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Abstract—For most archaeological prospections with GPR, 
target detection is the most important aspect of the surveys.  The 
main efforts of GPR data processing are committed to increase 
the signal to noise ratio in radargrams. The usual processing 
aims to:  filter the radar section from clutters and attenuate the 
in-band noises; enhance coherent reflections that are likely due to 
the target response; transform the acquired time section into a 
depth section; build a 3D image of the reflection targets in the 
subsoil by correlating reflections from adjacent radargrams. In 
this paper we show some application of the Stockwell transform, 
both to synthetic and field data, to enhance the signal to noise 
ratio in radargrams. 

Keywords—GPR data; Stockwell transform; synthetic data; real 
data. 

I.  INTRODUCTION 
For most archaeological prospections with GPR, target 

detection is the most important aspect of the surveys.  Shallow 
and narrow features may require a very fine profiles density to 
get detected. The smallest detectable size of archaeological 
materials is also dependent on the wavelength of the signal 
transmitted by the antenna. A buried archaeological debris 
field, containing higher concentrations of small fragments of 
ancient habitation, e.g. flint chips or other materials,  may 
show some scattered energies on the radargrams which may 
slightly differ with respect to areas where no debris are 
located. Unless a fortunate color transform is used, it is 
unlikely that these small reflections will ever be noticed within 
the radargram – vertical slice – dataset [1], [2]. Rather than 
showing the changes in reflected energies along the vertical - 
radargram - slices of the ground, it is often more useful to map 
horizontal changes of reflected energy across a site. In this 
case small but consistent reflections above the background 
noise can be visualized by using time slice analysis. Some of 

the main goals of GPR data processing are: to filter the radar 
section from clutters and attenuate in-band noises; to enhance 
coherent reflections likely due to the target response; to 
transform the acquired time section into a depth section; to 
build a 3D image of the reflection targets in the subsoil by 
correlating reflections from adjacent radargrams [1], [2]. In 
this paper we show some application of the Stockwell 
transform to synthetic data, produced with a finite difference 
code from a model, and field data from an archaeological 
survey, to enhance the signal to noise ratio in radargrams and 
time-slices. 

II. THE STOCKWELL TRANSFORM 
In many practical applications it is important to analyze 

signals, i.e . extracting the time/space and frequency content 
of the signal. Unfortunately, due to the Heisenberg 
uncertainty principle, it is impossible to simultaneously retain 
precise time and frequency information of a signal. Fourier 
transform provides all the frequency information (spectrum) 
of a signal but it cannot give any time/space information. 
Many techniques arose trying to deal with the uncertainty 
principle in order to obtain a “sufficiently good” time-
frequency representation of a given signal. We recall here the 
short-time-Fourier transform, the Gabor transform and the 
wavelet transform. 

The Stockwell Transform (S-transform) was first 
introduced in 1996 by R. G. Stockwell, L. Mansinha and R. 
P. Lowe [3] to deal with data coming from seismic digital 
analysis. The Stockwell transform can be seen as a mix 
between Short-Time Fourier Transform, sometimes called 
Gabor Transform, and the Wavelet Transform. Due to its 
flexibility, the Stockwell transform has been used for image 
filtering, texture recognition, noise reduction, image 
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compression and, in general, as a tool in image processing 
[4], [5], [6]. 

The precise expression of the S-transform of a signal  f  is 
the following: 

( ) ( ) | | ( ) ( ) dttbetfeξ=ξb,S ξπitξ
f
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The parameter b represents the time localization of the 
signal, while the ξ parameter represents the frequency 
localization. Roughly speaking Sf (b,ξ) represents the energy 
of the signal f at the time b and at the frequency ξ.The main 
idea is that the width of the analyzing window, usually a 
Gaussian, depends on the frequency. More precisely, as the 
frequency increases the width of the analyzing window 
shrinks. This property implies that the S-transform gains time 
localization as the frequency increases. That is, it is able to 
localize with high precision high frequencies of the signal.  

The S-transforms shares some properties with the 
Wavelet transform [7]. The main difference is the meaning of 
the parameters involved. In the Wavelet case, the scale 
parameter a has not a real frequency meaning. In application 
it is used the relation 

ξa �1−
 

which is essentially true only for small values of a and 
therefore large frequencies ξ. In the case of the S-transform 
the ξ parameter is really the frequency parameter. Moreover, 
the S-transform, in its phase, encompasses additional 
information. It has been proven that, at least for high 
frequencies, the phase of the S-transform gives a precise 
description of the instantaneous frequency of the signal [8], 
[9]. In this paper we do not exploit this feature, but it will be 
the next step in our analysis. These two remarks convinced us 
in analyzing the S-transform rather than the Wavelet 
transform. 

In this paper we use a variant of the S-transform, called 
DOST (Discrete Orthonormal Stockwell Transform). The 
DOST  of a signal of length N is a string of N coefficients, 
called DOST coefficients, which represent the energy of the 
signal in a certain time-frequency domain. That is, at a certain 
time and at a certain frequency. The DOST is much faster 
than the S-transform, it is as fast as the FFT, this fast 
algorithm was introduced by Y. Wang and J. Orchard [10]. 
Therefore, its application to images is possible and fruitful. 
The DOST parameters are not uniformly distributed in the 
time-frequency domain. More precisely, as far as the 
frequency increases we gain time (or spatial) localization and 
we lose frequency localization. In the paper we have used the 
2-dimensional DOST written in Matlab which is available in 
www.mathworks.com [11]. (The algorithm has been written  
by U. Battisti and L. Riba, the complete url address is: 
http://www.mathworks.com/matlabcentral/fileexchange/ 
47223-2-dimensional-dost-zip). 

III. THE SYNTHETIC AND THE EXPERIMENTAL DATA 
We applied the Stockwell transform to two data set: a 

synthetic one produced with a finite difference software 

(Reflexw©) starting from a subsurface model and the other 
one from archaeological GPR survey made on the Palatino 
hill in Rome (Italy). 

A. The model 
In order to test the effectiveness of the Stockwell transform 

we build, with the software Reflexw© a synthetic model 
consisting of a background soil (εr = 9, σ = 0.005 S/m, µr = 1) 
with three structures (εr = 4, σ = 0.001 S/m, µr = 1) having 
different shapes (Fig 1). We then added to the background a 
random noise in form of scattering objects with a volumetric 
density equal to 65%. The objects have sizes ranging from few 
centimeters up to 20 by 10 cm and their physical parameters 
have a white distribution around εr = 9 and σ = 0.005 S/m with 
variances equal to 2 and 0.004 S/m respectively.  

Fig. 1. Model of buried structures with white noise added on. 

With the software Reflexw©, working with finite 
difference in time domain, we produced the synthetic 
radargram shown in the simulated acquisition parameters 
were: 0.01 m/scan, 0.03 ns as sampling interval, trace duration 
30 ns and a central frequency of the antenna pulse equal to 200 
MHz. 

Fig. 2. Synthetic radargram obtained from the model in Fig.1. 

B. The archaeological site 
The study area is characterised by a sequence of complex 

buildings, related to the Roman period between the late 
Republican and Severo’s age (200 AD). During the 
archaeological investigations made subsequent to the 



 

 

geophysical surveys, from 2001 to 2004, between the N-E foot 
of Palatino Hill and the Colosseum Valley and nearest  

Fig. 3. Time slice n.13 from the Palatino hill survey after bandpass filtering 
and background removal. 

Elagabalo’s Thermae, a sequence of complex buildings, 
related to the Roman period between the late Republican and 
Severo’s age were discovered. The oldest building is a domus 
of the late Republican period located in front of a line of 
buildings called tabernae which were used for shops and 
living quarters. This corridor of buildings connected the 
Colosseum Valley and the Roman Forum. The fire-raising of 
64 A.C., signed the destruction of these buildings and the 
development of Neronian urbanism. The archaeological 
excavations have located a portion of the foundation of a 
portico, and a portion of a sewage system with S-N direction 
and a foundation with E shape, which defines and closes 
Elagabalo’s Thermae. 

On the Palatino hill we analyzed an area 24.5 by 15 square 
meters. We acquired, with a 500 MHz antenna and a GSSI Sir 
10A+, 49 profiles each one with about 633 traces. The trace 
duration was 85 ns and the sampling frequency was 6 GHz. 
After background removal by subtracting the mean trace and 
bandpass filtering we made 45 time slices averaging 17 
samples with an overlap equal to 5. In Fig 3 the absolute 
amplitude slice at about 1 m in depth is shown. 

IV. RESULTS AND DISCUSSION 
If we would like to filter a given signal using the classical 

FFT we could take the signal, decompose it in a localized 
frequency basis via FFT, remove certain coefficients that 
satisfy a reasonable energy criterion and then reconstruct the 
signal using the IFFT. 

The DOST filtering follows the same general approach but 
could allow us to have a finer description of the signal. In fact, 
via the DOST we decompose the given signal in a basis which 
is localized both in frequency and in space. So, we can remove 
certain coefficients without effecting the whole signal. This 
finer signal description allowed us to incorporate more a priori 
physical information in the filtering process. In fact, if, for 
example, we know that our signal cannot contain high 

frequency spikes in a certain area we could remove them 
locally. Clearly, it is impossible to define a general physical 
assumption that works with every kind of signal. In practice 
the knowledge of the problem has to orient the filter 
implementation. In studying GPR images we assumed the 
relevant portion of the image to be the most energetic. In other 
words, we assumed that the noise in the image has a lower 
energy content with respect to the signal. Notice that the 
DOST filtering can be used in a filtering pipeline. In our case, 
we first filtered the signal via DOST and then we applied a 
terracing. Both filtering steps are controlled by two 
parameters: (λ1, λ2). The first one controls the energy filtering 
and the second one controls the terracing level. After several 
numerical experiments we set these parameters equal to (15, 3) 
for the synthetic data and (3, 3) for the Palatino’s data. 

The filtering pipeline is composed of the following steps: 

Step 1 We remove the main bang and the main horizontal 
reflections by computing the mean trace and then 
subtracting it from each trace.  

Step 2 The 2-d DOST transform is applied to the radargram 
considered as an image, that is a 2-d matrix. 

Step 3 We evaluate the mean µ and the standard deviation σ 
of the nonzero coefficients of the DOST transform of the 
radargram. 

Step 4 We set to zero all DOST coefficients ic  such that  

( ) σµ ⋅− 1λ<c1 . 

This means essentially that we want to consider 
coefficients with high energy which are sufficiently far from 
the mean. We are here supposing that the reflection event is 
rare, in the sense that they have energy much higher than the 
background.  

Step 5 We finally apply a terracing. We evaluate again the 
mean value, µ′, of the new DOST coefficients obtained in 
Step 4. And then we set to zero all coefficients ic such 
that 

( ) µ′⋅2i λ<c . 

Step 6 Finally we perform the inverse DOST transform of 
the matrix obtained in Step 5. 

The result of the filter is shown in Fig. 4. It is worthy to not 
how the filtering reduce the multiple reflections below the two 
structures at 8 and 12 m. 

Fig. 4. Synthetic radargram from the model in Fig.1 after DOST filtering. 



 

We analyze the data coming from the Palatino Hill using 
the filtering method described in Step 1 to Step 6.To have a 
clearer visualization of the filtered volume we perform the 
following additional steps:  

Step 7 We remove the main bang and the main horizontal 
reflections by computing the mean trace and then 
subtracting it from each trace.  

Step 8 The 2-d DOST transform is applied to the radargram 
considered as an image, that is a 2-d matrix. 

The result of the filtering is shown in Fig. 5. In 
comparison with the same slice (Fig. 3) the DOST filtered 
slice has a reduced background noise and delineates some 
structures in the lower left part of the investigated area. 

Fig. 5. Time slice n.13 from the Palatino hill survey after background  
removal and DOST filtering. 

V. CONCLUSIONS 
The Stockwell transform, whenever the energy content of 

signal and noise are identifiable and different, seems to be able 
to filter the radargrams with a noticeable precision. Its local 
properties allow for a selective cleaning and an overall 

increasing of the signal to noise ratio useful for enhancing the 
further time slice and 3D rendering processing. 
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