
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control-flow checking via regular expressions / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio; Prinetto, Paolo
Ernesto; Tagliaferri, Luca. - STAMPA. - (2001), pp. 299-303. (Intervento presentato al  convegno IEEE 10th Asian Test
Symposium (ATS) tenutosi a Kyoto, JP nel 19-21 Nov. 2001) [10.1109/ATS.2001.990300].

Original

Control-flow checking via regular expressions

Publisher:

Published
DOI:10.1109/ATS.2001.990300

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1416288 since:

IEEE Computer Society



Control-Flow Checking Via Regular Expressions 

ALFREDO BENSO, STEFANO Di CARLO, G~ORGIO DI NATALE, PAOLO PRINETTO, LUCA TAGLIAFERRI 
Politecnico di Torino 

Dipartimento di Automatica e Inforrnatica 
Corso Duca degli Abruzzi 24 - I-10129, Torino, Italy 

Email: { benso, dicarlo, dinatale, prinetto, tagliaferri )@polito.it 
http://www. testgrouppolito. it 

Abstract 
The present paper explains a new approach to program 

control-flow checking. The check has inserted at source- 
code level using a signature methodology based on 
regular expressions. The signature checking is performed 
without dedicated watchdog processor but resorting to 
inter-process communication (IPC) facilifies offered by 
most of the modern Operating Systems. The proposed 
approach allows very low memory overhead and trade-off 
between fault latency and program execution time 
overhead. 

1. Introduction 

The use of computer-based systems pervades all areas of 
our lives from common house land applications such as 
microwave ovens and washing machines, to complex 
applications like aircraft, trains and medical control 
systems, allowing high productivity and flexibility. They 
are commonly referred to as “Embedded Computer 
Systems ” (ECS). 

The proposed examples state a very large number of 
ECS play a key role in critical tasks with respect to human 
safety and data security, supported by the development of 
new and powerful electronics circuits. In this context, high 
availability is a must to guarantee human safety. 

As devices geometry decreases, circuits clock 
frequencies increases and processors are introduced into 
more electrically active environments; the incidence of 
transient errors increases, decreasing the dependability of 
ECS where these components are used. These transient 
errors can only be detected by concurrent error detection 
techniques, allowing the maintenance of acceptable levels 
of system dependability. 

The design of ECS is always constrained by the 
reduction of time-to-market. This makes not feasible the 
development of custom products with high performances 
and dependability levels. This requirement forces the 

1081-7735/01$10.00 0 2001 IEEE 

engineer to systematically use commercial off-the-shelf 
components in both software and hardware domain. These 
components are normally not designed to work in stressed 
environments and do not guarantee high dependability 
levels. The challenge is to build fault tolerant systems that 
harness the market forces by using off-the-shelf hardware 
and software components. 

Classical approaches for dependable ECS development 
rely on hardware redundancy. Although they are effective 
in protecting against transient faults, they are usually 
expensive. A possible and less expensive approach is to 
move the problem of fault detection at software level 
using software redundancy techniques. 

Control-flow checking has become a widely studied 
approach to concurrent error checking. The on-line test is 
aimed at detecting erroneous sequences of instructions in a 
program execution [ l ]  [ 2 ] .  The proposed solutions mainly 
rely on dedicated hardware [ 3 ] .  The basic schema is based 
on watchdog and signature analysis [4] [5] [6] [7] [8] [9] 
[lo]. The application program is split into elementary 
blocks with single entry. A reference signature 
representing the correct execution flow in the blocks is 
calculated off line and stored. At run time the signature is 
calculated again and compared with the golden one using 
so called dedicated watchdog processors. These hardware 
techniques have been evaluated on medium size 
applications using different hardware platforms [ 11 1. 

The main difference in the various approaches is in the 
method used to calculate and check the signature. In 
particular it is possible to identify two classes of approach: 

Embedded Signature Monitoring (ESM): where the 
signature is embedded in the application program 

Autonomous Signature Monitoring (ASM): where 
the signature is stored in a dedicated watchdog 
memory [SI. 

Despite the effectiveness of the proposed methodologies 
they usually need dedicated hardware and system 
modifications, in contrast with the constraints of using 

151 [61; 

299 

http://www


commercial off-the-shelf components. In addition, with 
the increasing size of processor cache memory, the 
detection capability of these techniques decrease since 
they are able to detect faults into main memory, accessible 
by the watchdog processor but not faults inside the 
processor cache. 

In order to solve the problem of hardware control-flow 
checking, some software approaches have been proposed. 
They rely on the insertion of appropriate instructions into 
the code to calculate and check the signature without 
needed a dedicated watchdog processor. Representative 
software based control-flow monitoring schemes are 
Block Signature Self Checking (BSSC) [12] and Control 
Checking With Assertion (CCA) [ 131. 

The present paper proposes a new high-level approach to 
control flow based on multiprocess/multithread operating 
systems [14]. The target is the insertion of control-flow 
checking mechanism directly at source code level. The 
approach relies on the multiprocesdmultithread 
programming facilities offered by most of the modem 
Operating Systems to minimize the modification of the 
target application and to allow trade off between time 
overhead and fault latency. 

The proposed approach uses a new signature schema 
based on the regular expression formalism [15]. It has 
been implemented in a tool and evaluated using a custom 
fault injector [ 161. 

The paper is organized as follow: Section 2 introduces 
some basic concepts and definitions related to the program 
flow theory. Section 3 proposes the new signature schema 
whereas Section 4 explains the control-flow checking 
methodology. T o  prove the effectiveness of the work 
Section 5 reports experimental results performed on a set 
of benchmarks. Finally Section 6 draws some conclusions. 

2. Program Control Graph 

Before presenting our control-flow checking 
methodology, we first introduce some definitions and 
models used in the sequel. A generic program can be 
represented by a so-called Flow Control Graph (FCG) in 
which each node represents an instruction, whereas the 
arcs represent the authorized sequences of instructions 
(Figure 1). 

The nodes of a FCG can be grouped into two main 
classes: 

Sequential Nodes: the associated instruction does 
not modify the flow of the program, i.e. the program 
flow is sequential; 
Control Nodes: the associated instruction is able to 
modify the program flow. They are typically 
associated with flow control statements (iJ while, 
etc.). 

Instrl0 

v o l a  mal" 0 
I 

1 n s t r 1 ,  
I n s t r 2 .  
I t  ic0ndi)f 

I n s t r l .  
I n s t r S .  
I n s t r 6 . )  

While IeondZL ( 
I n s t r e ,  
I n s  t r 9 ,  > 

Else 

1 n s t r 1 0 ,  
I 

0 Control Node 

0 Sequential Node 

Figure 1: Control Flow Graph 

Using the information provided by the FCG it is possible 
to split the program into branchlfree blocks. A branch free 
block is a set of consecutive sequential vertexes in the 
FCG. A branch-free block is normally followed by a 
control vertex. Figure 2 shows the FCG of Figure 1 
modified introducing the branch-free blocks. This 
modified FCG (MCFG) is the starting point for the 
proposed control-flow checking mechanism. 

Begin 

Block1 

w -  
Figure 2: Modified Control Flow Graph 

3. Flow Signature using Regular Expression 

In the proposed approach the problem of control-flow 
checking is tackled resorting to a new signature approach 
able to identify all the allowed program flows executions. 
These program flows executions are identified by all the 
possible paths in the related MFCG starting from the 

300 



“Begin” node and ending in the “End” node (Figure 2). 
The defined signature is stored and checked at run time. 

The novelty of our approach is in the use of regular 
expressions to calculate the program flow signature, 
instead of classical approaches based on LFSR or 
arithmetic functions. 

Each branch-free block in the MFCG is labeled with a 
unique symbol named block symbol (in square brackets in 
Figure 2). Using this notation the allowed program flows 
executions generate a language composed by all the 
strings obtained by the concatenation of the block symbols 
composing the correspondent path in the MFCG. This set 
of strings can be considered as a language L in the sense 
of compiler theory [15]. This language can be represented 
in a formal way as: 

L = (A, R) 
Where: 

A is the input alphabet composed by all the defined 
block symbols; 
R is a regular expression able to generate all the 
necessary strings. 

The language L can represent a signature for the target 
application program. 

A program flow execution is allowed only if the 
corresponding path in the MFCG generates a string 
(Control String) belonging to the language L, in the other 
case a flow error has occurred. 

Considering the example of Figure 2 the language L is: 
L = (A, R) 

Where 
A = (a, b, c, d) 
R = a ( b  I (c)*) d 

If an execution produce the control string S = “acccd” 
we can say that the execution belongs to the space of 
correct executions, whereas in case of the control string 
S= “abcf” a flow error has occurred since the string is not 
recognized by the language L. 

The choice of using regular expressions for signature 
computation relies on the high expressivities of this 
formalism and the high simplicity in storing and 
manipulating this kind of strings. Using this formalism, 
the problem of control flow checking is reduced to the 
problem of generating the control strings during the 
execution of the application program and verifying for 
their correctness by checking whether it is accepted by the 
language L. 

4. Control-Flow Checking 

This paragraph explains our methodologies to generate 
and check control strings during the program execution. 
Both the code for strings generation and strings checking 
are obtained by modifying the original C/C++ source code 
of the target program application. This is not a limitation 

since the approach is general enough to work at any level 
of language: high-level, assembl y-level and machine- 
level. The inserted code makes use of the 
multiprocess/multithread programming facilities provided 
by all the modern Operating Systems [14]. 

The application program and the checker program are 
instantiated as two different processes communicating 
using a pipe or any other Inter Process Communication 
(IPC) facilities. The checker process stores the language L 
associated to the application program and the code needed 
to check if control strings belong to the language. The 
application program is modified inserting at the end of 
each branch-free block the code needed to generate the 
related control symbol. This symbol is transmitted to the 
checker process by using the IPC (Figure 3). In case of a 
wrong symbol it can detect a flow error. The code needed 
to generate control symbols is normally very simple, like a 
write operation on a pipe or a call to an IPC function, thus 
maintaining the memory and time overhead very low. At 
the same time the implementation of the checker process 
is very simple since the task of checking the appartenence 
of a language using regular expression is very simple [I51 
having a very low impact on the final application. 

The checker process is inherently equivalent to a finite 
state machine (FSM) that is usually not deterministic. 
Therefore, to be implemented it must be converted into a 
deterministic FSM, and this process may cause an 
exponential growth of states. In our approach the problem 
is implicitly solved by the method used to label the branch 
free blocks, that assure the generation of regular 
expressions recognized by deterministic FSMs. 

The use of a multiprocess architecture allows a very 
powerful mechanism to trade-off between time overhead 
in the application program execution and target fault 
latency. This can be obtained by appropriately setting the 
priority of the two processes. At limit if only the final 
results are relevant and the occurrence of a fault during the 
program execution is not a risk for the target application, 
the checker process can be called only at the end of the 
program execution. 

In addition, by splitting the branch-free blocks into sub- 
blocks and applying the same signature schema on the 
new MFCG obtained, it is possible to check also the flow 
of long sequences of sequential instructions, allowing a 
trade-off between dependability and timdmemory 
overhead. The limit, in case of very critical applications, is 
to consider each instruction as a single branch-free block. 

Figure 3 show the example of Figure 2 where the IPC is 
implemented as a pipe using the Linux System calls [ 171. 

30 1 



Block1 

Checker 

R=A(BIC*)D 

Figure 3: Multi Process Checking Architecture 

5. Experimental Results 

T o  evaluate the effectiveness of the proposed approach a 
source-to-source compiler has been implemented. It is able 
to build the FCG starting from a C/C++ source code and to 
identify the language L associated to the application 
program. It is therefore able to modify the original source 
code inserting the instructions needed to generate the 
block symbols, the source code of the checker and finally 
the instructions needed to make the proper connections 
between the two processes. 

The compiler can deal with IPC mechanisms offered by 
both Microsoft Windows NT/2000 and Unix Operating 
Systems. The approach has been validated under Windows 
2000 Operating System, using an ad-hoc fault injector [I61 
that allows injecting transient error into both data and code 
segments of an application program. 

Experimental results have been gathered from five 
different benchmarks. For each benchmark, a preliminary 
analysis has been performed to evaluate the percentage of 
control-flow errors obtained during the injection 
experiments. The faults have been injected into the code 
segment of the target application. 

Table 1 summarizes, for each benchmark and for both 
the original and modified source code: 

the binary code size; 
the execution time including, in the modified source 
code version, the communication time for the IPC 
mechanism and the time needed to check the 
correctness of the regular expression.; 
the number of crashes i.e. the number of faults 
injected that has generated a crash of the application 
program; 
the number of control-flow errors i.e. the number of 
injected faults that has caused a control flow 
different from the golden one ; 

the number of error not belonging in the set of 
control-flow errors; 
the number of detected control-flow errors, i.e. the 
number of injected faults belonging in the control 
flow errors category and detected by the control 
flow checking mechanism. 

Table 1 shows that in general the proposed approach is 
able to sensibly reduce the incidence of control flow errors 
in the target application. The effectiveness of the approach 
is mainly influenced by the characteristics of the source 
code. Programs that made large use of branches and loops 
statements have major benefit from the control-flow 
checking whereas more sequential programs like the 
Floating Point benchmark are less influenced by the 
proposed strategy. 

Moreover i t  is possible to note that the number of total 
detected errors is greater then the reduction of control- 
flow errors. This means that the proposed approach is also 
able to reduce the cases of crashes of the application 
program increasing the total dependability of the target 
application. 

Concerning the memory overhead and time overhead 
Table 1 shows they are into an acceptable level 
considering that all the experiments have been performed 
in the worst case from the point of view of time overhead 
since the checker has been scheduled at each block symbol 
generation. 

6. Conclusions 

A very large number of computer based systems play a 
key role in critical tasks with respect to human safety and 
data security requiring high availability and dependability. 
The challenge is to build fault tolerant systems that 
harness the market forces by using off-the-shelf hardware 
and software components. Control-flow checking has 
become a widely studied approach to concurrent error 
checking. 

In the present paper we presented a new high-level 
methodology to control-flow checking based on regular 
expressions and multiprocess/multithread Operating 
Systems. The main features of our approach are the 
possibility of working at different programming levels 
(high level language, assembly language, machine 
language), the low memory overhead and the high 
flexibility in terms of trade-off between time overhead and 
fault latency, and memory overhead and detection 
capability. 

The proposed approach has been evaluated 
implementing a source-to-source compiler able to 
automatically insert the control structures. Experimental 
results demonstrate the effectiveness of the approach and 
the low overhead introduced in terms of both memory 
occupancy and execution time. 

302 



7. References 

Binary 
CodeSize 
(KB) 
Eexecution 
Time ( s )  
#Crashes 
# Control 
Flow 
Errors 
#Other 
Errors 
# Detected 

S. S.  Yau, F. Ch. Chen, “An Approach to Concurrent 
Control Flow Checking”, IEEE Transaction on Software 
Engineering, Vol. SE-6, No. 2, pp. 126-137, 1980. 
R. Leveugle, T. Michel, GSaucier, “Design of 
Microprocessors with Built-In On-Line test”, 20’ 
International Symposium on Fault-Tolerant Computing 

A. Mahamood, E. J. McCluskey, “Concurrent Error 
Detection Using Watchdog Processor - A Survay ”, IEEE 
Transaction on Computer, Vol. 37, No. 2, pp. 160-174, 
1988. 
M. Namjoo, “Techniques for Concurrent Testing of VLSI 
Processor Operation”, International Test Conference 

M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X. Zhu, 
“Expermental EvAhAtion of Two Concurrent Error 
Detection Schemes”, 16* International Symposium on 
Fault Toleran Computing (FTCS-16). pp. 138-143, 1986 
K. Wilken, J.P. Shen, “Continuous Signature 
Monitoring: Low-Cost Concurrent Detection of 
Processor Errors”, IEEE Transaction on Computer 
Aided Design and Systems, Vol. 9, Issue 6, pp. 629-641, 
June 1990. 
H. Madeira, J. G. Silva, “On-line Signature Learning and 
ChPcking ”, 2“d IFIP Working Conference On Dependable 
Computing for Critical Applications (DCCA-2), pp. 170- 
177, Feb. 199 1 
T. Michel, R. Leveugle, G. Saucier, “A New Approach to 
Control Flow Checking without Program Modification ”, 
21’ lntcrnational Symposium on Fault-Tolerant 
Computing (FTCS-21). pp. 334-341, 1991. 

(FITS-20). pp. 450-456, 1990. 

(ITC-82). pp. 461-468, 1982. 

Matrix 

Benchmark 
Quick Sort Bubblesort DicotomicSearch point Multiplication 

Benchmark 

Original Modified Original Modified Original Modified Original Modified Original Modified 

48 53 14 17 15 18 36 40 36 39 

1,5 1,8 6,1 10,5 O S  0,6 0,1 0,3 0,4 0,6 

484 472 420 415 440 433 463 45 8 452 445 

25 19 13 6 19 9 16 3 18 9 

26 26 30 30 29 29 33 33 29 29 

Shambhu Upaddhyaya, Bina Ramamurthy, “Concurrent 
Process Monitoring with No Reference Signatures”, 
IEEE Transaction on Computer, Vol. 43 no. 4, pp. 475- 
480, April 1994. 
G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, “Use of 
Time and Address Signatures fo r  Control Flow 
Checking ”, 5’ IFlP Working Conference on Dependable 
Computing for Critical Applcation (DCCA-5). pp. 113- 
124, 1995 
x. Delord, G.Saucier, “Control Flow in Pipelined RISC 
Microprocessor: The Motorola MC88100 Case Study”, 
Workshop on Real Time (Euromicro ‘90), pp. 162-169, 
1990. 
G. Miremadi, 1. Karlsson, U. Gunneflo, J. Torin, “Two 
software techniques for on-line error detection ”, 22th 
International Symposium on Fault-Tolerant Computing 

2. Alkhdifa, V.S.S. Nair, N. Krishnamurthy, J.A. 
Abraham, “Design and EVAhAtiOn of System-Level 
Checks for  on-line Control Flow Error Detection ”, IEEE 
Transaction on Parallel and Distributed Systems, Vol. IO, 
No. 6, pp. 627-641, June 1999. 
Abraham Silberschatz, Peter Calvin, “Operating System 
Concepts. 5th Edition”, John Wiley & Sons, January 
1998. 
A.V. Aho, R. Sethi, J. D. Ullman, “Compilers: 
Principles, Techniques and Tools“, Addison-Wesley, 
1986. 
A. Baldini, A. Benso, S. Chiusano, P. Prinetto, “BOND: 
An Interposition Agents based Fault Injector for  
Windows NT”, IEEE International Symposium on Defect 
and Fault Tolerance in VLSl Systems (DFT’2000). pp. 
387-395, October 2000. 
Official Linux Web Site: httn://www.linux.org 

(FITS-22). pp. 328-335, July, 1992. 

303 


