
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On applying the set covering model to reseeding / Chiusano, SILVIA ANNA; DI CARLO, Stefano; Prinetto, Paolo
Ernesto; Wunderlich, H. J.. - STAMPA. - (2001), pp. 156-160. (Intervento presentato al convegno Design, Automation
and Test in Europe, Conference and Exhibition (DATE) tenutosi a Munich, DE nel 13-16 March 2001)
[10.1109/DATE.2001.915017].

Original

On applying the set covering model to reseeding

Publisher:

Published
DOI:10.1109/DATE.2001.915017

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1416287 since:

IEEE Computer Society

On Applying the Set Covering Model to Reseeding

Silvia CHIUSANO, Stefan0 DI CARLO, Paolo PRINE’ITO
Politecnico di Torino, Dipartimento di Automatica e Informatica, Italy

(chiusano, dicarlo, prinetto @polito. it
http://www. testgroup.polito. it

Hans-Joachim WUNDERLICH
Computer Architecture Lab, University of Stuttgart, Germany

wu @ informatik. uni-stuttgart.de
http://www. ra. informatik. uni-Stuttgart. de/

Abstract’
The Functional BIST approach is a rather new BIST

technique based on exploiting embedded system
functionality to generate deterministic test patterns during
BIST The approach takes advantages of two well-known
testing techniques, the arithmetic BIST approach and the
reseeding method.

The main contribution of the present paper consists in
formulating the problem of an optimal reseeding
computation as an itistance of the set covering problem.
The proposed approach guarantees high flexibility, is
applicable to dijferent fiinctional modules, and, in general,
provides a more eficient test set encoding then previous
techniques. In addition, the approach shorts the
computation time and allows to better exploiting the trade-
off between area overhead and global test length as well
as to deal with larger circuits.

1. Introduction
Recently a rather new BIST technique have been

proposed, aiming at covering not random testable faults
via deterministic test pattems generated through the
available system modules. The basic idea of the approach
can be summarized as follows: let two modules MI and M,
be given, both part of the system mission logic and
functionally connected. During testing, control MI in such
a way that its outputs are suitable test pattems for module
M,. M, is typically a sequential circuit, and hl, is a
combinational or pipelined unit.

The approach takes advantages of two well-known
testing techniques, the arithmetic BIST approach [1] [2]
and the reseeding method [3][4]. From the former it
derives the idea of exploiting the available system
functionality for testing the system itself, and from the

I This work was partially supported by Deutscher Akurlemischer
Austuuschdienst (DAAD) and by the Corferetizu dei Renori delle
Uriiversitd Ituliurie (CRUI), under the Vigorti Project 1999-2000,

latter the idea of adequately initialize (seed) the test
pattem generator unit to generate deterministic test sets.

The approach has been named Functional BIST
[5][6][7][8], since it is not restricted to any specific
modules MI but it can work with any type of functions.
The target application scenario is testing the actual
System-On-Chips (SoCs), which include a variety of
functional units, library modules (e.g., ALU, MAC, LFSR,
etc.), as well as custom blocks. These modules usually
form a strongly connected network, in which each unit is
functionally linked to many other system modules either
by bus- or by multiplexer-oriented interconnections.

Because of the novelty of the approach, so far a few
papers addressed the problem of computing the
appropriate initialization values (reseedings) for a given
unit M, used as test pattem generator (TF’G). [SI proposes a
simulation-based and an analytic method to compute the
initialization values for an adder-based TPG. [6] still deals
with adder based accumulator structures, and is able to
compute seeds so that the resulting test sequences obtain
complete fault coverage for all the ISCA’S85 circuits and
the combinational parts of the ISCAS’89 circuits [9][IO].

[7][8] present a universal algorithm called GATSBY
(Genetic Algorithm based Test Synthesis tool for BIST
applications), to compute the initialization values for a
generic module used as TPG. Different test pattem
generators were evaluated taking into account the
parameters test length, area overhead, and fault coverage.
Experiments show that GATSBY was able to outperform
results presented into the literature and customized on
specialized cases. However, since the GATSBY
computation process strongly relies on simulation, the
approach is not applicable to large circuits.

The goal of the present paper is to propose an effective
method for reseeding computation. The approach
guarantees the same flexibility of GATSBY but provides
better reseeding solutions reducing the area overhead, and
allows dealing with larger Unit Under Tests. The key point
of the presented approach consists in formalizing a very
innovative problem by resorting to the set covering

156
1530-1591/01$10.00 0 2001 IEEE

http://www
http://uni-stuttgart.de
http://www

techniques, which are well known in the computer design
area and have been widely used in the past.

Set covering techniques have many applications in
computer design, such as two-levels logic minimization,
two-levels Boolean relation minimization, state
minimization, exact encoding and DAG covering
[11][12][13], and for optimal encoding of microprocessor
instructions [141. Moreover, they were exploited for test
compaction in the testing field [15].

In the present paper, starting from an initial reseeding
solution, a minimal one is computed by resorting to typical
set covering techniques, based on essentiality and
dominance [17], together with LINGO [16], a well-known
and very efficient tool for solving linear programming
problems. The present paper is organized as follows:
Section 2 briefly overviews the basic concepts of
Functional BIST approach; Section 3 details the
formalization through the set covering model and
describes the computation algorithm. Section 4 reports the
experimental results, and Section 5 eventually draws some
conclusions.

2. The Functional BIST: a summary
This section briefly summarizes the functional BIST

approach and provides concepts and notations needed
below. A deeper description of the approach is out of the
scope is this paper, but the reader may refer to [7] and [8]
for more details.

The aim of the approach is testing a given system
through the functionalities available into the system itself.
The modules used as a the Test Pattern Generators (TPGs)
are generally sequential circuits, having input and internal
state register partially or fully accessible, either via
parallel load or in full-scan mode. To generate the
appropriate test sequence, the TPG is first seeded by
setting its state register and its inputs register to two
initialization values, respectively 6 and 0. Then, the TPG
is let evolve for T clock cycles. During the TPG evolution,

, the TPG input register remains 0, but the content of the
state register is potentially updated at each clock cycle.
The Test Set (TS) computed by the TPG is the sequence of
T pattems which appears on the TPG outputs, one pattern
p, at each clock cycle tJ, 0 I j < T: TS={po, p2, . . .P~.~). The
test set TS is characterized through the intrinsic
functionality of the TPG itself as well as the triplet of
values 6, 0, and T employed to control the TPG evolution.
Two elements mainly contribute in defining the quality of
the test set: the fault coverage (FC%) and the test length
(T).

Experiments in [7] and in [8] showed that the complete
fault coverage is not always achieved through a single
triplet when dealing with large Unit Under Tests (UUTs).
In this case, multiple TPG reseedings are required:
periodically the TPG evolution has to be stopped and

restarted with a new triplet, until the target fault coverage
is reached.

A reseeding solution is a set of K triplets U O ~ i <K (6, 0,
T),, which are sequentially applied to the TPG. Each triplet
drives the TPG evolution generating a test set TS, which
detects a percentage AFC%, of the UUT faults not covered
by the other triplets. The overall test set TS is therefore the
union of the test sets TSi generated by each triplet: TS=
TSOU TSI U TS2 U ... TSK.1; it is characterized by a global
test length T=C o s i < K T, and the fault coverage FC% = c o

An optimal reseeding solution can be computed by
trading-off the number of reseedings vs. area overhead and
test length. A low number of reseedings allows minimizing
the area needed to store the triplets (e.g., in a ROM), but
usually a larger test length is necessary and the 100% of
testable fault coverage is not always guaranteed. On the
other hand, large number of reseedings guarantees the
target fault coverage, with a shorter test length, but it
implies more area overhead.

3. The Set Covering Model
The present paper addresses the computation of an

optimal reseeding solution, which minimizes the number
of reseedings. This value in fact strongly impacts on the
applicability of the approach since it affects the area
overhead.

Let F=(f, , f i , f ; , ) be the target list of stuck-at faults
of the combinational circuit to be tested. Our purpose is to
compute a minimal set of triplets U(&, 0, T), such as the
resulting test set TS= uTSi guarantees the detection of all
the faults belonging to F. This problem can be formalized
as an instance of the set covering problem. In the
following, for sake of readiness, the triplet of values (6, 0,

T), will be denoted as triplet,.
Let us start with a initial reseeding of M triplets

T=(tripleto, triplet,, ..., trip/etM.l), built up in order to
guarantee the detection of all the target faults F=(f l , f2,
f3,. . . .). By construction F= ~ , ~ ~ ~ l ~ ~ ~ ET F(triplet,), being
F(triplet,) = VI/,, f 2,i, f3/,,....} the subset of faults detected
by the test set TS,, generated by triplet,. The object of the
research becomes find a set N of triplets, N _c T, such that
uv,nlcl, E N F(tripleti) = F and N has minimum cardinality.
Definition: A set N of triplets is a minimal solution iff
none its triplet can be removed without affecting the
detection of F.
Therefore, each triplet, E N is necessary to detect at least
one faultf,E F, which is not covered by any other triplet of
N .

To map this problem as an instance of the set covering
problem, let define a matrix, named in this context
Detection Matrix, having size (#Triplets€ N)x(#FaultsE F).
Each row of the matrix corresponds to a triplet,ET and
each column to a fault J; E F. Each cell di of the matrix is

5 i < K AFC%,.

157

set to ‘I’ if at least one pattern of the test set TS,,
generated by triplet,, detects the fault $; it is fixed to
‘O’,otherwise.

Further, define a vector x of M Boolean variables, such
that x, provided by triplet, is selected for inclusion in N .
Our goal is therefore to solve the following integer
optimization problem:

minimize C, x,
constraints Detection Matrix x 2 1, XE (0, 1 }M

which can also be viewed as an instance of the set
covering problem.

The quality of the final solution N strongly depends on
both the goodness of the initial solution T as well as on the
adopted set covering algorithm. In the following three
Sections, these aspects will be analyzed in detail.

3.1. Building up the Detection Matrix
The initial reseeding Tis generated by resorting to the

test set ATPGTS provided by a commercial gate-level
ATPG tool, which guarantees complete covering of F. The
cardinality of T is fixed equal to the test length of
A TPGTS.

Being ATPGTS a sequence of M patterns p l , ATPGTS

one pattern pi. and the value G is randomly selected. The
number 7 of clock cycles for triplet evolution is
experimentally tuned and applied to all the triplets of T .
Fixing r=’O’, the test set TS provided by the reseeding
corresponds to the ATPG test set ATPGTS.

3.2. Detection Matrix Reduction

= (p o , p 2 pM., }, for each triplet, of T the value 8 is set to

First, the Detection Matrix is simplified using
essentiality and dominance methods [171. The two
techniques are iteratively applied until the matrix cannot
be reduced any more.
Definition: triplet, is essential or necessary iff at least one
faultj+ F is detected only by one of the pattern belonging
to TS,. 1

must be further analyzed by resorting to alternative
solving algorithms. Depending on the size of the matrix,
either exact approaches or local research and meta-
heuristic techniques are applied. Experiments reported in
Section 4 show that on this kind of problems the reduction
process is highly effective, and the size of the reduced
matrix allow to deal it with an exact algorithm. In
particular, among the algorithms available into the
literature, we decided to adopt the linear programming
software package LINGO, an effective commercial tool
that addresses the exact solution of combinational
optimization problems [161.

4. Experimental results
Figure 1 sketches the overall computation flow of the

proposed set covering based method. First, the Initial
Reseeding Builder provides the starting reseeding solution
(T) and computes the Detection Matrix. It receives as an
input the behavioral description of the TPG together with
the ATP GTS deterministic test set and the fault list F, both
provided by a gate-level ATPG. Then, the Matrix Reducer
simplifies the Detection Matrix and computes the set of
necessary triplets. Finally, the software package LINGO
[161 post processes the matrix, extracting a minimal subset
of triplets. The computed reseeding solution (N) is
therefore the union of the necessary triplets and the
minimal subset of triplets.

Reduced

Matrix
Deletcltun LINGO

Necessary triplets must be included into the final
solution N. The Detection Matrix is therefore simplified
deleting all the rows corresponding to the necessary
triplets, and all the columns corresponding to the faults
detected by them (F(trip/et,)).
Definition: rriplet, is dominated by tripletk iff F(triplet,)
F(tripletK), i.e., the set TSk detects the faults covered by TS,

Dominated triplets will not be included into the final
reseeding solution N and therefore the corresponding rows
are removed from the Detection Matrix.

plus possibly some additional others. 1
3.3. Computing an Optimal Reseeding Solution

If the Detection Matrix is empty at the end of the
reduction process, the final reseeding solution N will only
contain necessary triplets. Otherwise the reduced matrix

......................................

..

Figure 1 : The reseeding computation flow

To run the experiments, in the present paper both the
Initial Reseeding Builder and Matrix Reducer have been
implemented in ANSI C. The target fault list (F) and the
ATPGTS are instead computed by resorting to the gate-
level ATPG TestGen [18]. The tool is also employed to
support the computation of the initial reseeding solution
(T) and the Detection Matrix. The Initial Reseeding
Builder builds up a triplet, for each pattern pi belonging to
ATPGTS and computes the corresponding test set TS,,
seeding the TPG by triplet, and let i t evolving for T, clock
cycles. The fault coverage AFC, for TS, is gathered fault

158

simulating TS, on F through the TestGen fault simulator.
To build the matrix, the value T, is experimentally tuned
and fixed equal for all the triplets of T.

As TPGs, we focus on three accumulator-based units
including arithmetic functions such as adder, multiplier
and subtracter, which are quite common in the actual
SoCs. As UUT we consider the ISCAS'85 and the full-
scan version of ISCAS'89 benchmark circuits [9][lo],
which are not random testable by 10k patterns. Final
reseeding solutions are collected in Table 1, whereas Table
2 and Figure 2 allow a deeper analysis of the results.
Experiments were run on a Sun SparcStation 5/110 with
64Megabytes of RAM.

Table I reports the cardinality of the reseeding solution
(#Triplets) and the global test length (Test Length) for each
considered TPG. Moreover Table 1 compares the actual
results and the GATSBY solutions [8]. On all the circuits
(except s838) the set covering based approach sensibly
reduces the number of reseedings with respect to
GATSBY the improvement ranks from -2 to -25 triplets
and interests all the three considered TPGs. Therefore,
without loosing generality, the approach proposed in this
paper provides solution significantly less costly in terms of
area overhead to store the triplets. No comparison is
available for s13207 and ~ 1 5 8 5 0 since the two circuits
were too large to be dealt with by GATSBY.

One of the advantages of the set covering based
approach rely on the fact that it shorts the computation
time, allowing to better exploit the trade-off between the
number of reseedings and the test length, possibly dealing
with larger test sequences. W.r.t. GATSBY, the number of
fault simulations is reduced and limited to the construction
of the Detection Matrix.

In the case of multiple reseedings, the global test length
reported in Table 1 is computed deleting from each test set
TS, the last subsequence of pattems not contributing to the
fault coverage AFC,. For each triplet therefore we assume
to store both the seeding values 6 and CY, and the actual
number of clock cycles for the evolution. The area
overhead can be further reduced let evolving all the
triplets for the same interval of time. In this case the value
T must be the largest number of clock cycles among the
ones required by each triplet of the reseeding solution.

Figure 2 focuses on the trade-off between the number
of reseedings and the test length, in the case of the circuit
s1238 and considering as TPG an adder based
accumulator. Starting from a test length of 5,427 and
progressively increasing this value to 15,55 I , the number
of triplets decreases from 11 to 2 .

Table 2 focuses on the complexity of the problem, and
on the characteristics of the reseeding solutions. The first
column of Table 2 reports the size of the initial Detection
Matrix, expressed as #Tripletsx#Faults. By construction
#Triplets is the test length of the TestGen test set. The
remaining columns show, for each TPG, the impact of the

reduction techniques and the contribution of LINGO.
Experiments show that the reduction is quite effective on
this kind of problems, allowing to significantly prune the
Detection Matrix and providing a matrix that can be
processed by LINGO. On some examples (c499, c880,
~ 1 3 5 5 , c1908, s820, s838, s953, ~ 1 4 2 3 , ~15850) the
reseeding solution only contains necessary triplets, being
the matrix empty after reduction. On the others, the
reseeding includes either no necessary triplets (s420, s641,
s1238, ~ 5 3 7 8 , s9234, ~ 1 3 2 0 7) or both necessary triplets
and triplets computed by LINGO (~7552 , ~9234) .

11 7 5 4

'e1
Figure 2: Trade-off Reseedings vs.Test Length

5. Conclusions
The present paper works in the area of the Functional

BIST and proposes an effective method, based on set
covering techniques, for optimal reseeding computation.
Experiments show that the approach allows conjugating
effectiveness and high flexibility. On one hand, it is not
customized on specific test pattem generators. On the
other hand, it allows exploiting the trade-off between area
overhead and global test length, and it provides reseeding
solutions with minimum area overhead.

6. Acknowledgments
The authors wish to thank Albert0 Oliver0 for

implementing the algorithm and performing the
experiments, and Federico Della Croce for the fruitful
discussions.

7. References
[I] J . Rajski. J . Tyszer, Arithmetic Built-lri Self-Test f o r Embedded

Systems, Prentice Hall FTR, Upper Saddle River, NJ, USA, 1998
[?I S. Gupta, J . Rajski, J . Tyszer. Arithmetic Aduptive Gerterutors c$

Pseudo-Exhausrive Test Putrems, IEEE Trans. on Computers,

S. Hellebrand, S. Tarnick. J. Rajski, B. Courtois, Gmerufion of
Vector Putrenis Through Reseedirig of Multiple-Polyriomiul Lineur
Feedbuck Shifi Registers, IEEE ITC, 1992, pp. 120- 129
S . Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich, Putreni
Gerierution for U Derermiriisric BIST Scheme, IEEE ICCAD, 1995,

A. P. Strode, F. Mayer, Methods to reduce Test Applicution Time
for Accumulutor-Bused Self-Test, IEEE VTS. 1997, pp. 48-53
R. Dorsch, H.-J. Wunderlich, Accumuluror Based Derermiriistic
BIST, E E E ITC, 1998 '

8(4S): 939-949, August, 1996
[3]

[4]

pp. 88-94
[SI

[6]

159

[7] S. Cataldo, S. Chiusano, P. Prinetto, H-J. Wunderlich, Optimal
Hardware Pattern Generation for Furicriorial BIST, IEEE DATE,

S. Chiusano, P. F’rinetto, H-J. Wunderlich, Non Iirtrrrsive BISTfor
System-on-a-Chip, IEEE ITC, 2oM)
F. Brglez and H. Fujiwara, A Neurral Nrrlisr o f 1 0 Comhiriatorid
Benchmark Circuits, IEEE Int. Symp. on Circuits and Systems.
I985 [I51

[IO] F. Brglez. D. Bryan, K. Kozminski, Comhhurorid Profiles of
Srquenriol Berichmark Circuits, IEEE Int. Symp. on Circuits and
Systems, 1989 [I61

[I I] M. Karnaugh, The Map Methodfur Synthesis of’ Comhiirurional [I71
Logic Circuirs, Transaction IEEE, vol. 72, pp 593-599, 1953

1181

[I21

2000, pp.292-297
[SI

191

[131

[I41

R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-
Vincentelli, Logic Mirrimizutiorr Algorirhms f i i r V U 1 Synthesis,
Kluwer Acad. Pub., 1984
G. De Micheli, Symhesis cind Oprimizuri,orr if’ Digirul Circrriu,
McGraw-Hill, 1994
T. Agrawala, Microprogrum Oprimizarion: A Sunwy, IEEE Trans.
Comp., pp. 962-973, October 1976
I. Pomeranz, L. N. Reddy, S. M. Reddy, COMPACTEST: A Merhod
r o Grrrerure Compucr Test Sersfor Comhiriutionul Circuirs, IEEE
Trans. on CAD, pp. 1040-1049, July 1993
LINGO 5.0 User Manual, LINDO System INC. 1999
E. L. Jr. McCluskey, Mitrirnizariotr ij’Boo/euir Fuurrctions, Bell. Sys.
Tech. Jour., vol. 35, pp. 1417-1444, April 1959
http:l/www.synopsys.com/

Is158501 104 1208,2361 92 1362,6321 33 1328,1001 - I - 1 - I - 1
Table 1 : Reseeding solution

Table 2: Set Covering algorithm

160

