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Abstract 

  

In this paper we present a parallel regret insertion heuristic to solve a dial-a-ride problem with 

time windows. A new route initialization procedure is implemented, that keeps into account both 

the spatial and the temporal aspects of the problem, and a regret insertion is then performed to 

serve the remaining requests. The considered operating scenario is representative of a large-scale 

dial-a-ride program in Los Angeles County. The proposed algorithm was tested on data sets of 

500 and 1000 requests built from data of paratransit service in this area. The computational 

results show the effectiveness of this approach in terms of trading-off solution quality and 

computational times. The latter measure being especially important in large-scale systems where 

numerous daily requests need to be processed. 
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1. Introduction 

 

Historically, dial-a-ride services were large-scale systems designed in the seventies to serve the 

general population of large urban metropolitan areas. These system soon met with financial 

problems and were either dismissed or radically transformed (Lave et al., 1996). Recently, they 

are almost exclusively used in particular situations, for example for services in rural areas or for 

users with particular needs. In the United States, due to the passage of the American with 

Disabilities Act, most of the existing services are for disabled and elder citizens; however there is 

also a flourishing market for feeder services to airports (Cervero, 1997). In Europe there is 

growing interest in implementing technologically advanced systems, and pilot studies such as 

SAMPO and SAMPLUS investigated their feasibility under various operating scenarios.  

 

There is a significant body of work in the literature on scheduling and routing dial-a-ride systems. 

The Dial-a-Ride Problem is similar to the Pickup and Delivery Problem with the added constraint 

of restricting the maximum passenger ride time. These constraints are added to limit the 

inconvenience to the passengers. Desaulniers et al. (2000) and Savelsbergh and Sol (1995) 

provide a detailed review of the Pickup and Delivery Problem and its related problems. We 

briefly summarize the work in this area. 

 

Pioneer research on the Dial-a-Ride Problem dates back to the seventies. Theoretical studies for 

the single-vehicle case include the work by Psaraftis (1980, 1983a), Sexton and Bodin (1985a, 

1985b), Sexton and Choi (1986), Desrosiers et al. (1986) for exact algorithms and the work of 

Psaraftis (1983b, 1983c) for heuristic approaches. Stein (1978a, 1978b) developed a probabilistic 

analysis of the problem, and Daganzo (1978) presented a model to evaluate the performance of a 

dial-a-ride system. Heuristics to solve multi-vehicle problems have been then proposed by 

Psaraftis (1986), Jaw et al. (1986), Bodin and Sexton (1986) and Desrosiers et al. (1988). Min 

(1989) considers a vehicle routing problem with simultaneous pickup and deliveries, that 

involves the definition of a capacity constraint. 

 

Dumas et al. (1991) present a column generation scheme for optimally solving the Pickup and 

Delivery Problem with time windows. Madsen et al. (1995), Ioachim et al. (1995), Toth and Vigo 
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(1997) and Borndörfer et al. (1999) propose heuristics to solve a transportation problem of 

handicapped persons. Savelsbergh and Sol (1995, 1998) study a general version of the Pickup 

and Delivery Problem in which each request can have more than one delivery point. Local search 

procedures are reported in Van Der Bruggen et al. (1993) and Healy and Moll (1995). A tabu 

search technique has been applied by Nanry and Barnes (2000), whereas Teodorovich and 

Radivojevic (2000) use a fuzzy logic approach. Exact procedures to solve small problems can be 

found in Ruland and Rodin (1997) and Lu and Dessouky (2001).  

 

Recent papers focus on the design of dial-a-ride services on a technologically advanced basis. 

Dial (1995) proposes the implementation of a decentralized control strategy for a fleet of 

vehicles. Horn (2002b) develops an algorithm for the scheduling and routing of a fleet of vehicles 

that is embedded in a modelling framework for the assessment of the performance of a general 

public transport system, with the latter being presented in Horn (2002a). A simulation model for 

paratransit services can also be found in Fu (2002). 

 

From this short review, the previously developed algorithms can be classified primarily in three 

areas: exact, insertion heuristics, and local neighbourhood search techniques. The exact 

approaches provide theoretical insight to the problem. The insertion heuristics, which includes 

the work of Jaw et al. (1986) and Madsen et al. (1995), are computationally fast. However, they 

may not provide as good of a solution as local search techniques such as the tabu method. On the 

other hand, local search techniques may not be computationally feasible when a large number of 

requests need to be scheduled in a dynamic environment, and they generally require extensive 

computational tests to set up a number of parameters that are highly case-sensitive.  

 

Developing fast robust scheduling algorithms is becoming of increasing importance to this 

industry due to the diffusion of low cost information technologies. For example, Access Services 

Inc, ASI, the agency responsible for coordinating paratransit services in Los Angeles County is 

equipping most of their fleet with global positioning systems (GPS) and mobile data terminals. 

With the introduction of these technologies it is possible to track the vehicles in real-time with 

capabilities to schedule the requests in a real-time dynamic mode. In ASI, 50% of the customers 

make their reservations on the same day of the requested pickup time and in some cases the 
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requests are made only hours before the desired pickup time. Furthermore, the average daily 

volume ranges from around 250 to 2000 requests per day depending on the region within Los 

Angeles County.  

 

With this high volume and the requirement to find solutions quickly, there is a need to develop 

algorithms with the computational efficiency of the insertion heuristics but with the solution 

quality of the local search techniques. In this paper we present a parallel regret insertion heuristic 

to solve a dial-a-ride problem with time windows. A new route initialization procedure is 

implemented, that keeps into account both the spatial and the temporal aspects of the problem, 

and a regret insertion is then performed to serve the remaining requests. As opposed to the 

insertion heuristics whose computational complexity is of O(n2) where n is the number of 

requests, the computational complexity of the regret insertion heuristic is of O(n3). Thus, it is 

slower than the classical insertion heuristics. However, on sample data sets representative of 

paratransit operations in Los Angeles County consisting of 500 and 1000 daily requests, we show 

that the regret insertion heuristic can provide significantly superior solutions in terms of total 

vehicle miles and fleet size. Although computationally slower than the insertion heuristics, the 

regret insertion heuristic is computationally faster than the local search procedures. Furthermore, 

its computational CPU solution time is much more predictable than the local search procedures 

where the solution times are extremely dependent on the structure of the data sets. This can be an 

important characteristic to transportation planners who may need to know how long it takes to 

obtain a solution, especially when operating in a dynamic mode. 

 

The remainder of the paper is organized as follows. A detailed description of the studied problem 

is given in section 2. The proposed solution methodology is described in section 3. In section 4 

we present the computational results obtained on various large sized data sets representative of 

dial-a-ride operations in Los Angeles County. Finally, some concluding remarks and directions 

for future research are contained in section 5. 

 

2. Modeling the operation of a paratransit system 

 

2.1. Service features and related constraints 

 5



 

As previously stated, our effort is directed at studying a problem that could realistically model the 

operation of a paratransit system. In the following we will partially adopt the operating scenario 

described by Jaw et al. (1986). When making a reservation, the customer has to specify the origin 

and the destination of the trip, as well as the number of passengers. He can also specify either the 

pickup or the delivery time; on the other hand, the operator fixes (or negotiates) the maximum 

ride time and the maximum wait time WT at the pickup point (for customers that specify the 

pickup time) or the maximum advance time AT at the delivery point (for customers that specify 

the delivery time). The maximum ride time for each customer k (MRTk) is usually set as an 

increasing function of its direct ride time DRTk. We use the following definition for MRTk, where 

a and b are two parameters that are specified by the scheduler: 

 

⎩
⎨
⎧

++
++

=
imedelivery t specified with requestsfor      AT)  DRT b,  (a·DRTmax  

 timepickup specified with requestsfor      WT) DRT b,  (a·DRTmax  
MRT

kk

kk
k  

 

It is convenient to merge these constraints, related to the quality of the service to be provided, 

into the definition of the time windows for all the pickup and delivery nodes. Let EPTk be the 

earliest pickup time for customer k if specified or LDTk be the latest delivery time for customer k 

if specified. Then, let (EPTk , LPTk) and (EDTk , LDTk) be the time windows associated with the 

pickup and delivery times for customer k, respectively. When EPTk is specified by the user, the 

time windows are computed as follows. 

 

 WTEPTLPT kk +=

 kkk DRTEPTEDT +=

 kkk MRTEPTLDT +=

 

When the customer specifies LDTk, the time windows are computed in the following manner. 

 

 kkk MRTLDTEPT −=

 kkk DRTLDTLPT −=

 ATLDTEDT kk −=
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In figure 1, we illustrate how this computation is performed for both kinds of requests. Using this 

definition for time windows, the number of tentative insertions that must be performed is 

dramatically reduced by a priori discarding those that would be infeasible as regards to some of 

these constraints. Unlike the definition proposed by Jaw et al. (1986), it can be seen that our time 

windows also imply the respect of the maximum ride time. The most serious drawback is that the 

time window related to the delivery point (for pickup-time specified requests) or to the pickup 

point (for delivery-time specified requests) is to some extent unnecessarily narrowed, and this 

could in turn make it more difficult to identify a feasible solution. On the other hand, narrowing 

these time windows leads to solutions of high quality for the traveler. This aspect will be 

investigated when we present the results of the computational tests. 

 

Fig. 1. 

 

In addition, we associate with each request k a service time sk both at the pickup and at the 

delivery node. This service feature is usually considered only in the case of the design of a 

paratransit system for disabled persons. In fact, when modeling a high quality service, in which 

the temporal constraints are very tight, the length of operations such as boarding and paying the 

fare cannot be overlooked.  

 

2.2. Idle times within the schedule 

 

As previously mentioned, we are dealing with a highly constrained problem. In order to enlarge 

the solution space without affecting the quality of the service, the vehicles are allowed to stop and 

idle at any pickup location, waiting to serve the following request, if only no passengers are 

onboard. This modification of the standard dial-a-ride problem increases the possibility of 

inserting new requests, especially when the time windows are narrow and the number of requests 

per unit of time is low. Furthermore, on an operational point of view, the presence of these pauses 

could greatly simplify the crew roster design, as a multitude of points in which a driver turnover 

is possible, is created. On the other hand, the implementation of this possibility drives to a more 
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complicated algorithm design, as the insertion of new requests across an idle time might cause a 

passenger to be onboard while the vehicle is idling. 

 

The easiest method to avoid this drawback is to prevent the algorithm from performing insertions 

of requests across one or more pauses. This limitation is somewhat arbitrary, as there could be the 

possibility of operating a shift in the schedule in such a manner that the included idle times are 

eliminated, thus making the insertion possible. Our algorithm performs this check, and in our 

computational tests we measured to what extent this added capability improves the quality of the 

solution (see section 4). 

 

2.3. Objective function 

 

When operating a public transport service there are always two conflicting points of view to be 

considered. The service provider is interested in the economic efficiency of the system, whereas 

the customer looks at the service quality. The objective function to minimize is a weighted sum 

of three elements that represent these different points of view: (1) the total distance traveled by 

all the vehicles, (2) the excess ride time over the direct time for all the customers and (3) the total 

length of the idle times within the schedule. The latter can also not be considered if it is stated 

that a vehicle can idle without passengers onboard at no cost. In our simulation we used 0.45, 

0.55 and 0.05 as weights for the three components, not considering the scaling factors. 

 

The number of vehicles to be used is not minimized during the optimization process; but it is an 

input of the algorithm. To test the performance of the proposed heuristic, in our computational 

tests we iteratively run each scenario to determine the minimum number of vehicles required to 

service all the requests. In order to do this, we performed the first run of the algorithm with a very 

high number of vehicles, and we progressively lowered this number in the successive runs until 

some requests could not be scheduled.  

 

3. The proposed regret insertion heuristic 
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From the discussion presented in the previous section we can conclude that the studied problem 

is an extremely constrained problem, and therefore the feasibility region can be very limited, 

even compared to the classical pickup and delivery problem with time windows. On the other 

hand, from the point of view of the professional scheduler of a paratransit system, the quality of 

the solution in terms of the minimization of the objective function might not be the only desired 

feature. In an operative context, even if real-time requests are not allowed, there are always some 

elements that make the problem dynamic (no shows, vehicle breakdowns…). Thus, it is also 

useful to have a solution that allows some degree of flexibility. In other words, operating changes 

in the current schedule, such as adding or removing requests or changing the travel times of some 

arcs, should not always cause the schedule to become infeasible. 

 

These considerations led us to develop a heuristic primarily focusing on the “maximization of the 

feasibility” of the solution found. On the other hand, a considerable amount of past research 

(Solomon, 1987) has shown that the insertion methods perform best when we face a routing 

problem with time windows. Furthermore, Liu and Shen (1999) for example show that parallel 

insertion procedures outperform sequential approaches. Our proposal is to adopt a parallel 

insertion heuristic with an appropriate metric, aimed at improving the myopic behavior that is 

often the drawback of such methods. The metric we use in our algorithm is the generalized regret 

measure, a technique that has been already employed with interesting results for the study of the 

standard vehicle routing problem with time windows (Potvin and Rousseau, 1993; Liu and Shen, 

1999). The regret metric is particularly useful in finding feasible solutions for highly constrained 

problems. 

 

3.1. The seed request choice 

 

Assuming there are m vehicles, the initial request to be serviced for each of the m tours needs to 

be determined. Previous research has shown the sensitivity and the importance of the 

initialization of the m tours of a parallel construction heuristic in order to obtain good solutions. 

One of the simplest and most intuitive ways to initialize the routes is to choose the m requests 

with the earliest pickup time. This initialization rule however does not keep into account the 

routing aspect of the problem, and could perform poorly when solving instances in which the 
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requests are spread over the territory. In fact, it has been pointed out that in this situation the 

farthest requests tend to be inserted last, and this behavior clearly worsens the final solution. 

 

One way to overcome this flaw is to keep into account the spatial position of the requests when 

making the choice of the seeds, trying to consider the ones that are more decentralized, as well as 

the ones with the earliest pickup time. The underlying idea of this initialization strategy is 

consistent with that of the regret insertion method that we will introduce later, since in both cases 

we try to anticipate the insertion of a request that would be hard or not convenient to consider 

later. 

 

Different proposals can be found in the literature on the Vehicle Routing Problem for efficiently 

choosing the seed requests. From the routing aspect, the most popular approaches are variants of 

the one originally proposed by Fisher and Jaikumar (1981) that partitions the plane in m cones, 

whose vertex are the central depot, and chooses the seed customers on the basis of their distance 

from it. This idea is also used by many authors to determine in which order the request must be 

inserted (Russell, 1995; Caseau and Laburthe, 1999), but in our case this is irrelevant, since the 

insertion order is determined by the regret heuristic. For mixed routing and scheduling problems, 

usually a ranking index is defined on the basis of two aspects. Russell (1995) takes into account 

the temporal location and the length of the time windows along with the distance from the depot, 

whereas Toth and Vigo (1997) propose a more elaborate methodology that considers the loading 

and unloading times of the customers and the travel times from the pickup and delivery points of 

the request under consideration to all the other nodes. 

 

As our primary concern is to provide a high quality service, in our case the time windows are 

quite narrow. Furthermore, we study the feasibility of paratransit systems in an urban 

environment, where the density of requests could be relatively high. The combination of these 

two factors makes the scheduling aspect of the problem preponderant on the routing, far beyond 

the cases addressed in the cited studies. Hence, we basically keep the idea of ranking the requests 

in ascending pickup time order, but we operate two major modifications. We try to avoid to 

initialize a route with a request that can be easily inserted after a previously chosen seed, and we 

 10



allow some swaps in the ranking order to give preference to the requests that could be difficult to 

insert later, due to their spatial position. 

 

We illustrate our procedure through an example. In figure 2, we represent on a time line the 

pickup (p) and delivery (d) points associated to the earliest five requests of a set; we omit to 

represent the associated time windows for simplicity. We want to choose three seed requests 

among these since we assume there are three vehicles, and again for simplicity we suppose that 

the distance between any pair of nodes associated to these five requests is the same. According to 

the earliest pickup time ranking, requests 1, 2, and 3 should be the initial requests. It can however 

be seen that these three are much more spaced in terms of pickup and delivery times (and so a 

vehicle could easily service all of them), whereas requests 3, 4 and 5 are so close in their pickup 

and delivery times that they cannot be served by the same vehicle. As a consequence, it would be 

more efficient to consider for example requests 1, 4 and 5 as seed candidates, as shown in the 

figure. To take these cases into account, we consider each pair of consecutive requests k and k+1. 

If the kth request has already been chosen as seed and if the following inequality is verified 

 

1k1)P(kD(k),k EPTTTLDT ++ ≤+  

 

then the (k+1)th request is not taken as seed, and we consider the kth and the (k+2)th requests. The 

quantity TTD(k),P(k+1) is the travel time between the delivery point of request k and the pickup point 

of the following, whereas LDTk is the latest delivery time of request k and EPTk+1 is the earliest 

pickup time of request k+1, as defined by the associated time windows. 

 

Fig. 2 

 

We also try to consider the spatial aspect of the problem. To do this, we compute for each request 

k a decentralization index (Dk) given by the following expression, in which TD represents the 

travel distance between the specified pair of nodes and n is the total number of requests: 
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The range of Dk is between 0 and 1. A higher value indicates that the kth request is relatively more 

decentralized than the others. After this, we consider again each pair of consecutive requests k-1 

and k, according to the previously defined ranking order. If the following inequality is verified 

 

α−≥− − 11kk DD  

 

then the two requests are swapped, and we consider the kth and the (k-2)th requests. The parameter 

α takes on values between 0 and 1. By increasing it we put a greater emphasis on the spatial 

aspect of the problem. The best choice depends on the practical problem that must be addressed: 

generally speaking, α should increase as the time windows are widened and the density of 

requests becomes lower. 

 

Finally, the first m requests of the list, ordered by earliest pickup time and processed according to 

the two aforementioned procedures, are taken as seeds and inserted in the empty routes. 

 

3.2. The parallel regret insertion procedure 

 

The remaining requests are inserted following the regret insertion scheme. This methodology 

dates back to the seventies, but more recently it has been applied to solving the basic vehicle 

routing problem with time windows by Potvin and Rousseau (1993), Kontoravdis and Bard 

(1995) and Liu and Shen (1999).  These authors propose a modification in the computation of the 

regret measure that we also adopted. We refer the reader to the Potvin and Rousseau (1993) paper 

for more details, as in the following we will only recall the most important concepts. 

 

The basic idea is to find for each unrouted request its best insertion (i.e., the one that minimizes 

the related cost, considered as an increment of the value of the objective function) in each 
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itinerary. In this manner, we build an incremental cost matrix in which the rows represent the 

requests and the columns the routes. If a request has no feasible insertion in a route, the 

corresponding incremental cost is set to an arbitrarily large value. After that, we compute for each 

request its regret, given by the sum of the differences between all the elements of the 

corresponding row and the minimum one. The request with the largest regret will be inserted in 

the previously computed position. These steps are iterated until all the requests are inserted or 

until all the regret costs are zero. In the latter case, the corresponding requests cannot be inserted 

in any of the existing routes. 

 

The regret cost is a measure of the potential price that could be paid if a given request were not 

immediately inserted. As it can be seen, whenever a request cannot be inserted in a route, the 

related regret cost is greatly incremented. This feature is particularly useful for highly constrained 

problems, as it drives the algorithm towards the search of feasible solutions. The main focus is to 

limit as much as possible the myopic behavior of the classical insertion procedures, which for 

mixed scheduling and routing problems with additional constraints is particularly harmful. In 

summary, both the initialization and the insertion procedures have been designed to consistently 

pursue the same goals. 

 

3.3. Quickly checking the feasibility of an insertion 

 

The regret insertion algorithm requires at each step to tentatively check the insertion of each 

unrouted request (that is, both the pickup and the delivery point) in every feasible position of all 

the vehicles. Its computational complexity is of O(n3). For this, it is even more important than for 

classical insertion heuristics, whose computational complexity is usually O(n2), to develop 

methods for rapidly checking the feasibility of the insertion of a request in a predetermined 

position. The most difficult part is to control the deviation from the original route that is needed 

to serve a customer without causing a violation of the time windows of any previously inserted 

requests. Of course this is not a sufficient condition to have a feasible insertion, but it is the most 

difficult one to check, and perhaps also the most important, as when modeling the problem we 

incorporated in the time window definition the constraints related to both the scheduling of the 
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request and to the quality of the service. In the following we will not discuss the more trivial 

checks related to the respect of the capacity and of the coupling constraints. 

 

Jaw et al. (1986) perform the time windows control by decomposing each route in different 

schedule blocks, defined by the corresponding time intervals in which the vehicle is serving 

requests without idling. They then develop a procedure to check if the insertion of a request in a 

schedule would cause a violation of the time windows of any previously inserted request within 

the schedule block. To accomplish this task, four quantities are computed for each node i of the 

schedule sequence: BUPi, BDOWNi, AUPi and ADOWNi, representing the maximum time interval 

by which the nodes in the schedule block preceding and following i (i is included) can be pushed 

backward and forward. If the additional time required to reach a point is larger than BUPi + 

ADOWNi+1, then the insertion of this point between i and i+1 is not feasible, as it would cause 

the violation of some time windows of the nodes in the schedule. We remark that associated with 

each request k are two nodes, one representing the pickup point and the other representing the 

delivery point. 

 

It can be seen that this procedure focuses only on the single schedule block. During the insertion 

process, as more requests are inserted, the pauses between schedule blocks decrease. To prevent 

two or more schedule blocks from overlapping, the above four measures are defined so that the 

feasible shifts are bounded by the length of the idle times within them. This is an additional 

constraint not required by the original problem, that could be removed if the shifts needed to 

serve a request could propagate across different blocks. For example, in figure 3 we can see that 

the pickup point of the request number 3 can be inserted between p(2) and d(2) only if we 

eliminate the pause between the two blocks and allow the whole schedule to be pushed backward. 

 

Fig. 3 

 

Generally speaking, it would be nice to check the feasibility of the insertion of a node only on the 

basis of the time windows of the entire route, automatically creating and merging the different 

schedule blocks. This improvement is of great importance when we look for solutions of good 

quality for the customers, as the average number of pauses per route grows when the time 
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windows are narrowed. Using the above mentioned technique would lead to a great difficulty in 

inserting new requests, given by our feasibility check method and not implied in the problem 

itself. In order to avoid this problem, in our algorithm we use different statistics, so that it is 

possible to check in one step if the insertion of a pickup or delivery point causes some time 

window violation over the entire schedule of the vehicle. For each node i we define four 

quantities: BTOPi and BBOTTOMi (the maximum time interval by which i and all the preceding 

nodes in the vehicle schedule can be pushed backward and forward, respectively), ATOPi and 

ABOTTOMi (the maximum time interval by which i and all the following nodes in the vehicle 

schedule can be pushed backward and forward, respectively). To understand how can we 

mathematically define these statistics, let us focus our attention on a generic node i of a schedule 

block h delimited by the idle times dsh and dsh+1. 

 

If we consider the quantity BBOTTOMi, it is evident that it is not influenced by the time windows 

of the nodes preceding dsh, as a forward shift of the nodes between dsh and i can simply be 

compensated by increasing dsh of the corresponding quantity. The same happens with ATOPi. 

The time windows only within the same schedule blocks must be considered. In summary, the 

definition of BBOTTOMi and ATOPi is the same as the one for BDOWNi and AUPi as proposed 

by Jaw et al. (1986). We report it in the following recursive form. 

 

 

⎩
⎨
⎧

−−
−−

=
+ otherwise)ETsAT,(ATOPmin  

block scheduleeach  of nodefirst  for the      ETsAT 
ATOP

iii1i

iii
i 

 

⎩
⎨
⎧

−
−

=
− otherwise)ATLT,(BBOTTOMmin  
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BBOTTOM

ii1i

ii
i

 
 

 

In the preceding equations we indicated with ATi the leaving time currently scheduled for the 

node i after that the service has been exploited, whereas ETi and LTi are the earliest and latest 

scheduled time given by the associated time window and si is the needed service time. 

 

Let us now consider BTOPi. It is evident that this quantity is influenced by the time windows of 

all the preceding nodes of the schedule, as well by all the preceding pauses. In the same manner, 
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ABOTTOMi depends on the time windows of all the following nodes and the following pauses. 

They can be computed as follows.  

 

 

⎩
⎨
⎧

−−
−−+

=
−

−

otherwise)ETsAT,(BTOPmin  
block  scheduleeach  of nodefirst  for the)ETsAT,ds(BTOPmin  

BTOP
ii1i

iih1i
i

i

i h
 

 

 ⎩
⎨
⎧

−
−+

=
+

++

otherwise)ATLT,(ABOTTOMmin  
block  scheduleeach  of nodelast  for the)ATLT,ds(ABOTTOMmin  

ABOTTOM
i1i

ii1h1i
i

i

h

 

Finally, we perform the insertion feasibility check of a node between i and i+1, looking if the 

required deviation is less than BTOPi + ABOTTOMi+1. If this occurs, the node can be inserted in 

this position without violating any of the time windows in the schedule, even if it is necessary to 

merge two or more schedule blocks. 

 

As previously stated, this is the most important and computationally heavy feasibility check that 

is performed by the algorithm. In our operating scenario, it guarantees the satisfaction of both the 

required pickup or delivery times and the quality of the service for the customers already in the 

schedule. There are often several ways to insert a request in a specified position. We can shift 

backward the preceding nodes, or move forward the following ones, or finally do a mix of the 

two until the required detour is covered. A special procedure has been implemented to keep into 

account these two correlated aspects, that for briefness is not exposed here; it is however reported 

in Diana (2002). Concerning this point, it is however important to note that the different ways in 

which an insertion between two given nodes can be performed only affects the term of the 

objective function related to the minimization of the idle time. As this is less important of a 

performance criteria than the other two measures (total vehicle distance and excess ride time), in 

our algorithm we chose to push backward the schedule as much as possible, regardless of its 

impacts on the value of the objective function. We believe that this is the best strategy to follow 

in a true operational setting, as it has the highest potential to improve the behavior of the system 

in a dynamic context, for example in case of delays. 

 

4. Computational tests 
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4.1. Generating random samples 

 

The algorithm presented in section 3 has been tested simulating a realistic dial-a-ride system with 

data provided by Access Services, Inc. (ASI). ASI is the transit agency designated to coordinate 

paratransit services for elderly and disabled persons within Los Angeles County. About 6000 

requests, spread on a territory of more than 10,500 square kilometers, are served each weekday 

through various providers, each one operating in a different region of the County. The average 

daily number of requests serviced by each provider depends on the region and varies from 250 to 

2000 requests per day. By performing a statistical analysis of the data provided by ASI over a 

three-day period of service operation, Dessouky and Adam (1998) suggest techniques for 

generating random samples that are representative of the possible service requests both in spatial 

and in temporal terms; the interested reader is referred to that work for more details, as in the 

following we will only recall the main steps. We determined the coordinates (x,y) of the pickup 

location of each request by dividing the service area in 15 bins of 10x10 miles giving a total 

service area of 150x150 miles. In order to represent clusters that are exhibited in the actual data, 

the probability a request is within each bin is not uniform. The distribution of the requests in the 

different bins was statistically induced from the real data, and then samples were drawn to 

determine in which bin each pickup point is located. After determining the bin, two samples were 

drawn from a uniform (-5,5) distribution to determine the coordinates (x,y). The delivery point 

was selected by adding to the pickup point the travel length, which was sampled from the 

distribution of the travel lengths. The direction of addition to determine the delivery point was 

sampled from a uniform (0, 2π) distribution. 

 

The distribution from which the pickup times of the samples were drawn were based on the 

empirical distributions derived from Los Angeles County (see Dessouky and Adam, 1998). After 

that, the delivery times were determined on the basis of the travel distance assuming a constant 

speed of travel (20 mph).  

 

The service times at the nodes, expressed in minutes, were drawn from a uniform (1,3) 

distribution for passengers with wheelchair and were fixed to 30 seconds for the other requests. 

The probability to serve a passenger with a wheelchair was set to 0.20, and the number of 
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accompanying passengers was obtained as a sample of the following cumulative distribution: 0-

0.40; 1-0.99; 2-1.00. For requests without passengers on a wheelchair, the probability of having 

two people to transport was 0.175. The remaining requests travel alone. All these assumptions are 

based on the analysis of the ASI data reported by Dessouky and Adam (1998). 

 

We generated two distinct sets of problem instances, each one having five random samples. In the 

first set all the samples contain 500 requests, in the second 1000 requests. For each scenario, we 

simulate 24 hours of provided service. These parameters represent a fairly large-scale instance of 

this kind of system. 

 

4.2. Implementation of the algorithm and computational results 

 

According to the problem definition that we introduced in section 2, we need to specify some 

parameters that assure an acceptable quality of service for all the customers. As our final aim is to 

check if dial-a-ride services can be feasible also for the general public, we were particularly 

restrictive in the selection of the parameters related to the quality of the service. For this, we fixed 

the time window span to 10 minutes, in order to make the average waiting time similar to a 

typical transit line, and we imposed that the maximum ride time for each request must not exceed 

1.3 times the direct ride time plus 10 minutes. Note that within these time windows the above 

defined service times must be comprised, so that, for example, a service time of 2 minutes in a 

time window of 10 reduces the feasible shift of the schedule to 8 minutes.  In section 4.3 we will 

present the results of a sensitivity analysis on the tightness of the scheduling constraints.  

 

In order to realize if our methodology performs better than other possible approaches, we 

implemented five different variants and we tested them on the same problem instances. In 

algorithm 1 the seed requests are chosen exclusively on the basis of the pickup time and a parallel 

version of the classical Solomon sequential insertion is performed (Solomon, 1987). Thus, the 

request to be inserted is the one that causes the least increment of the value of the objective 

function. Algorithm 2 is very similar to algorithm 1, but the insertion of a request across different 

schedule blocks is also allowed, according to the description in section 3.3. As mentioned in Jaw 

et al. (1986), whose heuristic does not provide for this capability, from a conceptual point of view 
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this should allow for a better exploration of the feasibility region of the problem, thus, improving 

the quality of the solution found. Algorithm 3 uses the seed request choice procedure described in 

section 3.1, but performs the Solomon insertion. Algorithm 4 initializes the routes like algorithms 

1 and 2, but the regret insertion is performed. Finally, algorithm 5 represents our proposal, as it 

uses both the new seed request choice and the regret insertion. All these algorithms were coded in 

C++ and executed on a Personal Computer with a Pentium® III processor. 

 

The implementation of all these variants allows us to see the effective behavior of each 

alternative, compared to the classical base case represented by algorithm 1. The computational 

results for the sets of 500 requests and of 1000 requests are shown in tables 1 and 2, respectively. 

The reported numbers refer to the mean values obtained from independent runs on five different 

random samples, as earlier described. Each table reports the following information: the first 

column indicates the used algorithm and the second the minimum number of vehicles needed to 

serve all the requests. After that, the overall number of miles that are covered and the miles that 

are traveled with no passengers onboard (excluding the trips to and from the depot) are shown. 

The fifth and the sixth columns contain the total length of the schedule, i.e. the sum of the time 

intervals from leaving to returning to the depot of all the vehicles, and the total length of all the 

idle times. Finally, we report a rideshare measure, i.e. the ratio between the number of served 

requests and the number of trips started with no passengers onboard, and the average increase of 

the ride time as regards to the direct ride time. 

 

Tables 1 and 2 

 

Several comments are possible on the basis of these data. Algorithms 1 and 2 perform almost the 

same when solving problems with 500 requests, whereas there is an improvement of the latter for 

the bigger instances, moreover if we consider the number of vehicles needed. In those cases 

algorithm 2 has a slightly better performance, although on an intuitive point of view the 

possibility of inserting requests across different schedule blocks should have had a much deeper 

impact. A possible explanation is that it is likely that eliminating the pauses leads to a less 

flexible schedule, that in turn worsens the quality of the insertion for the later requests. 
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Algorithm 3 allows us to evaluate the behavior of the new methodology used to choose the seed 

request that was presented in section 3.1. It can be seen that it improves the schedules over the 

Solomon insertion mainly by reducing the number of miles that are traveled without customers 

onboard. On the other hand, considering the computational results of algorithm 4 we can 

conclude that the regret insertion method alone gives solutions that use around 6-7% less vehicles 

and 6-7% less vehicle miles traveled and total ride hours. Algorithm 5, which combines the new 

seed request choice with the regret insertion method, clearly outperforms all the others, and 

becomes particularly effective in reducing the number of required vehicles especially when the 

dimension of the problem is increasing. For the considered data sets, the fleet size is decreased on 

average by 8.17% over the base case. The comparison of algorithms 3, 4 and 5 gives us an 

experimental confirmation that the proposed method for initializing the routes and the regret 

insertion work well together. 

 

The improvement of the schedule over algorithm 1 mainly seems to be caused by the dramatic 

decrease on the empty vehicle miles (the miles traveled with no passenger onboard), which in 

turn causes an increment of the average vehicle occupancy and of rideshare. Also, algorithm 5 

slightly increases the idle times over the base case. This result cannot be generalized, as it may be 

due to the small penalty (0.05) that was given to this measure in the objective function (section 

2.3). 

 

The excess of the ride time over the direct trip time obviously increases with rideshare. A more 

detailed analysis of the results provided by algorithm 5 shows that on average 64% of the 

requests are served directly when the number of requests is 500; this percentage is decreased to 

53% with 1000 requests. Since these users have no deviations, the ride time coincides with the 

direct ride time, and for them the system works as a taxicab. The remaining requests have one or 

more deviations (i.e. the vehicle visits one or more nodes between the pickup and the delivery 

point of the request), and for these requests, their ride time is increased over the direct time of 

about 19%. Only for few requests the increase of the ride time is near the upper bound set by the 

quality constraint, and typically these are among the ones with 2 to 4 deviations. Quite 

surprisingly, the requests with the highest number of deviations (more than 4) often do not have 

the highest excess of ride time. This seems to confirm that if the demand density increases it is 
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possible to achieve higher rideshares and service efficiencies without worsening the quality of the 

service for the passengers. 

 

Another interesting result can be found by performing an analysis on the quality of the solution 

among the different instances in terms of the required fleet size. In table 3 we report the number 

of required vehicles for each algorithm in each problem instance and the resulting sample 

standard deviations. It can be seen that these latter are consistently reduced when using the regret 

insertion method in smaller data sets, whereas they only slightly increase when considering the 

larger ones. In all the considered cases their value is always less than 3 vehicles. On an 

operational point of view, this means that when the service has to be implemented the fleet can be 

more efficiently dimensioned a priori, as the fluctuations on the number of required vehicles for a 

given level of demand are less evident. 

 

Table 3 

 

Finally, the computational times of the insertion procedure for each run on the two data sets are 

reported in table 4, together with the respective mean values and standard deviations. For 

briefness we report the results only for algorithm 5, but they are almost the same for algorithm 4, 

as they both use the regret insertion method. Considering the highly constrained nature of the 

problem and the dimension of the problem instances, these computational times are within a 

practically useful range. Of course, the computational times can be further improved by using a 

faster processing computer. However, the most important thing that has to be pointed out is that 

these times are rather robust given the dimension of the instances and the simulated road 

network. The standard sample deviations are about 14 seconds on a length of 26 minutes and less 

than 2 minutes for the larger problems, that were solved in 195 minutes on average. This result is 

particularly striking when compared to the performance of local search or metaheuristic 

procedures, that often have running times that can vary one degree of magnitude for different 

samples with the same dimensions. The elimination of this uncertainty can be helpful to the 

service provider for planning purposes, as the impossibility to foresee how long the scheduling 

phase will be in any given day of service could be a serious drawback in a real operational 

environment. 

 21



 

Table 4 

 

4.3. Sensitivity analysis on the tightness of the scheduling constraints 

 

As we mentioned in section 2.3, in a DRT system the interests of the customers and of the service 

provider are contrasting. Hence, it is essential for its success to find the right balance between 

these opposing points of view. This can be done by investigating the relationship between the 

increase of the service quality and the corresponding increase of operating costs. Thus, it is 

interesting to evaluate the behavior of the proposed heuristic also under different operating 

scenarios. 

 

In order to do this, we solved again the five larger problems, involving 1000 requests, under 

different conditions. We defined three scenarios beyond the one studied in the preceding section, 

each of these being characterized by a certain minimum time window span and maximum ride 

time. We report in table 5 the settings that have been used. Scenario “L” has characteristics that 

are similar to a typical paratransit service for disabled people, whereas the quality of scenario 

“H” can be comparable to that of a taxicab, except for the possibility of ridesharing. 

 

Table 5 

 

We focus our attention on variants 1 and 5 of our algorithm, representing respectively the 

standard solution method and our new proposal. For these, the mean computational results over 

the five samples for the defined scenarios are reported in table 6. It can be seen that algorithm 5 

improves over algorithm 1 in all the considered scenarios.  However, the regret insertion 

algorithm performs best against the classical insertion heuristic under medium to small time 

window constraints.  When the time window is large, the benefit of the regret procedure is 

reduced.  When the time window is very small (scenario “H”), the gap between the regret 

insertion and algorithm 1 also narrows since in this case the number of feasible alternatives is 

rather small.  Thus, there are few feasible insertion scheduling alternatives to consider.  
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Table 6 

 

5. Conclusions 

 

In this paper we presented a new heuristic designed to solve large problem instances of a realistic 

formulation of the dial-a-ride problem with time windows. The heuristic was tested on a series of 

instances that were built from data concerning three days of paratransit operation in Los Angeles 

County. The results of these experiments showed that the quality of the solution is consistently 

improved with respect to a classical insertion heuristic. 

 

Our efforts were directed at finding a good balance between the need of developing a tool that 

could be used in practice, the quality of the solution and the associated computational burden of 

the heuristic. The regret insertion scheme furthermore does not have parameters to be set, which 

is in contrast to local search and metaheuristic procedures. Our heuristic can manage instances of 

big dimensions for the studied problem. If we compare the outputs for the two data sets, it is 

evident that bigger instances are harder to solve, but in turn the proposed heuristic considerably 

outperforms the classical insertion heuristic for the large problem instances. On the other hand, 

preliminary experiments with only 100 requests showed no significant differences between the 

two approaches in terms of the quality of the solution. 

 

The feasibility of the implementation of a demand-responsive transit system for the general 

population is currently under consideration in the city of Turin (Italy), as an advanced Intelligent 

Transport System is already in use both for traffic management and for the operation of the 

public transport lines. Research work is in progress on the topic, but the need of a reliable 

algorithm for the operation of the service is one of the primary concerns. The next phase of our 

research will be targeted at adapting the scheduling capabilities of the presented algorithm to this 

transit environment, including the possibility of inserting real-time requests. 
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Table 1 

Computational results for the five algorithms, 500 ASI requests, average values on five random samples 

Algorithm Vehicles Total Miles Empty miles Ride hours Idle hours Rideshare Increase of 
ride time 

1 51.4 10575 2985 739.75 263.28 1.223 6.89% 
2 51.2 

(-0.39%) 
10496 

(-0.75%) 
2928 

(-1.91%) 
734.25 

(-0.74%) 
263.37 

(+0.03%) 
1.370 

(+0.147) 
9.31% 

(+2.42%) 
3 50.4 

(-1.95%) 
10492 

(+0.78%) 
2753 

(-7.77%) 
733.86 

(-0.82%) 
270.35 

(+2.69%) 
1.368 

(+0.145) 
9.29% 

(+2.40%) 
4 47.6 

(-7.39%) 
9840 

(-6.95%) 
2414 

(-19.13%) 
690.22 

(-6.70%) 
264.52 

(+0.47%) 
1.356 

(+0.133) 
9.13% 

(+2.24%) 
5 47.2 

(-8.17%) 
10027 

(-5.18%) 
2371 

(-20.57%) 
702.78 

(-5.00%) 
264.31 

(+0.39%) 
1.365 

(+0.142) 
9.37% 

(+2.48%) 
 

 

 

 

 

 

Table 2 

Computational results for the five algorithms, 1000 ASI requests, average values on five random samples 

Algorithm Vehicles Total Miles Empty miles Ride hours Idle hours Rideshare Increase of 
ride time 

1 83.2 17818 4716 1254.17 401.21 1.373 9.64% 
2 81.4 

(-2.16%) 
17661 

(-0.88%) 
4652 

(-1.36%) 
1242.88 
(-0.90%) 

391.75 
(-2.36%) 

1.583 
(+0.210) 

11.83% 
(+2.19%) 

3 81.8 
(-1.68%) 

17748 
(-0.39%) 

4531 
(-3.92%) 

1248.79 
(-0.43%) 

407.49 
(+1.57%) 

1.585 
(+0.212) 

11.73% 
(+2.39%) 

4 78.0 
(-6.25%) 

16642 
(-6.60%) 

3759 
(-20.29%) 

1174.18 
(-6.38%) 

405.38 
(+1.04%) 

1.570 
(+0.197) 

11.85% 
(+2.21%) 

5 76.4 
(-8.17%) 

16643 
(-6.59%) 

3557 
(-24.58%) 

1178.82 
(-6.01%) 

414.41 
(+3.29%) 

1.583 
(+0.210) 

12.02% 
(+2.38%) 
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Table 3 

Number of vehicles needed in all the ten random samples 

500 ASI requests samples 1000 ASI requests samples 
Algorithm 

A B C D E St. dev. F G H I J St. dev. 
1 53 55 52 49 48 2.58 82 87 83 80 84 2.32 
2 52 52 55 49 48 2.48 81 84 83 78 81 2.06 
3 51 51 55 47 48 2.80 84 84 83 78 80 2.40 
4 48 50 47 48 45 1.62 78 80 78 73 81 2.76 
5 48 49 46 48 45 1.47 78 80 77 73 74 2.58 

 

 

 

 

 

 

 

 

 

Table 4 

Computational times (seconds) of the insertion procedure for algorithm 5 

500 ASI requests 1000 ASI requests 

Sample Time Average Standard 
deviation Sample Time Average Standard 

deviation 
A 1537   F 11725   
B 1546   G 11881   
C 1560 1542 14.2 H 11677 11701 100.9 
D 1550   I 11588   
E 1518   J 11633   
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Table 5. 

Parameters settings for the studied scenarios 

Scenario Base 
(Section 4.2) 

L 
(Low quality) 

M 
(Medium quality) 

H 
(High quality) 

Slope of the linear 
equation for MRT 

1.3 2.0 1.5 1.2 

constant term intercept 
of the linear equation 

for MRT 

10 20 10 5 

Minimum 
time windows span 10 30 15 5 

 

 

 

 

 

 

Table 6. 

Computational results of algorithms 1 and 5 for the three scenarios, 1000 ASI requests, average values on 
five random samples 

Scenario L M H1

Algorithm 1 5 1 5 1 5 
Vehicles 63.2 58.4 

(-7.59%) 
77.2 70.0 

(-9.33%) 
92.8 87.2 

(-6.03%) 
Total Miles 14712 13877 

(-5.68%) 
16663 15554 

(-6.66%) 
19152 18107 

(-5.46%) 
Empty miles 3341 2153 

(-35.56%) 
4238 3061 

(-27.77%) 
5175 4122 

(-20.35%) 
Ride hours 1044.85 987.63 

(-5.48%) 
1177.19 1101.82 

(-6.40%) 
1344.26 1273.77 

(-5.24%) 
Idle hours 288.07 301.17 

(+4.55%) 
350.17 373.65 

(+6.71%) 
463.97 485.24 

(+4.58%) 
Rideshare 2.305 3.037 

(+0.732) 
1.609 1.883 

(+0.274) 
1.152 1.225 

(+0.073) 
Increase of 
ride time 

39.54% 47.62% 
(+8.08%) 

17.29% 20.38% 
(+3.09%) 

3.43% 4.24% 
(+0.81%) 

 

 

                                                           
1 In one of the five samples there are two requests that cannot be scheduled with such tight constraints, since the sum 
of the direct ride time and of the service times at nodes exceeds their respective maximum ride time. Hence, they 
have not been considered. 
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