step and
defined by Eqs(4.4) and(4.5), T is the absolute temperature, the left-hand side represents the next one. Also, the equations
IT the surface pressure, akd=ab/2 the area per molecule. obtained by setting to zero E¢4.9) can be put in a fixed
The last term, containing four unknown Lagrange multiplierspoint form. Among different possible forms we have chosen
\,, is needed to ensure normalization of probability densithe following one:
ties and multipliers must be determined by imposing normal-
ization constraints. The free energy functional must be mini- §=§exp( _ a@)
mized with respect to probability densities and unit cell

23
parameters. lIts first variation with respect to these quantities
can be written as where « is a relaxation parameter, needed to stabilize the

procedure. Equation4.11) and(4.13 are coupled with each
other and hence they are to be solved by a single procedure,

(4.13

0G= 2 Y5E ) Fm W Eb ag 5§ which we have implemented in the following way.
_”/2 7 trabe 4.7) (1) A guess solution is defined in terms of probability
' densitiesF (W) and unit cell parametem,b,c.
where 5G/ 5F (W) denotes a functional derivative. (2) Functionsv,,, (¥, ¥") are evaluated for the assigned
Making use of the symmetry properti¢3.8) and (3.9,  Values ofa,b,c and the iterative procedure defined by Eq.
we have (4.17) is carried out, approximating integrals by means of

common Gaussian quadrature formulas, until convergence is
5G w2 reached for the probability densities.
b‘F—(\If):Z 2 f_ /zd‘l"Fyr(‘I”)vW(‘l’.‘I”) (3) A new estimate of,b,c is computed using Eq4.13
Y i with the probability densities evaluated at the previous step
N (a reasonable choice of the relaxation parameter has turned
+ 7 KeTlInF,(W)+1]=7N,. (4.8 outto bea~103).
(4) Steps 2 and 3 are repeated until convergence is
reached for both probability densities and lattice parameters.
Using different guess solutions the above iterative proce-
dure allows us to determine local minima of the Gibbs free
energy and the stable phase is determined as that correspond-

Moreover, as far as derivatives with respect to lattice param
eters are concerned, we have

/2 /2
Z? I:ll E f d\Iny(‘I')J' dv'F, (V') ing to the absolute minimum. Guess solutions are chosen in
w2 —ml2 the following way: probability densities with peaks centered
Jv, (U, ) IA around certain angle valuéamong which are those corre-
vy NITT — (4.9 sponding to ground state HB, PHB, and P packing mpdes
9€ 23 for ordered phases and a uniform density over the whole

— m/2,7/2] for the ori ionally di hase.
where£=a.b.c and range[ — m/2,7w/2] for the orientationally disordered phase

A b dA a  JA V. FINITE TEMPERATURE BEHAVIOR
7a~2 2 O (4.10 In this section we shall describe the phase diagram in

some detail and we shall characterize each phase in terms of
whereasiv,,, (¥, ¥')/9¢ can be evaluated from Eg&.5),  angular probability densities and lattice parameters. As far as

(2.5, and(2.1). molecule geometric parameters are concerned, we have cho-
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0= FIG. 6. Angular probability densities= g q(¥V)="F (V)
60 ——— 1 (solid lineg and F 1 (¥)=F(1)(¥) (dashed lings near two
(b) phase transitions in the two casds/d;=0,0.16, respectively,
50 s (1/d,=3.0): (a) kgT=4.5, [1=30.0, d,=0 (PHB phasg (b) kgT
1 =45, [1=30.0, d,=0 (P phasg (c) kgT=8.0, [1=6.9, d,/d,
40 ) —0.16 (HB phasg (d) ksT=8.0, [1=6.8, d,/d,;=0.16 (disor-
30 ] dered phase In (b) and (d) one hasFqg(V)=F (V)
I HB ] =F o)(¥)=F11(¥) (solid line).
20 -
10 A molecule required by the two packing modes strongly de-
P D - pends on this geometric parameter. Two different behaviors
ol 1 1 A can be observed, namely, in case the transition tempera-
6 2 4 & 8 10 ture increases with increasing pressure, pointing out that HB
kT packing is less dense than P, whereas in ¢bséhe transi-

tion temperature decreases, due to the fact that HB packing is
FIG. 5. Phase diagram in the temperature—surface-pressudenser. In the latter case the transition temperature vanishes

plane for the two values of the aspect ratlg/d;=0 (@) and at some pressurdl~53), according to ground state results.

d,/d;=0.16(b) (in both cases #;=3.0). HB, PHB, and P denote Moreover, the two transitions that delimit the PHB phase

stability regions for herringbone, pseudoherringbone, and parallelegion in casea) display two different behaviors, namely,

phases, respectively; D is the disordered phase. Solid lines denofge |lower temperature one is nearly vertidaheaning a

first order transitions. nearly equal packing density of P and PHB phasebereas

the higher temperature one has a positive slope which in-

sen 1d,=3.0, as in ground state calculations, analyzing increases with increasing pressurgneaning that the
detail the two significant casel /d;=0,0.16, which will be  high temperature/high pressure P phase has a far lower pack-
simply referred to as caséa) and (b) in the following. In "9 densﬂ;). Let us .note finally that, if the aspect ratio is
Figs. 5a) and 5b) the respective temperature—surface-further mcrease(_ifor instance, up tqﬂzldlzo.Z), th_e P(and
pressure phase diagrams are reported. Let us consider thé&!B) phase regions completely disappear, that is, these two
low pressure region first. In both cases it turns out that fofacking modes are no longer convenient. Only one first order
some temperaturfksT~4.9 in case(@ and kgT~0.7 in transition to the o_Ilsorder_ed phase takes pla_ce and_ the transi-
case(b)] the P phase, which is stable in the ground statetion jcemperature is considerably lower than in previous cases
becomes metastable, because the HB phase takes on a lowf¥ instancekgT=2.84 atll=0 for the casel,/d,=0.4).

free energy value, and the phase transition is first order. At &Or still higher values of the aspect ratio the P phase be-
higher temperaturgkgT~7.2 for (a) andkgT~5.9 for (b)] comes stable again aljd even in this case_l_t is the only or-
the transition to an orientationally disordered phase, agaiffered stable phase, with a still lower transition temperature
first order, takes place. Caga is significantly different be- t0 the D phaséfor instanceksT=1.66 atl1=0 for the case
cause a largéeentrant stability region of the PHB phase is d2/d1=0.8). _ o

observed in the P phase region, probably due to the fact that In order to provide a more complete description of the
the energy and area per molecule of these two packin§ySteém behavior we now also report angular probability den-
modes are nearly equal for low values of the aspect ratio. Alties for the different phaségig. 6), for some temperature
similar behavior can be observed actually fbr/d; up to a_n_d sur_face pressure values in the vicinity of significant tran-
about 0.05. Case&) and (b) turn out to be significantly ~Sitions in casesa) and (b). We can observe that, near the
different upon increasing surface pressure, too. As far as thgHB-P transition of casea), probability densities are cen-
order-disorder transition is concerned a simplearly lineay ~ tered around mean values very close to ground state angles,
increase of transition temperature is observed, which can b@d quite strong peaks show that the system is still in a low
easily explained in the following way. Considering that the témperature regime. Peak heigtasd hence standard devia-
disordered phase, which must have a higher entropy, has al§§ns are almost the same for the two coexisting phases.
a higher area per molecule, the transition pressure must if{€ré herringbone ordering can be recognized by the fact that
crease with temperature, according to the ClausiusSublattice probability densities oo (¥)=F,q(¥) and
Clapeyron equation. On the contrary, the transition betweefr 0,)(¥)=F1(¥) break the symmetry ¥ ——¥,

the ordered(P and HB phases undergoes drastic changesvhereast(, o(¥)=F,, 1,(—¥). On the contrary, parallel
depending on the aspect ratily/d;, because the area per ordering is characterized by Fqo(¥)=F,0(V)
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CTT T T (a2 periments, beginning from unit cell parameters. As previ-

| PHB 1 ously mentioned, our two-dimensional model excludes tilt

| ] effects, projecting the monolayer in the plane orthogonal to

. D s the molecule long axes, and hence it is natural to take as a

i l term of comparison experimentally measured projected pa-

I ] rameterg 13]. It turns out that calculated data well reproduce

- - (qualitatively experimental findings: the two opposite unit

P cell distortions, corresponding to HB and PHB packing

| D|'_ modes, and also the transition to a rotationally disordered

Lo A phase with a hexagonalindistorted unit cell are observed.

Actually, the model predicts a clear discontinuity between

T T k) FTTT T (b2 Ia';tice_ parar_ne;ers of ordered and disorde_red phases,_whereas
A ket 7 L ; this discontinuity does not seem to show in the experimental

28 % 2 A F : data of Ref[13]. Nevertheless, it is known that the herring-

26l Y X’_‘ | D ] bone transition in Langmuir monolayers is weakly first order

al o Dl | ] [7] and this may be a reason why the discontinuity does not

24 | AR B S - emerge from measured parameters. Moreover, we note that
I ' 1 T 1 the data reported in Rdf13] come from the superposition of

22r T Y ] measurements performed on different substances, which

20 poats Ve | HB Py mlght_ actually mask a weak discontinuity. Sgch a large
i N 1 T 1 quantity of measured parameters are not available for ob-

oh v, o d B )] lique lattice packings, which, however, have been observed
08 10 12 14 16 00 02 04 06 in experiments as well. The comparison with experiments

a c-b can be performed with respect to the temperature—surface-

FIG. 7. Unit cell parametersa(b,c) corresponding to the phase ggesescl:r;tﬁ)cgaig dl\?vgerzg'tetc;g’a%?g:gg ?h;?ri);ltnk?etthrgnn;\?le?ggle
diagrams displayed in Fig. 5d,=0 (al,a2 and d,/d;=0.16 P 2 -1 ’

(b1,b2, with 1/d,=3.0 in both cases. ta1,bd and (a2,b3 the dimension (,) is not negligibl_e,_the structure of the model
projections onto the,b and - b),b planes are reported, respec- molecules should be more similar to real cross sections of
tively. Thick solid lines mark the boundaries of stability regions of alKyl chains[14] and hence the model should better repro-
each phase and the mapping of the 0 andIT=0 lines, as far as duce a real system behavior. As we previously pointed out,
the fictitious boundaryl =60, kg T=10 (not illustrated. HB, PHB,  the model predicts that for low values of the aspect ratio
P denote, respectively, herringbone, pseudoherringbone, parallefase(@] PHB and P packing modes turn out to be denser
packing modes, and D is the disordered phase. Contour lines of tH&ian HB. This is perhaps not the case in real systems, where,
area per molecul&=ab/2 are also reporte¢thin solid lineg as  for instance, a PHB phase can sometimes be observed at
well as the hexagonal unit cell conditigthin dash-dotted line lower surface pressure |- phase for fatty acidsand a HB
N packing at higher pressur€CS, Lj, S, and L, phases

=F(¥)=F1(¥). Moreover, at the transition between \joreover, no experimental evidence has been obtained so
HB and disordered phasfis case(b)], we see that de_nsmes far about the existence of three different packing modes for
for the HB phase are broader, whereas in the disordereghe same monolayer in different thermodynamic conditions.
phase symmetry is restored aRgl, o(V)=F(, 1(¥). A different condition, more consistent with experiments, is

It is interesting to inspect also lattice parameters obtainedeached, for instance, in cade (d,/d,;=0.16), where the
by finite temperature calculations, because they can be dPHB and P phases are less dense than the HB. A phase
rectly compared with experimental data. In Figgala2 transition can be observed, in some temperature range, be-
and 1b1,b2 we report a mapping of the boundaries of thetween a lower pressure P phase and a higher pressure HB
various phase regions displayed in Figéa)5and 5b), re-  phase, but the free energy of P is very similar to that of PHB,
spectively, onto the lattice parameter plaree® and €  which might be easily stabilized by a small perturbation of
—b),b. We can observe that ordered phagédB and PHB  the interaction energy, such as a chiral head group, giving
are placed on opposite sides of the lime a\/3 (which de-  rise to the experimentally observed low pressure PHB phase.
notes an undistorted hexagonal latliemd are characterized Actually, the calculated temperature—surface-pressure phase
by nearest neighbor and next nearest neighbor distortionsiagram[Fig. 5(b)] would still display some qualitative dif-
respectively. In thea,b plane the P phase turns out to be ference with respect to the experimental one, even in this
completely superposed on HB and can be distinguished onlgase. First of all the PPHB-) HB transition turns out to be
in the (c—b),b plane, revealing the oblique lattice. Increas- mainly driven by temperature, whereas in experiments it
ing pressure drives lattice parameters toward lower area peeems to be mainly driven by pressure and coincides with the
molecule values, whereas a higher temperature correspondwiveling (Ly,-L5) transition, and secondly the FPHB)
to higher areas. On the contrary, the disordered phase regiopfase region is placed at low temperature, whereas in experi-
are mapped exactly onto the libe=a./3 and only a pressure ments a direct PHB-disordered transitiorn,(iL ) has been
effect can be appreciated. In cad® the system reaches observed30]. Possible reasons for discrepancies, especially
higher area per molecule values, because molecules haverathe low pressure regime, may be found in the simplified
larger intrinsic area. way in which the model takes into account effects of com-

Let us now discuss model results in comparison with expression. The lattice can be strained but actually unit cell
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parameters are not random variables and hence the only codictions with respect to experimental findingsspecially in
tribution to entropy is the orientational one. Moreover, tailthe temperature behavjdnave been found and discussed. In
effects, which should have some importance especially in thparticular, the discontinuity in lattice parameters between or-
low pressure behavior of the system, are neglected by cordered and disordered phases is not observed in experimental
struction by the model, as well as the existence of vacanciegalues, most likely because of a weak first order transition.
(empty sitegin the lattice, which is not allowed. In this way Moreover, the competition between P and PHB phases is
the monolayer turns out to be scarcely compressible, and firobably unresolved, because they have a very similar free
can be verified that the area per molecule undergoes onlgnergy in a significant range of values of the molecule aspect
some percentage variation for pressure varying by an ordeatio, and hence small perturbations of the model potential
of magnitude. Another important issue is the stability of ourmight have important effects. In contrast, some differences
ordered phases with respect to fluctuations that might destray the transition between order¢dlB and P(PHB)] phases

or weaken long range order. Since it is knoj@2—24 that may be ascribed to the fact that only the orientational en-
the mean field approximation performs poorly in describingtropy contribution has been taken into account.

the herringbone transition in systems of molecules adsorbed
on graphite(wrong order of the transition, overestimated
transition temperatujeit would be of great interest to inves-
tigate the present model using numerical simulations and/or This work was supported by MURST through the re-
more accurate semianalytic tools like the Bethe approximasearch project “Structure and Dynamics of Biologically In-
tion and the cluster variation method, but this is beyond theeresting Monolayers.”

scope of the present work.
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APPENDIX

VI. CONCLUSIONS In this Appendix we shall prove rigorously that the states

In this paper we have introduced a planar-molecule modepbtained by the minimization of the energley [Eq. (3.3)],
to describe backbone plane ordering in amphiphilic monoperformed with respect to the basis vectersa, of the
layers. The main characteristics of the model are the molBravais lattice and to the sublattice orientatiokis as de-
ecule shapéwhich has been chosen to mimic the cross secscribed in the text, are actualfyocal) minima of the total
tion of alkyl chaing, Lennard-Jones interactions betweenenergyU [Eq. (2.10], considered as a function of all posi-
“atoms” (interaction centejs and the introduction of a tionsr, and orientations),, of moleculesm.
regular but deformable lattice, in order to analyze different First of all we can see that the derivati(gradien} of the
(experimentally observedinit cell distortions upon varying energyU with respect to the position of a molecuig,,
external thermodynamic variables. The molecules possesse&yaluated in the hypothes(8.1), that is, for molecules stay-
twofold rotational symmetry, which is needed to reproduceing on a generic Bravais latticevhich is denoted by the
herringbone ordering, and molecule orientations are desymbol-|g), can be written as
scribed as continuous degrees of freedom. A ground state -

analysis was first performed, by minimizing the interaction Ju 1 _
energy with respect to molecule positions and backbone o =§2 5m,[E([)(Bm/;z//m,z//m,m,)
angles. It was shown that an energy minimum is reached if -MIR m’

molecules are placed on a generic two-dimensional Bravais
lattice with regularly modulated orientations, and that the
minimum search problem can be reduced to an optimization
with respect to a few variational parameters, namely, sublatTo write Eq.(A1) we have employed the symmetry property
tice orientations and unit cell parameters. It has been pointe@®-6) and the inversion symmetry of the Bravais lattice. We
out that the model predicts three different kinds of orientahave also define@( to be the derivativégradient of the
tional ordering, two of them known in the literature as her-pair interaction energ¥ [Eq. (2.5] with respect to the po-
ringbone and pseudoherringbone, displaying finite dihedra$itional argument, and,,=1 if m=(0,0) and O otherwise.
angles between differently oriented molecules, and the thir@Equation(Al) tells us that a sufficient condition for the po-
one with all molecules aligned. The competition between theitional derivatives to vanistprovided molecules are placed
different minima has been investigated as a function of molon a Bravais latticeis ¢ m = ¢m-m ¥YM,m’. Moreover,
ecule aspect ratio, pointing out that a different packing modét is easy to see that this condition is equivalent to the fact
may be favored by a different molecule geometry. Latticethat ¢, depends only on the parity of the index[we re-
distortions are found to be in good qualitative agreemenmember that it is actually a two-dimensional index

with experimental observations. A finite temperature analysis=(m;,m,) and hence we have the four possibilitieven,

has also been performed in the framework of a mean fiel@ven, (even,odd, (odd,even (odd,odd]. The lattice is split
approximation, maintaining the ground state lattice structureinto four sublattices with double lattice constants, and mol-
but allowing lattice parameters to vary. The temperature evoecules placed on the same sublattice must have the same
lution of each orderetherringbone, pseudoherringbone, andorientation. As already performed in the text, we then
paralle) phase has been analyzed, determining phase trandiptroduce the new notation m=+y+n, where vy

tions between one another andfiast orde) transition to the =(0,0),(0,1),(1,0),(1,1) is the parity index anch
orientationally disordered phase, which displays an undis=(ny,n,) any pair of even integers. The above condition is
torted hexagonal unit cell. Some discrepancies of model prethus expressed by EG3.2).

_E(Q(Bm’ s ¥ms Ymeme) ] (A1)
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We now write, in the new notation, the derivative of the 52U 52U
energy with respect to a generic molecule orientatign , ,
evaluated with the assumptions on positifgs. (3.1)] and N yin 0 yrinr O yindthy 4
orientations[Eq. (3.2)] discussed above, which will be de- 22U 22U
noted as a whole by the double subscrifty . Using the
translation invariance of a Bravais lattice, we obtain Iy indlyrint OWyindyin ] oy,
JuU :577’5n’—nE12(By’—y+n’—n;\Pyiqu')

&(ﬂ :E Z 57'y’5n’E(¢1)(By/—'y+n’;\P’y’q,y’)v
LARUL S

(A2) + 3,y 00 -n - 2,, Syyr O
Y n
whereE(*7) s the derivative oE with respect to the former XEp(Ryr—yin; Wy, W)
angular argument. We also rewrite £8§.4), that is, the total =
energy under the same conditions, using again the translation =h,y nron, (AB)
invariance of the Bravais lattice. Witk as the total number -
of lattice sites, we have where
N [—EM  _ gl
Urr=g % nz Py O E Ry yun ¥y W) S| gl EWav) |’ (A7)
’ (A3) T
ED  _ECw)
which turns out to be a function only of the sublattice orien- En=| =, (— ) (A8)
tations¥ , and of the basis vectom, ,a,. From Egs.(A3) = | -EM"D EWn
and (A2) it is possible to show that the following identity
holds: are 3x3 matrices containing second derivatives Bfithe
double superscripts denote the two derivation variables,
P N U namely,r denotes the positional argument atd, ¢, the

(A4)  first and second angular arguments, respectjvelst us note
that under the condition€3.1),(3.2) the system is invariant
under a translation dR,, and hence the elemen(slocks of

The left-hand siddthe derivative of the conditioned energy the Hessian matrix deperieh addition to the sublattice in-
with respect to sublattice orientatigris imposed to be zero dicesy,y’) only on the differencen’ —n, so that they have
by our numerical minimization procedure. This proves thateen defined a%,,, . Let us also observe that the
the derivative with respect to a generic molecule orientatiorground states found by the minimization procedure never
also vanishes, completing the first step of our proof. Let uglisplay four different orientations but only two or one sig-
only note that the two ingredients to prove EA4) are just  nificant sublattices. The former subcagmly two distin-
the two conditiong3.1) and(3.2). guishable sublatticescorresponds toy=(0,0),(0,1) andn

Let us now consider the Hessian matrix, that is, the sec=(nq,n,) with n; any integer anah, even integer, whereas
ond derivatives with respect to positions and orientations othe latter subcasdparallel molecules corresponds toy
any pair of moleculesindexed bym,m’), and the associated =(0,0) andn=(n4,n,) any pair of integers. In both cases
eigenvalue equation the whole calculation is equivalent and in fact the Hessian

matrix (A6) takes exactly the same form. Defining

_URW:_— .
FL i ATV

9?U a?U
. 5£y+n
N I | [ S 8 m Oy n= : (A9)
- - - . - :A - . 5¢7+n
m’ U 9°U Sthy Sihm
the eigenvalue equation for the Hessian matrix can then be
I Iy I Iy Writter? as |
(AS5)
Let us note that, considering a fixed pair of molecules, we > X hyyn 0 8y =NE, . (A10)
have a 3<3 matrix (which is explicitly denoted by the Yo =

square bracketdut every element of this matrix must have .
actually the two indicesn,m’, giving rise to an infinite ma- DU€ to the dependence ari—n the left-hand side takes the

trix. This can also be regarded as composed of an infinitdo'™m of a discrete convolution, which can be reduced to a
number (NX N, N being the number of moleculesf 3x 3 product by means of a Fourier transform. Defining

blocks. We have to prove that the states found by our mini-

mization satisfyA >0. Imposing the usual conditions we can A (k)iz exp—ik-R,) & (A11)
write (in the new notatioh == 4 = ==
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Hyp (=2 expl—ik-Ry) hyyn,  (AL2)
we can easily write
2 Hy (—K)- A, (K)=NA,(K), (A13)
=

which is the eigenvalue equation for &>33s matrix (s

NG AND LATTICE . .. 5241

being the number of sublattices in which orientations have
been found to be really differentdepending on the “wave
vector” k. It is then possible to compute the eigenvalues of
this matrix numerically, foik in the Brillouin zone associ-
ated with the Bravais lattice defined By, with a sufficient
sampling density to verify the positivity of eigenvalues, as
we have actually observed for the three phases described in
the text.
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