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Convective nature of the planimetric instability in meandering river dynamics

Carlo Camporeale* and Luca Ridolfi†

Department of Hydraulics, Politecnico di Torino, Italy
�Received 4 August 2005; published 28 February 2006�

The convective nature of the linear instability of meandering river dynamics is analytically demonstrated and
the corresponding Green’s function is derived. The wave packet due to impulsive disturbance migrates along a
river either downstream or upstream, depending on the subresonant or superresonant conditions. The influence
of the parameters that govern the meandering process is shown and the role of the fluid dynamic detail used to
describe the morphodynamic problem is discussed. A numerical simulation of the river planimetry is also
developed.

DOI: 10.1103/PhysRevE.73.026311 PACS number�s�: 47.20.�k, 47.54.�r, 92.40.Qk

I. INTRODUCTION

Meandering rivers are far-from-equilibrium systems
which are driven by morphodynamic instabilities. Over the
last few decades, several works have improved knowledge
on the complex morphodynamic interactions that occur be-
tween a turbulent stream and an erodible bed �e.g., see the
reviews by Ikeda and Parker �1� and Seminara �2��. It has
been recognized that the core mechanism of meandering is
the action of a helicoidal curvature-driven secondary flow
which activates an inward lateral sediment flux �3,4�. The
consequent transversal shoaling of the bed, with the forma-
tion of point bars, triggers a topography-driven secondary
flow and a topographic steering of the longitudinal flow �5�,
which in turn induces outward bank erosion. The longitudi-
nal transport of momentum induces a streamwise phase lag
between the curvature and the flow field, that establishes a
spatial memory in the downstream propagating influence �6�
and, consequently, in both the downstream skewness in the
shape of the meander loops and in the downstream planimet-
ric migration �7�. Curvature therefore increases and the pro-
cess is self-sustained. Finally, for particular geometric con-
ditions, the interaction between the planimetric response and
the bed response leads to resonant behavior �8�.

From the previously mentioned picture, it emerges that a
shallow water flow on an erodible bed is unstable and can
develop a meandering planimetry. This has been shown in
literature through normal mode analysis applied to some lin-
ear meandering dynamics models, whose level of fluid dy-
namic detail can generally be summarized by the order of the
linear differential equation that describes the flow field.
Ikeda et al. �9� and Edwards and Smith �10� investigated the
wave-number range of instability in the context of a first-
order linear model; similarly, the speculations by Parker and
Johannesson �11�, regarding the resonance condition for a
second-order linear model, can be related to the detection of
the maximum instability response. Finally, Seminara et al.
�12� imposed a normal mode decomposition to solve the
planimetric evolution numerically with the use of a fourth-
order linear model.

Although the previous works have led to many important
advances, it has still to be investigated whether the planimet-
ric instability of the meandering dynamics is of a convective
or absolute type. This analysis is the subject of the present
work, where the asymptotic behavior of the Green’s function
is also obtained and discussed. Physically speaking, an im-
pulsive perturbation of a dynamical system produces a con-
vective instability if the response increases, but migrates and
decays to zero at all the spatial locations; on the contrary, the
instability is absolute if it is unbounded throughout for a long
time �13–15�.

The determination of the nature of meandering instability
is of both speculative and applicative interest. The former
interest is stimulated by a recent work by Zolezzi and Semi-
nara �16�, where an upstream propagating influence in the
flow field response, which is responsible for the upstream
migration of meanders in superresonant conditions, was
pointed out. This morphodynamic mechanism, along with
the well-known downstream propagating influence, could
make the propagation of an impulsive perturbation possible
both upstream and downstream at the same time and, in this
case, the instability could be absolute; otherwise, one direc-
tion could prevail and the instability would be convective.
Also, it should be noted that the presence of the longitudinal
downstream migration of meanders does not imply the con-
vective nature of the instability, but only shows that the most
unstable wave number has a positive velocity. Formally, the
convective instability requires that all the unstable harmonics
propagate in the same direction. The applicative interest in-
stead lies in the capacity to predict whether planimetric per-
turbations in a straight stream—e.g., bank failures or
obstructions—only affect the downstream sections, leaving
the upstream portion of the river unperturbed or, on the con-
trary, they perform an upstream spreading which changes the
whole initial configuration in the long term. Finally, the
analysis of Green’s function is a powerful tool to investigate
the linear behavior of a dynamical system, as it is the basic
element for the solution of any linear initial-boundary prob-
lem �15,17�.

A similar investigation has recently been carried out, in
the context of free bar instability, in the work by Federici and
Seminara �18�, where the authors pointed out the convective
nature of the bar instability. Although closely related, bed-
form and planform instabilities are conceptually different.
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The planimetric instability of a meandering river, besides the
morphodynamic equations, also involves the evolution equa-
tion of the river axis. It follows that the dispersion relation is
therefore mathematically very different from the bar one.

In the following, three well-known linear morphodynamic
models are referred to, namely the models by Ikeda, Parker,
and Sawai �9�, Johannesson and Parker �19�, and Zolezzi and
Seminara �16� �hereafter referred as to the IPS, JP, and ZS
models, respectively�. These three models represent differ-
ent, typical levels of simplification—giving rise to first-,
second-, and fourth-order models, respectively—and have
been key steps in the comprehension and modeling of mean-
dering dynamics. Moreover, the IPS and JP models have
been widely used in the numerical simulations of river evo-
lution �20–23�, while the ZS model can be considered the
most detailed model in the linear approach and it encom-
passes all the principal morphodynamic mechanisms �for this
reason, ZS is used here as reference model and its notation is
extended to other models�. Comparisons between the results
provided by these different approaches are useful to discuss
the effects of the different fluid dynamic hypothesis adopted
in the models.

II. GENERAL FRAMEWORK

The dynamics of a meandering river is described by �i� an
evolution equation that governs the temporal dynamics of the
river axis and �ii� a morphodynamic model for the flow field
and the sediment response. The evolution equation can be
obtained using the formalism of the differential geometry of
plane curves �24,25�, under the hypothesis that the width of
the river remains constant during its migration. The starting
point is the equation of motion of a parametrized curve
r�� , t� that moves along the normal versor n, i.e., r,t=n�,
where t is the time, � is the local normal velocity, and � is a
descriptive parameter which does not depend on time so that
�,t�=�,�t, where the comma refers to the partial derivative
�hereafter all the quantities are normalized by the river half-
width b and the bulk velocity U �e.g., Ref. �11���. Introduc-
ing the arc-length coordinate s�� , t�=�0

��gd��—where
g�� , t� is the metric coefficient ��r,��2�—and defining the cur-
vature C= �r,ss�, using Serret-Frenet equations, it follows that
�,ts−�,st=−C��,s which, with some algebra, leads to

r,t = n� − r,s�s

C�ds�. �1�

Once the normal-to-curve velocity, ��s , t�, is obtained, the
previous integro-differential equation describes the dynamics
of the curve. It should be noted that Eq. �1� is nonlinear,
regardless of the mathematical form of �.

The functional ��s , t� is given by a morphodynamic
model, i.e., the second ingredient of the problem. Since a
linear stability analysis is being developed, linear models are
referred to. These models are based on the following four
hypothesis, in order to obtain significant but mathematically
tractable models. �i� The fluid is assumed to be incompress-
ible and the flow to be fully turbulent, while the sediment of
the river bed is considered cohesionless and with a uniformly

distributed grain diameter, dm. �ii� Since the typical vertical
scale �i.e., the water depth D� is much smaller than the char-
acteristic horizontal scale �i.e., the river half-width b�, the
vertical velocity component is neglected and a hydrostatic
vertical pressure distribution can be adopted. �iii� It is as-
sumed that both the flow and bed topography instantaneously
adjust to the planimetry, that is, the process is considered as
quasistationary �26�. �iv� A linear dependence of the rate of
the bank erosion ��s , t� on the excess near-bank velocity ub is
assumed; this assumption has been justified with field obser-
vations �27� and has been adopted in several models
�9,19,28–30�. Point �i� supports Exner’s equation for bed
sediment, hypothesis �ii� justifies the use of the shallow-
water equations which, thanks to point �iii�, are made to be
time independent. Finally, hypothesis �iv� reads ��s�=Eub

=Eu�s ,n=1�, where n is the transversal coordinate, u�s ,n� is
the longitudinal flow velocity �n=1 corresponds to the river
bank�, and E is a dimensionless coefficient of erodibility.

Under the previous assumptions and introducing the ve-
locity decomposition of the flow field �3�, along with the
no-slip condition at the bottom and the no-stress condition at
the free surface, one obtains the depth-averaged two-
dimensional equations for shallow water in curvilinear coor-
dinates and in nondimensioned form �16,19�,

NUU,s + VU,n + NCU�V + 2�� +
N
F2H,s − �Cf + �

�s

D

+
1

D
�UD��,n = 0, �2�

NUV,s + VV,n +
H,n

F2 + �
�n

D
+

N
D

�DU��,s +
2

D
�VD��,n

+
1

D
��1D�,n + NC�2 = 0, �3�

which have to be coupled with the continuity equation for
the water and bed sediment �31�, respectively,

N�DU�,s + �DV�,n + NCDV = 0, �4�

Nqs,s + qn,n + NCqn = 0. �5�

In Eqs. �2�–�5�, U and V are the longitudinal and trans-
versal depth-averaged velocity, N�s� is the longitudinal met-
ric factor, D is the depth, H is the free surface elevation, � is
the bed stress vector, q is the volumetric vectorial bed load,
Cf is the friction factor, and F is the Froude number. More-
over, �= 	Fv0
, �1= 	v0

2
 and �2=2V�−U2+�1, where 	·

=��0

1 ·d�, �0 is the vertical position at which the no-slip con-
dition is set, F��� is the vertical profile of velocity, and
v0�s ,n ,�� is the recirculating secondary current driven by
curvature and with vanishing depth average.

Zolezzi and Seminara �16� provided a linear solution of
the problem �2�–�5�—i.e., the ZS model—in terms of the
lateral Fourier decomposition of the longitudinal flow field
perturbation, u�s ,n�=�m=0

� um�s�sin Mn �with M = 1
2 �2m
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+1�	�. For a longitudinally unbounded domain, the generic
m mode, is described by a fourth-order ordinary differential
equation �ODE� and reads

um�s� = Am�
j=1

N �gj0�s

e
mj�s−t�C�t�dt + �
p=1

N

gjp
��p−1�C�s�

�s�p−1� 
 .

�6�

In the previous equation N=4, Am=2�−1�m /M2, and the
terms gjk and 
 jm depend on the shape ratio �=b /D, the
dimensionless roughness ds=dm /D, and the Shield stress �*.
For the convenience of the reader, the key steps of the theory
by Ref. �16� are summarized in Appendix A.

Other linear models can be hierarchically derived from
the same scheme and differentiate according to the neglected
morphodynamic mechanisms. For example, the JP model can
be obtained if three main simplifications are introduced: �i�
negligible coupling between curvature-driven secondary cur-
rents and topography; �ii� no spatial variations in the friction
coefficient and no dependence of the bedload transport on
the flow depth; and �iii� vertically averaged value of the eddy
viscosity. With these assumptions, the morphodynamic
model reduces to a second-order ODE and the solution is
still formally described by Eq. �6� by setting N=2. Similarly,
if the coupling between the sediment dynamics and fluid
dynamics is also neglected, and the bed topography only
depends on the local curvature, the IPS model, which corre-
sponds to Eq. �6� with N=1, is obtained.

III. THE NATURE OF INSTABILITY

The analysis of the convective or absolute nature of the
morphodynamic instability requires the dispersion relation.
For this purpose, the vectorial Eq. �1� is transformed into a
scalar equation. Let us define the angle � between the versor
t tangential to the river axis and the horizontal, so that the
following relationships apply �32�:

r,ss = n�,s, r,st = n�,t, �7a�

n,s = − �,srs, C = − �,s. �7b�

By deriving Eq. �1� with respect to s, substituting relation-
ships �7�, and scalar multiplying by n, one obtains

�,t = �,s + �,s�s

�,s��ds�. �8�

�the same equation was also derived by Seminara et al. �12�
using a different approach�.

It should be noticed that after linearization around the
straight solution �i.e., �=0�, the previous equation loses the
integral term on the right-hand side. Therefore, substituting
�6� in �8� and rescaling the time according to �= tE, the equa-
tion that regulates the spatiotemporal linear planimetric dy-
namics of the river is obtained,

��

��
+ �

m=0

� �Am� �
j=1

N �gj0
mj�s

e
mj�s−s�� ��

�s�
ds�

+ �
p=0

N

gjp
��p+1��

�s�p+1� �
 = 0, �9�

with Am� = �−1�mAm.
The Fourier transform with respect to s and � of Eq. �9�

readily provides the normal modes in the form of a general-
ized complex dispersion relation

� = k�
m=0

� �Am� �
j=1

N � gj0
mj

ik − 
mj
+ �

p=0

N

gjp�ik�p
� , �10�

where � and k are the complex dimensionless frequency and
wave number, respectively.

The absolute or convective instability criterion, as sum-
marized by Huerre and Monkevitz �33�, who extended the
concepts introduced by Briggs �34� and Bers �13� to shear
flow instabilities, can now be applied. According to Bers
�13�, a convective instability leads Green’s function to decay
asymptotically to zero along the ray s /�=0, vice versa, in
absolute instabilities, the response tends to infinity. For this
purpose, each spatiotemporal ray s /�=V can be analyzed re-
calling the saddle-point condition

FIG. 1. Behavior of the solutions of Eq. �12�
for s /�=0 vs 
, using the ZS model ��*=0.1, ds

=0.01�. The bold and dashed lines mark the ab-
solute growth rate and the temporal growth rate,
respectively. The JP model gives the same abso-
lute growth rate as the ZS model �bold line�,
while the IPS model gives the dotted line.
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���k�
�k

=
s

�
. �11�

The complex absolute wave number k0 being the solution
of Eq. �11� for the ray s /�=0, and �0i=Im���k0�� the asso-
ciated absolute growth rate, the theory states that the tempo-
ral growth rate along each ray s /�=V is ��V�=�0i−Vk0i

�hereafter the subscript i refers to the imaginary part�. Fur-
thermore, if just real wave numbers are considered, equation
��i /�k=0 provides the wave number kmax which displays the
maximum temporal growth rate �i,max=�i�kmax� with the cor-
responding group velocity Vmax=�� /�k�kmax�. In short, the
aforementioned criterion states that the instability is convec-
tive if �i�kmax��0 and �0i�0. On the contrary, the flow is
absolutely unstable if �i�kmax��0 and �0i�0, provided the
casuality principle is satisfied. The latter principle requires
that the complex k-plane displays the pinching point k0 be-
tween two branches k+��� and k−��� of the dispersion rela-
tion confined well within their respective half-k planes when
�i��0i �15,33�.

Let us consider the most refined linear meandering model,
i.e., the ZS one �N=4�. The nature of instability can be in-
vestigated just considering the contribution given by the
leading lateral mode, that is, m=0 in Eq. �10�. The higher
modes in fact do not introduce any qualitative novelty to the
outcome �see the next section�. Figure 1 shows the solutions
of Eq. �11� with s /�=0, varying the ratio 
= ��−�R� /�R,
where �R is the aspect ratio at resonant conditions. As Eq.
�11� is a tenth-order algebraic equation, just the physically
significant roots have been plotted in the figure and the mul-
tiple ones have been left out. The maximum temporal growth
rate �i,max is also displayed with a dashed line. From this
picture, the meandering planimetry process results to be con-
vectively unstable, since all the roots are negative. The same
outcome can be obtained with different settings of the Shield
stress, �* �with �*�0.4�, and the relative roughness, ds. We
can notice that the present result does not require any further
analysis involving the pinching process, since the casuality
principle is automatically satisfied in the case of the convec-
tive instabilities. However, the pinching process has been
applied to detect which of the roots shown in Fig. 1 corre-
sponds to �0i, in order to exclude the marginally absolute

instability �i.e., �0i=0� and to obtain Green’s function, as
will be shown in the next section.

The result for the fourth-order model is compared with
the �0i values provided by the second and first-order models.
The latter in particular leads to the analytical expression

�0i =
− 27a3 + 9a2�� − 3b� − b2�b + �� + ab�4� − b�

4�a + b + ��
,

�12�

where a=−
1, b=g10+
1, and �=�9a2+10ab+b2. If the IPS
model is considered, 
1=−2Cf� and g10=�Cf�F2+A+1�,
where A is the lateral slope factor. The dotted line in Fig. 1
refers to Eq. �12�. Its behavior follows the one obtained for
the fourth-order model for 
�0 quite well, but it gives an
underestimation for high aspect ratios �
�0�. This can be
ascribed to the incapacity of all first-order models to recog-
nize the resonance mechanisms between curvature and bed
topography, so they work badly in superresonant conditions.
On the contrary, the second-order JP model provides very
similar behavior of �0i to the ZS one, as the curve is practi-
cally coincident with the bold line in Fig. 1.

A further description of the convective nature of meander-
ing instability is given by the behavior of the temporal
growth rate ��V� along each ray s /�=V for different values
of 
, as reported in Fig. 2. In agreement with the previous

FIG. 2. Temporal growth rates vs the ray velocity V=s /� for
different values of 
 ��*=0.1, ds=0.01�.

FIG. 3. Green’s function evolution provided by the ZS model
��*=0.1, ds=0.01�. �a� Subresonant case �
=−0.25�, �b� superreso-
nant case �
=0.25�. Abscissa and ordinates appear in different
scales.
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considerations, it can be observed that a positive growth rate
is developed alternatively either for positive or for negative
values of V, depending on the aspect ratio. Therefore, a si-
multaneous upstream and downstream propagation is pre-
cluded. It follows that an impulsive perturbation cannot
spread to the entire spatial domain but it is instead taken
away; therefore, the instability is convective. Hence, as sug-
gested by the peak location of the curves in Fig. 2, under
subresonant �superresonant� conditions, the instability mi-
grates downstream �upstream�. This could be related to the
results of previous experimental and theoretical investiga-
tions concerning the upstream �downstream� skewness of
meanders �16,35�. Moreover, the superresonant conditions
lead to greater growth rates and a wider range of unstable
rays s /�. Finally, in both cases, the range and the amplitude
of instability grow as the resonance condition is approached
�i.e., �
�→0�.

IV. GREEN’S FUNCTION

In this section the long-term behavior of the solution of
Eq. �9� for an initial impulsive perturbation is discussed. The
generalized solution of the asymptotic approximation of
Green’s function obtained by Huerre �14�, through the use of
the method of the steepest descendent, is adopted for this
purpose. In the present case, the result slightly simplifies
with respect to aforementioned formula, since Eq. �9� just
performs a first derivative in time and consequently the dis-
persion relationship is linear in �. Thus, the asymptotic be-
havior of Green’s function, G�s ,��, is given by

G�s,�� �
ei�k0s−�0�+	/4�

i�2	��d2�

dk2 �
k0

. �13�

As far as the fourth-order ZS model is concerned, an ex-
plicit analytical expression of Eq. �13� is precluded by the
high-order algebraic equation Eq. �11�, which has to be
solved to obtain the terms k0. For this reason Eq. �13� has
been numerically solved. On the contrary, the first- and the
second-order models lead to an analytical formulation; for

instance, the expression of Green’s function relating to the
first-order model is reported in Appendix B.

Green’s function, corresponding to the fourth-order
model, is shown at different times in Fig. 3 both in subreso-
nant and superresonant conditions. The pronounced stream-
wise asymmetry of the wave packets can be noticed. More-
over, both the selected wavelength and the shape of the wave
packet appear similar, regardless of the sign of 
, even if it
depends on �
�. On the contrary, the superresonant case pro-
vides higher growth and migration rates, confirming the re-
sults of the previous section.

In order to compare the responses of linear models with
different orders of complexity, Green’s functions correspond-
ing to the IPS model, the JP model and the ZS model have
been displayed in Fig. 4, at time �=180. As far as the former
model is concerned, we have set A=9.75 to obtain the same
amplitude response as the ZS model. Two important consid-
erations emerge. Firstly, the second-order model leads to a
similar pattern as the fourth one even though it is slightly
delayed. On the other hand, the first-order model shows a
remarkable delay in the migration of the wave packet. How-
ever, it should be noticed that the time is normalized by
bE /U, where the erodibility coefficient E could be fitted
case-by-case in field applications. It follows that the applica-
tive significance of the models is principally related to the
shape of the wave packet response rather than to the different
temporal growth rates. Secondly, the wavelengths selected
by all the mathematical models agree quite well. This means
that—although the time scales are different—the long-term
behavior of the river planimetry could be characterized by
the same dominant wavelength, without considering the
higher harmonics that may be introduced by the second- and
fourth-order models �36�. However, for long times, this lin-
ear description of the instability saturates due to dynamical
and geometric nonlinearities that have not been considered in
the present study.

Figure 5 shows the numerical simulation of the planimet-
ric response to a sharp local perturbation. The fourth-order
ZS model �i.e., Eq. �6�� has been adopted taking into account

FIG. 4. Comparison of Green’s function provided by different
models ��*=0.1, 
=−0.25, ds=0.01, �=180�. The ZS model, bold
line; the JP model, thin line; the IPS model, dotted line. Abscissa
and ordinates appear in different scales.

FIG. 5. Numerical simulation of the planimetric evolution con-
sequent to an initial sharp localized perturbation in x=0, provided
by the ZS model and using m=0,1 ,2 �ds=0.01, 
=−0.4, �*=0.12�.
Abscissa and ordinate are made dimensionless by b and the magni-
tude of the initial perturbation, respectively.
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the first three lateral modes �i.e., m=0,1 ,2�. Notice that only
the dynamic nonlinearities of basic Eqs. �2�–�5� are ne-
glected in this simulation, while the geometric nonlinearities
of Eq. �1� are retained by a step-to-step shifting and fitting.
The numerical details are reported in Ref. �36� where, in
addition, cutoff processes are also considered, and statistical
comparisons with real planforms support the use of the
above models to simulate long-term dynamics of meandering
rivers �see also Refs. �21� and �22��.

Figure 5 underlines the convective character of the insta-
bility and suggests that it is not modified by the action of the
geometric nonlinearities. Moreover, it is evident the strict
similarity with the theoretical Green’s function reported in
Fig. 3 and it is confirmed that the second and third lateral
modes do not introduce qualitative differences with respect
to the behavior of the first mode.

V. CONCLUSIONS

The convective character of the linear instability that ex-
ists in the dynamics of meandering rivers has been eluci-
dated. The convective nature emerges for all the linear mor-
phodynamic models that were analyzed, at least in the
investigated range of parameters. Therefore, the upstream
propagating influence recognized by the fourth-order ZS
model is not able to trigger an absolute character in the in-
stability. The convective nature also explains the occurrence
of a straight reach immediately downstream to the starting
point of the river, which was detected in previous long-term
numerical simulations that adopted the IPS and JP models
�21,23�. The development of Green’s function has shown �i�
the typical shape of the wave packet that originates from the
impulsive disturbance and �ii� the importance of modelling
the complex fluid dynamic mechanisms involved in the me-
andering dynamics correctly. Finally, the above results have
been confirmed by the development of a numerical simula-
tion of the river planimetry evolution.
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APPENDIX A: DEDUCTION OF EQ. (6)

In the following, the key steps to obtain the solution by
Zolezzi and Seminara �16� are given. Firstly, the following
boundary and integral conditions are imposed to Eqs. �2�–�5�

V = qn = 0 �n = ± 1� , �A1�

�
−1

1

UDdn = 2, �
0


m �
−1

1

�H − D�dnds = const �A2�

where Eqs. �A1� imposes the zero-net-flux condition be-
tween the center and the sidewall layers and no sediment
transport across the sidewalls, whereas Eqs. �A2� set the con-
dition that the water discharge and the average reach slope
are not influenced by perturbations in flow and topography
�
m is a typical dimensionless wavelength�.

Secondly some closure relationships for the terms �, q,
and v0 are required,

�s = Cf�U�U, �n = Cf�U��V +
v0��0�
F��0� � , �A3�

qs = q� �s

�
+ K1

�s�n

��

��

�n
� , �A4�

qn = q� �n

t* −
1

�
�K2

�n
2

�2 + K3
�s

�
� ��

�n

 , �A5�

v0��� =
DUC

��Cf

G0��� +
D2�UC�,s

�2Cf
G1��� +

DUCD,s

�2Cf
G2��� .

�A6�

Equations �A3� assume that the dimensionless bed stress
vector is aligned with the near bed velocity vector and can be
expressed through a local friction coefficient. Equations �A4�
and �A5� read the dynamic equilibrium of the bed sediment
written in an orthogonal reference system �s ,n�. Finally, �
= ���, q= �q�, and K1, K2, and K3 are coefficients depending on
the sediment characteristics whereas the functions Gi��� de-
pend on the vertical profiles ���� and F��� by means of the
solutions of three second order ODE’s �see Ref. �16� for
details�.

The linearization of the morphodynamic problem can be
achieved through the perturbative expansion of the previous
equations, which introduced in the shallow-water Eqs.
�2�–�5�, leads to a linear system with four first-order differ-
ential equations.

Zolezzi and Seminara solved the linear system using a
Fourier expansion in the transversal direction, n, and ob-
tained a fourth-order ordinary differential equation �ODE�
for every Fourier mode. In particular, the equation for the
streamwise velocity, u=�m=0

� um sin�Mn�, gives

�
j=0

4

� j
d�j�um

ds�j� = Am�
j=0

4

� j+1
d�i�C

ds�j� , �A7�

which is satisfied by the solution �6�. The algebraic relation-
ships between the coefficients � j, � j, gjp, and the river char-
acteristics are given in Ref. �16�.
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APPENDIX B: GREEN’S FUNCTION FOR FIRST-ORDER MODELS

G�s,�� �
a�0

�3�2
3

2

exp�1

6
��0 + �2 + 
��s − ���1 − 


6
−

6a�0
2

�0 − �0 + 

� +

3

2
	i�


��9a2�0
2�2

3 − �3
2�0�2�i	�

, �B1�

where

�0 = − 3a, �1 = �0 − �0 + 6�2
2, �2 = ��2 − �0�� , �B2�

�3 = �1 − 3�0�0, 
 =
�0 − �0

�0
+ �0, �B3�

�0 = �2
3 − 27a2�1 − 27a3 + 3a�3b2 −

6bs

�
+

3s2

�2 + 2�2�1� , �B4�

�1 =�3�27a2s

�
− 9a�0

2 − �0
3�, �0 = �a + b , �B5�

�1 = b +
s

�
, �2 = b −

s

�
. �B6�
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