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TCP Smart Framing: A Segmentation Algorithm
to Reduce TCP Latency

Marco Mellia, Member, IEEE, Michela Meo, Member, IEEE, and Claudio Casetti

Abstract—TCP Smart Framing, or TCP-SF for short, enables the
Fast Retransmit/Recovery algorithms even when the congestion
window is small. Without modifying the TCP congestion control
based on the additive-increase/multiplicative-decrease paradigm,
TCP-SF adopts a novel segmentation algorithm: while Classic TCP
always tries to send full-sized segments, a TCP-SF source adopts
a more flexible segmentation algorithm to try and always have a
number of in-flight segments larger than 3 so as to enable Fast
Recovery. We motivate this choice by real traffic measurements,
which indicate that today’s traffic is populated by short-lived flows,
whose only means to recover from a packet loss is by triggering a
Retransmission Timeout. The key idea of TCP-SF can be imple-
mented on top of any TCP flavor, from Tahoe to SACK, and re-
quires modifications to the server TCP stack only, and can be easily
coupled with recent TCP enhancements.

The performance of the proposed TCP modification were
studied by means of simulations, live measurements and an ana-
lytical model. In addition, the analytical model we have devised
has a general scope, making it a valid tool for TCP performance
evaluation in the small window region. Improvements are remark-
able under several buffer management schemes, and maximized
by byte-oriented schemes.

Index Terms—Performance evaluation, protocol design, TCP en-
hancements.

I. INTRODUCTION AND WORK MOTIVATION

BALANCING greediness and gentleness has always been
the distinctive feature of congestion control in the TCP

protocol [1]. Mindful of the presence of other traffic sharing the
same network resources, TCP tries to grab as much bandwidth
as possible, eventually causing congestion and data loss. Data
lost by TCP is used as congestion signal, and cause the source
to slow down its transmission rate. Thus, lost data can actually
be seen as bandwidth used to control and regulate the network,
since every segment the network discards is an indication that a
TCP source has been congesting the network and should tem-
porarily back off.

This scheme has been successfully applied over the years,
while the traffic pattern has shifted from long file transfers
and short, persistent connections, typical of terminal-emula-
tion traffic, to the “Click-and-Run” paradigm found in Web
interactions. The design of the segmentation algorithm we are
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proposing was motivated by the analysis of real traffic mea-
surements that highlighted the prominent role of short-lived
flows in today’s Internet traffic.

In this paper, we propose a new approach to data segmenta-
tion in the early stages of Slow Start that adheres to the TCP
guidelines listed in [2] and, at the same time, addresses the na-
ture of today’s Internet traffic: short, spotty client-server inter-
actions between a Web client and a Web server. We will refer
to this variant of TCP as TCP Smart Framing, or TCP-SF for
short.

As will be detailed below, we advocate an increase in the
number of segments transmitted by a TCP source, without in-
creasing the amount of application data actually sent in the con-
gestion window. This will be done whenever the congestion
window is “small”, i.e., at the beginning of each Slow Start
phase, and in particular at the connection startup.

The main observation is that Classic TCP’s congestion con-
trol is only marginally driven by the rate at which bytes leave
the source but, rather, by the rate at which segments (and their
respective ACKs) are sent (or received) at the source.

TCP infers that a segment is lost whenever one of the fol-
lowing two events occurs: a Retransmission Time Out (RTO) ex-
piration, or the arrival of three duplicate ACKs that triggers the
Fast Retransmit (FR) algorithm. Of these two events, RTO is the
most undesirable one as the RTO period is usually much larger
than the Round Trip Time (RTT).1 Indeed, regardless of the ac-
tual amount of bytes transmitted, a coarse RTO expiration can be
prevented only if enough segments are sent in the transmission
window (i.e., at least three more following the lost segment).
This situation can occur only if: 1) the congestion window is
larger than 4 MSS (Maximum Segment Size) and 2) the flow
is long enough to allow the transmission of at least 4 segments
(i.e., it is not a so-called short-lived flow). Also, it should be
pointed out that repeatedly forcing a short-lived connection into
RTO often results in excessive penalty for the connection itself,
that would otherwise be finished in few more segments, rather
than in actual network decongestion.

While Classic TCP2 starts sending one segment, in our
scheme a TCP-SF source is allowed to send segments,
whose aggregate payload is equal to the MSS associated to
the connection. Thus, the resulting network load is, byte-wise,
the same of a Classic TCP connection (except for the protocol
overhead). When the window size grows past a threshold, the
Classic TCP behavior is restored.

1RTO is at least 1 s, to account for Delayed ACKs and avoid spurious RTO
expirations [3].

2Unless otherwise specified, by “Classic” TCP we refer to any TCP version
currently implemented in standard TCP stacks (i.e., TCP Tahoe [4], TCP Reno
[5], TCP NewReno [6], and TCP SACK [7]).
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The Classic TCP algorithms (Slow Start, Congestion Avoid-
ance, Fast Retransmit, Fast Recovery) are not otherwise
affected. However, the modification introduces a number of key
advantages:

• the lengthy first-window RTO (set to 3 s) is no longer the
only outcome if a loss occurs at the onset of a connection;

• when Delayed ACKs are employed and the congestion
window is 1 segment large, the receiver does not have
to wait up to 500 ms before generating an ACK; several
current TCP implementations, start a connection with a
window of 2 segments, a widely employed, acknowledged
workaround to the Delayed ACK initial slowdown;

• short-lived flows, for which the Completion Time is para-
mount, are less likely to experience a coarse RTO expi-
ration, since the number of transmitted segments grants a
bigger chance of triggering FR;

• shorter segments can exploit pipelined transmission, com-
pleting the transfer in a shorter time because of the store-
and-forward at routers; this is especially useful in slow
links;

• in a wireless environment, shorter packets suffer smaller
transmission error probability;

• not requiring any contribution from the receiver, the
scheme can quite easily be deployed on a source-only
basis; furthermore, it can equally benefit well-established
Classic TCP flavors, such as TCP Reno, NewReno,
SACK, and also works coupled with Early Congestion
Notification (ECN).

In the rest of the paper, we will first provide some measure-
ment results that motivate the development of TCP-SF (Sec-
tion II), then we will describe in detail the TCP-SF algorithm
(Section III), a combined simulation/measurement performance
analysis (Section IV) and an analytic study of the the perfor-
mance of our scheme (Section V). In Sections VI and VII, we
compute and evaluate the impact of buffer management and pro-
tocol overhead introduced by TCP-SF. Section VIII will con-
clude the paper.

II. TRAFFIC MEASUREMENT AS MOTIVATION

In order to motivate our work, in this section we report some
measurements derived from real traffic traces. In particular, we
present measurement results that show:

• the impact of congestion control on the Completion Time
experienced by TCP flows;

• the file size distribution of TCP connections, highlighting
the importance of this problem.

The measured flow length distribution will also be used to pro-
vide a realistic scenario in the performance analysis section.

We use the measurement testbed based on the Tstat tool [8],
[9] that was developed at the Politecnico di Torino. Tstat is a pas-
sive measurement tool which, among other capabilities, tracks
the status of single TCP connections throughout their life.

During the roughly three years since the first working version
of Tstat was available, several traces collected at our Institution
gateway were parsed. These data are collected on the Internet
access link of Politecnico di Torino, i.e., between the border
router of Politecnico and the ingress router of GARR/B-TEN
[10], the Italian and European Research network. Within the
Politecnico Campus LAN, there are approximately 7 000 hosts;
most of them are clients, but several servers are regularly

Fig. 1. Server Side Completion Time distribution (CDF and pdf) of TCP flows
during different periods.

accessed from the outside. The backbone of our Campus LAN
is based on a switched Fast Ethernet infrastructure. There is
a single point of access to the GARR/B-TEN network and,
through it, to the public Internet. Therefore, measurements
collected on this access link allow Tstat to track the status of
TCP flows, as both forward segments and backward ACKs are
observed.

Among the available data, we selected three periods, in three
different years (in brackets, the number of valid TCP flows
tracked during each measurement campaign):

• 2000: from 4/11/2000 to 4/14/2000 (3 373 812);
• 2001: from 2/1/2001 to 2/12/2001 (14 038 045);
• 2002: from 10/22/2002 to 10/31/2002 (42 262 892).

The capacity of the access link changed during the measurement
periods, from 8 Mb/s in 2000, to 16 Mb/s in 2001, and to 28 Mb/s
in 2002.

A. Server Completion Time

Among the measurements Tstat produces, we look at the
Server Completion Time—server CT, which is defined, for each
TCP connection, as the time elapsed since the first until the
last payload-carrying segment coming from the server side is
observed, i.e., the time required to receive all the data from
the server, neglecting the connection setup, any possible client
requests, and the connection tear-down.

Several factors impact on the server CT: 1) the flow data
length; 2) the capacity of the path bottleneck; 3) the TCP pro-
tocol congestion control and capability of dealing with packet
losses; 4) the server latency; and 5) the client latency in gener-
ating ACKs. To gauge the impact of the these components, we
analyzed the server CT and looked for indications that would
allow us to pinpoint the role of each one. Fig. 1 reports the Cu-
mulative Distribution Function (CDF), and the corresponding
Probability Density Function (pdf) in the inset of the server CT
measured considering selected Internet hosts. In particular, it
reports results relative to the two most visited web sites from
clients in the campus LAN (identified by and for pri-
vacy), in all three years.3 As can be observed from the CDF
plot, about 85%–90% of TCP connections successfully deliver
all data in less than one second, while 3%–7% of connections

3Results are similar considering other servers.
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TABLE I
COMPLETION TIME (CT) AND PERCENTAGE OF FR PER FLOW CLASS

require 3–4 s to complete their transfer, and finally a long tail
can be observed due to the heavy-tailed distribution of the pay-
load.

The reason there is a high fraction of TCP connections that
require more than 3 s to complete the transfer is due to the expi-
ration of the RTO used by TCP to identify a packet loss. Indeed,
looking at the pdf reported in the inset, we clearly identify a
quasidiscrete distribution centered close to the RTO and mul-
tiple RTO expiration values: 1.5, 3, 6, 9, etc., seconds.

No major differences can be observed between the three dif-
ferent measurement periods, except that from 2001 to 2002, the
path to changed, turning it into an underloaded, uncongested
path. Therefore, most data transfers are accomplished in a very
short time. This also suggests that the CT is not dominated by
the server latency, but by the network capacity and TCP mech-
anisms. Nonetheless, it is still possible to notice a small step in
the CDF around 3–4 s.

B. Flow Length

Tstat also derives the flow length, i.e., the byte-wise size of
the payload transported on each direction of the full-duplex TCP
connection. In particular, we are interested in the distribution of
the amount of data servers sent to clients. It is well known that
most of the current Internet traffic is built by short-lived flows
(see for example [11]), due to the predominance of HTTP traffic.
And, it is well known that the flow size distribution exhibits a
heavy-tailed distribution [12]. This also suggests that for most
of the flows, the only way to recover from a packet loss is by
triggering the RTO.

From the measured flow length, we derive a discretized distri-
bution by splitting the flows in 15 groups with the same number
of flows per group, and then computing the average flow length
in each group. The results of the 2002 measurement can be
found in columns 1 and 2 of Table I. As can be seen, more than
80% of the flows are shorter than 14 Kbytes (corresponding to
less than 10 full-size segments, by taking today’s most common
MSS of 1460 bytes as measuring unit4) for which FR can not be
triggered. Moreover, more than 50% of flows account for one
data segment only.

4In past measurement works found in the literature, an MSS equal to 536 was
very common. Several current measurements, such as the ones obtainable by
Tstat [9] or CAIDA [13], place the most common MSS at 1460.

Interestingly, no major differences in the flow distribution
were observed during the three measurement periods, while a
general increase of the weight of the tail of data payload size
was noticed in 2002. This underlines that, while the number of
long-lived flows is increasing, the majority of data connections
is still carried by short-lived flows, for which the impact of the
TCP RTO cannot be neglected.

In the performance evaluation in Section IV, we present re-
sults obtained by using the same flow length distribution de-
rived from the latest period of measurements, and discretized
according to the 1460 byte-long MSS.

III. TCP SMART FRAMING

When the TCP congestion window size (cwnd) is smaller
than four segments, TCP has no other means to recover seg-
ment losses than by RTO expiration. Being the time to recover
a loss by RTO expiration much longer than the time needed
by FR, this behavior deteriorates the TCP performance, espe-
cially when connections are short-lived. In particular, when the
flow length is shorter than 10 full-sized segments (i.e., about
14 Kbytes using a 1460-bytes MSS), and the receiver is imple-
menting Delayed ACKs, there are no chances for the transmitter
to trigger a FR. If the delayed-ACK option is not implemented,
the flow must last more than 7 segments for FR to be triggered.

In the algorithm we are proposing, we enhance the TCP be-
havior in the operating region where RTO is the only way to
recover losses (i.e., when ) making FR possible,
e.g., at the beginning of each Slow Start phase. The region in
which we enhance the TCP behavior is commonly known as
the small window regime.

TCP-SF is based on the following idea: increasing the up-
stream flow of ACKs by sending downstream a larger number
of segments whose size is smaller than the MSS. While main-
taining unchanged the amount of data injected into the network,
a larger number of segments received at the other end triggers
a larger number of ACKs on the backward channel, hence a
larger probability that the transmitter can recover losses without
waiting for the RTO to expire. In other words, this procedure
gives the transmitter the chance to obtain more feedback about
what is happening at the receiver. Increasing the number of
ACKs will therefore:

• enable FR when the congestion window is smaller
than four segments; in particular any flow larger than

may benefit from this;
• help the RTT estimation algorithm to converge quickly to

the correct value of the RTO, thus alleviating the initial
RTO penalty of 3 s.

We now illustrate our approach by means of an example,
using . Upon the onset of a connection, the congestion
window size is equal to one segment, i.e., MSS bytes. If this seg-
ment is lost, the transmitter gets no information back, and waits
for the RTO to expire before sending the segment again. Now if,
instead of sending one MSS-byte-long segment, the transmitter
sends four segments whose size is , the loss of the first
segment can be recovered by FR after the reception of three du-
plicated ACKs.

Since the enhancement introduced by TCP-SF is needed
when only RTO can be used to detect segment losses, the smart
framing option is activated when the window size is smaller
than the threshold , and Classic TCP behavior (i.e.,
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segment size equal to MSS) is switched back as soon as the
congestion window is large enough to enable FR. Of course,
this behavior applies both at connection start and whenever the
congestion window is shrunk to a size smaller than .
Given that the FR algorithm is triggered by the reception of
three duplicate ACKs, we suggest that be set to 4MSS.

Let us now elaborate a bit on the small-segment option. Let
us define as the initial congestion window size in bytes,5

as the value of the maximum segment size at a specific
time, while using MSS to identify the “standard” maximum seg-
ment size as defined from the knowledge of connection setup
parameters. We consider two possible behaviors:

• Fixed-Size (FS-) TCP-SF. When , the
maximum segments size in use at the sender, i.e., ,
is equal to ; otherwise,

.
• Variable-Size (VS-) TCP-SF. The initial segment size

is set to ; then, is in-
creased by a factor after every in-sequence ACK, until
the segment size is equal to MSS. Of course, there can
be countless choices for , however, we picked the value
that yields a segment size equal to MSS for the 9th seg-
ment: this choice allows all four segments in the third
window (which is 4MSS wide) to have the same size as
in Classic TCP. Thus, with

, in the first window , four seg-
ments of size are sent; in the second window

, the transmitted segments have sizes
, re-

spectively; the next ACK allows the transmission of the
9th segment, whose size is . Consequently, the
value of can be determined by imposing that the 9th seg-
ment be equal in size to MSS, that is to say

, hence .
To summarize, when cwnd is equal to 2 MSS, Classic

TCP sends two segments whose size is equal to MSS bytes.
FS-TCP-SF sends eight segments whose size is while
VS-TCP-SF sends four segments of variable size. As soon as
cwnd reaches the threshold , the behavior of
TCP is no longer critical (RTO expiration ceases to be the only
way to recover losses) and the three versions of TCP behave in
the same way.

Notice that both TCP-SF versions require a simple modifica-
tion to Nagle’s Algorithm [5], which forbids to send more than
one segment shorter than the MSS per RTT. By introducing the
notion of , Nagle’s Algorithm must forbid the sender to in-
ject into the network more than one segment shorter than .

One advantage of using TCP-SF with fixed-size segments re-
lies in its simplicity: only two segment sizes are possible, ei-
ther MSS or . However, the overhead
introduced increases with cwnd. On the contrary, when using
variable-size segments, TCP-SF keeps the overhead constant
but a more careful implementation is required to deal with vari-
able-size segments.

Let us point out and summarize some critical issues related
to the implementation of TCP-SF.

5We consider a TCP implementation where initial window (IW) and loss
window (LW), as defined in [1], take the same value.

• The degree of aggressiveness of TCP-SF is the same as
other classical versions of TCP, at least in terms of bytes
sent. In fact, the evolution of cwnd as well as the amount
of data submitted to the network are unchanged.

• The proposed enhancement can be applied to any version
of TCP, since they all adopt the same mechanism to detect
segment drops. Moreover, it is suitable to be used coupled
with an ECN-enabled network. Also even if delayed-ACK
is enabled, TCP-SF will trigger FR because the receiver
disables the delayed-ACK feature when out of order seg-
ments are received.

• The implementation of TCP-SF is extremely simple. It re-
quires to slightly modify the transmitter behavior while
maintaining the receiver unchanged. This modification
translates into a few lines of code in the TCP stack.

• The main disadvantage is that TCP-SF increases the over-
head of a factor equal to the segment size reduction factor;
i.e., using four segments per MSS, the TCP-SF overhead
is four times the Classic TCP overhead. This issue is dis-
cussed in Section VII.

A. Related Proposals

Similar proposals that address the RTO penalty can be found
in the literature. A feature they share with TCP-SF is that they
only require modifications of the sender’s TCP stack.

TCP Limited Transmit [14] allows the transmission of new
segments upon the reception of duplicate ACKs, so as to en-
hance the chances of triggering FR if the window is smaller than
four segments at the time of packet loss. It should be noted that,
compared to our proposal, TCP Limited Transmit cannot trigger
FR for flows shorter than 5 MSS; also, at least one more RTT is
required before FR can be entered.

An increase of the initial cwnd is advocated in [15] and [16],
through an increase in the permitted upper bound for the ini-
tial window from one segment to between two and four seg-
ments, without changing the segment size; this approach, al-
ready implemented in some OSs, can help avoid RTOs in the
initial window, but could potentially increase the network con-
gestion and, acting more aggressively, it could affect other TCP
sources not employing this algorithm, as the authors themselves
point out. Coupled with the Limited Transmit proposal, an ini-
tial window larger than two enables the FR for flows longer than
4 MSS.

Allowing TCP to reduce, in certain special circumstances, the
number of duplicate acknowledgments required to trigger a fast
retransmission, is among the latest proposals [17].

Another potentially related TCP modification proposal,
called Appropriate Byte Counting (ABC) is detailed in [18]. It
proposes that the congestion window be increased depending
on the number of previously unacknowledged bytes covered
by each ACK, rather than on the number of received ACKs.
Specifically, it dictates that a TCP sender in Slow Start in-
creases the congestion window by the number of previously
unacknowledged bytes ACKed by each incoming acknowl-
edgment, provided the increase is not more than bytes, with

. While preventing bursty congestion
window increases caused by largely cumulative ACKs, ABC
can shorten the Completion Time by avoiding the effect of
delayed ACKs. This proposal is also shown to slightly increase
the dropping rate at routers [18].
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Fig. 2. Average Completion Time.

All these proposals, including TCP-SF, are not mutually ex-
clusive, but rather can be merged in a single, new TCP protocol
stack that better suits the current Internet traffic characteristics.

IV. PERFORMANCE EVALUATION

We have chosen to investigate the performance of TCP-SF
using both simulation and actual testbed measurements. Simu-
lation gives us full control over specific scenarios, allowing us
to derive several performance indices. On the other hand, the
testbed implementation allows a more realistic evaluation fea-
turing actual traffic patterns.

We implemented both flavors of TCP-SF in the ns-2 simulator
[19]. For our testbed measurements, we implemented the Fixed-
Size version in the Linux kernel 2.2.17.

A. Simulation Results

We report results for a network scenario in which both long-
lived FTP sessions and Web-like connections share a common
bottleneck link.

To model Web-like traffic, TCP sources (and receivers) are
connected to a bottleneck link of 10 Mbit/s capacity and 50 ms
delay. A Poisson process drives the setup of new connections,
whose length (in bytes) is randomly set according to the real
traffic distribution shown in Section II. In the preliminary ver-
sions of this paper [20], we presented simulation results with
flow-length distributions taken from [11], yielding similar con-
clusions. The MSS is set to 1 460 bytes. Long-lived connections
are accounted for using 10 greedy TCP sources. The bottleneck
link is managed by a byte-wise Drop-Tail buffer, whose capacity
is set to 150 Kbytes, i.e., 100 full-size packets. Results are av-
eraged over 8 independent simulation runs, and, for each run,
the simulation time is 4000 s to reduce the impact of the initial
transient phase.

1) TCP-SF Performance Evaluation: First, we focus on the
performance evaluation of TCP-SF versus Classic TCP-SACK,
considering the Completion Time, i.e., the time that is required
by the source to successfully transfer all the data, as the most
important metric.

Fig. 2 reports the Completion Time versus the average of-
fered load normalized with respect to the bottleneck capacity.
Results are averaged over all classes of flows. As expected, the
average Completion Time required to complete the transfer is

Fig. 3. Per-flow-length Completion Time gain at 80% offered load.

larger when the offered load grows. This is due to two main rea-
sons: first, the average window size shrinks as the capacity of
the link is shared among a larger number of flows. Second, the
probability of segment loss is larger, causing either RTO or FR
to occur. These two effects force the source to operate in the
small window region, where FR is unlikely to be triggered, and
thus the RTO is the only way to recover from segment loss.

Both VS- and FS-TCP-SF outperform Classic TCP, as they
are quicker to react to segment losses. In particular, when the
offered load is smaller than 80%, FS-TCP-SF performs better
than VS-TCP-SF. When, instead, the offered load is larger than
80%, the larger overhead introduced by FS-TCP-SF increases
the actual offered load and consequently the dropping proba-
bility, which degrades the Completion Time. The larger the of-
fered load, the higher the performance improvement observed,
which shows that TCP-SF is most effective under more critical
network conditions.

We now shift our focus to the more interesting, high-load re-
gion in the previous experiment, namely when the offered load
is set to 80% of the bottleneck capacity. Fig. 3 reports the per-
centage Completion Time gain for each flow length class. The
percentage gain is defined as the relative difference in Comple-
tion Time experienced by a given version of TCP and Classic
TCP. The classes are identified by a number; Table I relates them
to their respective flow size in bytes.

As can be observed, the majority of classes benefits from
the enabling of the segmentation algorithm of TCP-SF even
if the number of bytes they have to transmit is insufficient to
trigger the Fast Recovery algorithm. Instead, for classes of flows
sending enough data to trigger the Fast Recovery algorithm, the
Completion Time gain experienced is consistent, and over 30%.
Notice that also the longest-lived flows (195-segment long) ob-
tain considerable advantages from the introduction of TCP-SF
segmentation, which kicks in every time the flow enters the
small window regime. Small negative gains are observed for
flows that send a single, undersized segment, using the fixed-
size version. These gains are due to the increased overhead car-
ried by the network when the fixed-size version of TCP-SF is
used.

In order to explore higher-order statistics, Fig. 4 shows the
cumulative distribution function of completion times, at 80%
offered load, averaged over all flow sizes, for both TCP-SF and
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Fig. 4. Distribution of Completion Times at 80% offered load.

Fig. 5. Percentage of FR events: comparison between TCP-SF and Classic
TCP.

Classic TCP, confirming the predominance of small comple-
tion times in either versions of TCP-SF. In particular, notice
the much smaller step in the CDF at about 3 s when TCP-SF
is considered. As already remarked in Fig. 1, the step is due to
the 3-s RTO expiration whose impact is almost negligible when
TCP-SF is used.

To give further insight into the performance that both flavors
of TCP-SF obtain, Fig. 5 plots the percentage of times a Fast
Recovery is used to recover from a packet loss versus the of-
fered load to the bottleneck link. Notice that Classic TCP re-
covers from a packet loss using FR about 50% of the time under
light load conditions, while this percentage quickly drops to less
than 25% when the offered load increases. This causes an in-
crease of the time required to complete the transfer shown by
previous plots. The same degradation can be observed consid-
ering VS-TCP-SF, which however triggers Fast Recovery for
about 45% of drops. FS-TCP-SF exhibits a different behavior,
in which the percentage of Fast Recovery is increasing. How-
ever, this does not correspond to a proportional decrement in the
Completion Time (see Fig. 2) because of the increased dropping
probability.

Table I reports, for all classes of flows numbered 1 through
15, the Completion Time and percentage of FR instances used to
detect segment losses for Classic TCP, VS- and FS-TCP-SF. For
some flow lengths FR is not observed since there are not enough

Fig. 6. Per-flow-length Completion Time gain of new TCP proposals.

data to trigger it. Specifically, different Completion Times are
observed, even if the RTO and FR percentage are the same, be-
cause each scenario exhibits a slightly different loss probability.

Table I underlines the benefits obtained by TCP-SF in in-
creasing the number of FR, while at the same time reducing the
RTO occurrences. The benefits are clearly visible starting from
flows that have 1650 bytes to send. On the contrary, the first
class of flows that can use FR for the Classic TCP is the one
that has 13 681 bytes to send, for which only less than 20% of
dropped segments trigger FR.

2) Comparison to Related Proposals: The performance of
TCP-SF is compared against two similar TCP proposals de-
scribed in Subsection III-A, namely Limited Transmit (LT) and
TCP with increased initial window (W2). Results obtained by
enabling different proposals are shown in Fig. 6. While LT and
W2 alone do not always provide gain in Completion Time with
respect to Classic TCP, their combination with either flavor of
TCP-SF yields enhanced performance. In particular, when LT
is adopted, flows shorter than 6 segments, (for which the only
means to recover a packet loss is by RTO) are penalized by a
20%–40%. Indeed, the LT option only delays the RTO firing by
one or more RTTs. This is due to the fact that TCP adopts a
single timer which is associated to the first sent-but-not-yet-ac-
knowledged segment: every received ACK delays this timer by
a least one RTT. On the contrary, the W2 option marginally
degrades the Completion Time for 1-segment flows; while im-
proving the performance for the 2-segment flows, it degrades
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Fig. 7. Completion Time of Classic TCP and Fs-TCP-SF versus different
percentage of TCP-SF present in the network.

the Completion Time of flows longer than 2 segments. This is
due to the more bursty traffic injected into the network, which
causes a higher dropping probability (this is also observed by
the authors of the W2 proposal).

These results seem to suggest that rather than seeing these
proposals as competitors, they could be merged in a single, new
TCP protocol stack.

3) Friendliness Versus Classic TCP Versions: One impor-
tant aspect that must be taken into account when a new protocol
is introduced in a heterogeneous networking environment is the
impact that it might have on traffic carried by already existing
protocols: during the transient phase both new and old versions
coexist in the network and the introduction of the new protocol
should not penalize previously existing ones. This issue is usu-
ally stated in the literature as “friendliness problem.”

Thus, we set up a simulation scenario where a variable per-
centage of TCP-SF sources compete in a bottleneck link with the
classic version of TCP. In this experiment, TCP Reno flows load
the bottleneck link. The number of TCP-SF flow percentage
goes from 0%, i.e., all the sources use Classic TCP, to 100%,
i.e., all the sources implement the TCP-SF algorithm, either in
the FS or VS option. The normalized load feeding the bottle-
neck is, as usual, 80% in all simulations.

Fig. 7 reports the experiment results for FS-TCP-SF (results
for VS-TCP-SF are omitted for the sake of brevity). The pres-
ence of TCP-SF flows degrades the performance of Classic TCP
flows. This is due to the fact that TCP-SF better utilizes the
buffer space in Drop-Tail queues, causing a slight bias in the
dropping probability against full-size packets. In particular, the
VS-TCP-SF is friendlier, as it increases the segment size instead
of sending a larger number of smaller-size segments.

B. Testbed Measurements: Real Network, Synthetic Traffic

To gauge the impact of our new scheme in a real Internet en-
vironment, we have implemented FS-TCP-SF on a Linux work-
station acting as file server. We have then tested the implemen-
tation using several clients (adopting different OSs) which re-
quested 10-Kbytes file uploads to the server, the hosts being lo-
cated both on the local network (in Italy) and in the Internet
at large (in the U.S.). Each client repeated the requests some
20 000 times over a time span of 4 hours during peak business
hours in Italy.

TABLE II
PERCENTAGE OF FR AND RTO OCCURRENCES MEASURED PER HOST

Fig. 8. Topological description of the real traffic experiment.

Results in Table II are reported in terms of FR and RTO occur-
rences, similarly to those in Table I. In our testbed configuration,
the dropping probability is small, since the Italy-to-U.S. path is
usually lightly loaded, most of the traffic flowing in the oppo-
site direction. Thus, a small fraction of the flows suffered from
segment losses. This is reflected in an average Completion Time
measurement that is almost constant, and we opted not to report
it. On the contrary, the frequency of FR and RTO occurrences is
a more significant metric because it is a relative measure.

On the whole, the testbed results confirm what we observed in
simulation: TCP-SF connections resort to FR about four times
more frequently than Classic TCP does.

C. Testbed Measurements: Real Traffic, Synthetic Network

The second set of testbed experiments involved a realistic
traffic pattern (i.e., Web client-server transactions) routed over a
link emulator. The topology of the testbed is described in Fig. 8.
Its functional elements are the following:

• a switched 100 Mb/s LAN carrying Department traffic;
• a Web Proxy Server used by clients;
• a Router connecting local traffic to the Internet, and

carrying outbound and inbound traffic over a 28 Mb/s link;
• a Router implemented on a Linux machine which also

runs a Link Emulator, affecting only traffic from the Proxy
Server;

• all links except for the outgoing ones are Full-Duplex Fast
Ethernet links.

In order to generate realistic traffic, every Web Browser in our
Department Subnet was configured so as to use a Proxy Server.
TCP-SF was only implemented over the machine running the
Proxy Server, and a link emulator was added on the return path
between the Proxy and the Department Subnet. The link em-
ulator was configured so as to enforce a specific latency and
byte-wise drop probability (i.e., longer packets have a higher
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TABLE III
RT ESTIMATES, PERCENTAGE OF RTO OCCURRENCES AND COMPLETION TIME DIFFERENCES FOR WEB OBJECTS SMALLER THAN 10 kB

VERSUS DROP PROBABILITY AND LATENCY

probability of being dropped than smaller ones). The above con-
figuration allows the Web objects fetched by the Proxy and re-
turned to the requesting clients on the Department Subnet to be
sent over the link emulator using TCP-SF at the transport layer.

Performance metrics were collected for different values of
emulated latency and drop probability, over a period of one
month in June 2001; in order to collect a meaningful set of data,
each latency/drop pair was set for a whole day, and the Proxy
Server had its transport layer switched between Classic TCP
and TCP-SF every five minutes. Only connections between the
Proxy server and a local client were considered. Statistics were
later collected for each version of TCP, and for each day. Un-
like the results in the previous subsection, we had little control
over the actual client sessions: the amount of data transferred
during each transaction depended on the browser used and the
operating system installed on each user’s machine. Also, each
browser has its own session-level behavior, including idle time
between back-to-back requests, or connection shut-down after
a timeout. Unfortunately, this prevented us from obtaining reli-
able estimates of Completion Times. Indeed, Completion Times
are computed at the Proxy Server as the time elapsed between
the reception of a SYN segment from a client, until the last FIN
(or RST) segment is received by the server, or sent by the server,
whichever occurred last. Flows that did not transport any pay-
load are not taken into account. We have thus chosen to report
just the difference between the Completion Times of TCP-SF
and Classic TCP, assuming that, on the whole, whatever dis-
crepancies between the behaviors of different clients’ OSs and
browsers would equally affect the two versions of TCP being
switched on the Proxy Server. We are aware that these statistics
are hardly reliable, but we chose to report them anyway, since
they might give an indication as to which version ensures a faster
completion.

Also, the percentages of Timeout expiration are reported, as
in Subsection IV-B. These statistics were collected by logging
actual RTO expiration events of the proxy kernel. Unlike Com-
pletion Times, statistics on the occurrence of RTOs and Fast Re-
covery are less dependent on browser behavior, and are, there-
fore, more reliable metrics. These results are shown in Table III
for file size smaller than 10 kB. The case of files larger than
10 kB is omitted. Columns in the Table show: 1) emulated drop
probability; 2) emulated latency; 3) samples number (number of
flows); 4) estimate of the average Retransmission Timer (RT)
at the end of the connection; 5) percentage of times a loss re-
sulted in an RTO expiration; and 6) Completion Time difference

between the two examined TCP versions, computed
only for flows that have experienced at least one loss event.

Observe that positive values for the Completion Time differ-
ence indicate that TCP-SF exhibited a faster Completion Time,
while negative times indicate the opposite.

Overall, results confirm the findings shown in previous
sections via simulation and, specifically, identify TCP-SF as
less prone to RTO expirations than Classic TCP. Estimating
the proper value of the Retransmission Timer also benefits
from the features of TCP-SF: the larger number of segments
sent, compared to Classic TCP, accounts for a larger number
of samples used in the estimation of the round trip time, thus
refining the estimate and providing a smaller, more accurate
value for the timer. The combined effects of fewer RTOs and
smaller values of the retransmission timer shortens the Com-
pletion Time in presence of a loss; although we remarked that
Completion Times are affected by the unpredictable behavior
of different browser types, the trend nonetheless confirms a
sizable reduction of Completion Times for TCP-SF.

V. ANALYSIS OF THE SMALL WINDOW REGION

In this section we analytically evaluate the behavior of
TCP-SF and of other classic versions of TCP in the small
window regime. The analysis is based on the computation of
the throughput achieved by the protocol given the network
conditions; i.e., given a value of the average round-trip time
and of the segment loss probability. The small window re-
gion is defined by window sizes ranging between 1 MSS and

(for ease of computation, from now on all window
sizes are expressed in multiples of MSS). Out of this region,
all TCP versions exhibit the same behavior, and further gains
are unlikely to be achieved by TCP-SF, unless combinations
of losses of both segments and ACKs make the use of TCP-SF
still profitable. For simplicity, we assume that the congestion
window grows always according to the Slow Start algorithm,
since in the small window region the exponential and linear
growth of cwnd are indeed very similar.

In order to describe the behavior of Classic TCP, of
FS-TCP-SF and of VS-TCP-SF for small values of the window
size, we develop three models based on the state machine of
TCP congestion control, following a procedure similar to the
one proposed in [21] and [22]. The idea is to evaluate the time
spent and the data sent by the different versions of TCP in the
small window region only. A continuously backlogged source
is assumed and no ACKs are lost.

A. Model of Classic TCP

We now present the State Machine (SM) which describes the
behavior of classic versions of TCP when cwnd is comprised be-
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Fig. 9. State machine of Classic TCP in the small window region.

tween 1 and the threshold . When developing the
key ideas of the SM, we focus on the state changes neglecting
the time spent in each state, which will be introduced later.

The state machine of Classic TCP is shown in Fig. 9. At
the connection set up (as well as when Slow Start is entered),

; in the SM this is represented by state 1. One seg-
ment is transmitted and, after a round-trip time, if the segment
was not lost, TCP increases cwnd to 2. Correspondingly, the SM
moves from state 1 to state 2 with probability , where

is the segment loss probability. Similarly, the transition from
state 2 to state 4 has probability . State TO represents the
timeout. If the segment retransmitted after timeout expiration is
lost again, the SM remains in TO and the backoff mechanism
applies. When the retransmitted segment is successfully deliv-
ered, the SM leaves state TO and enters state 2, because the new
ACK makes cwnd slide and widen.

We now evaluate the average time needed by the protocol
to move from state 1 to state 4, since, from that moment on,
Classic TCP and TCP-SF behave the same. From the SM, we
observe all possible paths between 1 and 4 and we evaluate their
probability. We then weight each path by its duration, i.e., by the
sum of the times needed to visit all the states along the path.

The duration of a visit to states 1 and 2 is equal to the round-
trip time RTT, for short in the following formula; a visit to state
TO, instead, takes a time equal to the average timeout duration

. Taking into account the backoff mechanism, and stating by
RTO the value of the Retransmission timer estimation

(1)

We obtain

The infinite sum accounts for losses occurring in state 2.
In a similar way, it is possible to compute , the average

number of segments successfully transmitted in the small
window region. We again consider all possible paths from state
1 to state 4 and for each visited state along a path we compute
the number of transmitted segments

(2)

(3)

where is the average number
of segments successfully transmitted in state 2 given that some
losses occur. In (2), the term represents the average
number of segments transmitted when the chain moves from
1 to 2 (either directly or passing through state TO); term in
the infinite sum accounts for the segments transmitted when
the timeout expiration is required times before the protocol
manages to reach state 4 (thus exiting from the small window
regime). We can now compute the throughput in the small
window region as the ratio between and

(4)

The expressions for and can be obtained through an
alternative formulation of the problem, which is based on the
observation that the behavior of the SM forms a semi-Markov
chain. In order to derive the embedded Markov chain, we define
the following ordering of the states: and derive,
accordingly, the transition probability matrix . The probabil-
ities that the th state visited by the protocol is are col-
lected in the vector . Since the small
window regime is started in state 1, the initial probability vector
is .

We now associate a time reward to each state which coincides
with the time spent by the protocol in that state for each visit.
The column vector of the time reward is . We
can derive as

(5)

(6)

where is the identity matrix.
Similarly, in order to derive we introduce the data reward

vector which collects the number of segments successfully
transmitted in each state. We derive

(7)

can now be computed as, . Given
and , the throughput is given as before by (4).

Another interesting performance metric is the waste of band-
width, which is the amount of information submitted to the net-
work but not delivered to the end user. It is given by the sum
of two terms: the bandwidth used by TCP and IP overheads in
each segment ( bytes), which is given by ,
and the bandwidth wasted for the transmission of lost segments.
In order to evaluate this second contribution, we compute the
offered traffic from which we subtract the throughput. Thus,
we introduce the reward vector which defines the number of
segments generated in each state of the Markov chain,

. We now compute the offered traffic as

(8)

The waste of bandwidth results

(9)
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Fig. 10. State machine of FS-TCP-SF in the small window region.

B. Model of FS-TCP Smart Framing

The state machine diagram which describes FS-TCP-SF be-
havior is shown in Fig. 10.

When entering Slow Start cwnd is equal to and
TCP-SF transmits four small segments. In the SM, we represent
this situation by state .

When losses occur, TCP-SF can either enter FR or RTO; this
choice depends on the loss pattern, and in particular it changes
on the basis of which segment within the window is the first one
to be lost. In order to distinguish different cases, we introduce
in the SM four states labeled as with , where

represents the FR state entered by TCP when the first lost
segment is the th one.

State represents the case in which the first segment out of
four is lost. In this case, FR can be entered only if the following
three segments are successfully delivered. Therefore, the transi-
tion probability from state to is equal to

, where is the small-size segment loss proba-
bility. In case the second segment of the window is lost, the
ACK of the first segment makes the window slide and widen
so that a total number of four segments have been transmitted
after the lost one. Therefore, FR is entered if at least three out of
the four segments transmitted after the lost one are successfully
delivered so that a total number of three duplicated ACKs are
generated. In the SM, the state represents this case. Sim-
ilar situations are represented by states and .

We denote by the transition probability from state
to ; we have

Since in state the number of segments which follow the lost
one is , the sum accounts for the probability that at least 3
segments following the lost one are correctly received, so that
FR can be triggered.

Once the FR is completed, the SM will always move to the
state labeled by , where 8 small segments are sent. This is
due to the clipping of the Slow Start threshold to 2MSS.

The transition from state to state represents the case
in which all four segments transmitted when the window size
is equal to 4 are successfully delivered so that, after roughly a
round-trip time, the window size is equal to 8 small segments.
The transition probability is equal to .

If a loss pattern occurs so that FR cannot be entered, the SM
moves from state to state TO; the probability of this transi-
tion is

The SM can then leave state TO and move to state if no
loss occurs, or, similarly to what happens from state , the
SM can move to a state , if three duplicate ACKs arrive,
or remain in the state TO otherwise.

When the window size is 8, the probability that RTO is used
instead of FR is extremely small, therefore, we assume that in
case of losses FR only is possible. Loss and recovery, when the
window size is equal to 8, are represented by the transition from
state to itself; the transition probability is approximated by

. Notice that the window size does
not change due to the minimum Slow Start threshold, which is
equal to 2MSS. By ordering the states as

we can write the transition probability matrix of the em-
bedded Markov chain, and we can define the state
probability vectors . The initial probability vector is

.
Similarly to (4) in the previous model, the throughput is eval-

uated based on the average number of transmitted segments, ,
and the average time spent by TCP-SF in the considered region,

. The protocol spends a round trip time for each visit to
states , and , and two round trip times for each visit
to states , with (one round trip time is needed to re-
ceive the ACKs which enlarge the window and allow the trans-
mission of new segments; one more round trip time is needed to
receive the ACKs of these new segments). The protocol spends
a timeout in TO. Thus, the vector of the time rewards is given
by, . We compute as

(10)

For the derivation of the data reward vector, we compute the
number of segments successfully transmitted in each state. In
states and TO, the number of transmitted segments, respec-
tively, and , is

In states , one segment is transmitted with probability
; thus, . Finally, for state we have

Thus, the average number of successfully transmitted seg-
ments is, . We compute the throughput
in the small window region as

(11)
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Fig. 11. State machine of VS-TCP-SF in the small window region.

In order to evaluate the waste of bandwidth due to overhead,
we first derive the offered traffic. Then, by subtracting the
throughput to the offered traffic we compute the waste of
bandwidth due to lost segments, from which we get the total
waste of bandwidth by simply adding the amount of bandwidth
used for protocol headers. We introduce the reward vector
which defines the number of segments generated in each state
of the Markov chain, .

We compute the offered traffic as

(12)

and the waste of bandwidth as

(13)

C. Model of VS-TCP Smart Framing

In order to model the behavior of VS-TCP-SF we have to ac-
count for the different sizes that the segments may have. By
assuming, as in previous models, , the segment
size can have six different values

with , and . In general,
segments with different size may experience different loss prob-
ability; hence, we denote by the loss probability of segments
whose size is equal to , with . The case of
corresponds to the small segment size employed by FS-TCP-SF
i.e., and ; the case corresponds to
the full-size segment, and .

The Markov chain describing the behavior of VS-TCP-SF in
the small window region is shown in Fig. 11. State in the
Markov chain represents the transmission of 4 small segments
when Slow Start is entered. States and refer to
the transmission of the first window, and stand for the cases in
which the th segment is the first one to be lost and either a
Fast Recovery or a Timeout phase is entered. When the loss is
recovered from states or , the chain moves to states

with which correspond to a new window whose
first segment size is equal to . For example, suppose that the
second segment is lost while the first one as well as the segments
following the second one are correctly received. The ACK of the
first segment makes the window slide and widen so that a seg-
ment with size is transmitted and FR is entered (state 1FR2).

When the lost segment has been successfully transmitted, the
new window starts from a segment whose size is (state ).
Therefore, the Markov chain visits the states , 1FR2, and .
Similar behaviors are associated to states and with

which represent the FR and timeout procedure to
recover the loss of a segment with size in the second trans-
mitted window. The small window regime terminates in state

, in which the first segment of the new window is full-size.
For the sake of brevity, we do not report here the expres-

sions for the transition probabilities between states, the small
window regime throughput and the waste of bandwidth, which
are derived by considering all possible loss patterns as we did
for FS-TCP-SF.

D. Comparisons

Performance is going to be assessed in terms of throughput
and waste of bandwidth due to overhead. Since segment loss
probability has a major impact on the performance and it may
depend on the segment size, we need to know the relationship
between the segment loss probability and the segment size. If
RED buffer management schemes are adopted and the queue
length is managed in bytes, it is reasonable to assume that the
segment loss probability is proportional to the segment size, as
suggested in [23]. Then, for example, the probability to lose a
small segment, , is about 4 times smaller than the probability
of losing a full-size segment . On the contrary, for a buffer
management scheme which handles packets as units, indepen-
dently of their size, is equal to . Some other factors may
induce different relationships between segment loss probability
and segment size. However, we will consider only the two cases
mentioned above. In the figures, the label “linear” will indicate
the case of loss probability proportional to the segment size (this
is the most favorable case for TCP-SF), the label “constant” will
indicate the case in which the segment loss probability is inde-
pendent from the segment size.

The first performance metric which we consider for the com-
parison is the throughput gain that TCP-SF can achieve over
classic versions of TCP:

and

where and are the throughput gain of FS-TCP-SF and
VS-TCP-SF, respectively.

Fig. 12 shows the throughput gain of TCP-SF over Classic
TCP in the small window regime versus the full-size segment
loss probability for the case of loss probability proportional to
the segment size or constant. The average round trip time is
equal to 200 ms, RTO is set to 1.5 s. The chosen values of seg-
ment loss probability were taken from simulation results for dif-
ferent values of the offered load; see Section IV. As expected,
TCP-SF benefits from the loss probability proportionally to the
segment size, since small packets experience a larger chance to
be successfully delivered. However, positive gains can be ob-
served even if the loss probability is constant. When the seg-
ment loss probability is large, the FS option of TCP-SF provides
a sizable gain over the VS one, since recovering losses by Fast
Recovery is more likely than by RTO expiration. The negative
gain which can be observed when the segment loss probability
is very small, indicates that the throughput of TCP-SF is smaller
than that of Classic TCP. This is due to the effect of the larger
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Fig. 12. Throughput gain in the small window region for FS-TCP-SF and
VS-TCP-SF over Classic TCP.

Fig. 13. Throughput gain in the small window region for FS-TCP-SF and
VS-TCP-SF over Classic TCP.

overhead introduced by TCP-SF. Notice, however, that the cases
with small loss probabilities are less critical from the point of
view of a service provider, since the QoS offered to the end user
is already high.

Since the advantage of TCP-SF is mainly due to the smaller
time spent in FR rather than waiting for RTO expiration, we
now focus on the impact of the values of RTT and RTO on the
throughput gain. In Fig. 13, the throughput gain is plotted versus
the RTT for RTO equal to 1.5 s and full-size segment loss prob-
ability equal to 0.05. As the round trip time increases, the
difference between RTO and RTT decreases; consistently, the
throughput gain decreases. Notice however, that for the consid-
ered scenario, the throughput gain is still remarkable when the
RTT is 0.5 s, i.e., only one third of the RTO.

Finally, note that short-lived flows enjoy further advantages
by using TCP-SF that are not considered in this analysis, such as
the higher chance not to suffer the initial RTO. For longer flows,
on the contrary, the benefits of adopting the smart framing op-
tion are observed not only at connection set up but also when
Slow Start is entered due to some losses. Thus, the advantage
perceived by the end user (on the Completion Time of the con-
nection) is smaller.

VI. ROUTER MEMORY MANAGEMENT ISSUES

In this section, we address some of the issues related to how
routers store and handle incoming packets, and to the impact

Fig. 14. Average Completion Time versus chunk size: (top) worst case
scenario and (bottom) shaped scenario.

such strategies have on TCP-SF performance. Since router
buffers can be organized at the granularity of “chunks” larger
than a single byte, the increased packet count due to smart
framing may affect buffer occupancy, reducing the benefits of
TCP-SF. Since reasons of space do not allow us to explore all
possible buffer management policies in the present work, we
investigate the impact of memory management in Drop-Tail
buffers only. We therefore conduct additional simulations,
in which router buffers are managed considering chunks of

bytes, i.e., from a pure
byte-oriented to a pure packet-oriented fashion.

We consider the same bottleneck link topology seen in
previous sections, in which the Drop-Tail buffer associated to
the congested link has a total capacity of 150 000 bytes. For
each incoming packet, an amount of memory, corresponding
to an integer number of chunks, is allocated from the buffer
space. For example, when 256-byte-long chunks are used, a
1500-byte-long packet requires six chunks to be accommodated
in the buffer, while two chunks are required for a 375-byte-long
packet. The load offered by TCP sources (directly connected
to the nodes at bottleneck link) is fixed and equal to 80% of
bottleneck capacity.

Results are plotted at the top of Fig. 14, that reports the ab-
solute average completion time versus chunk size. It can be no-
ticed that the Smart Framing versions of TCP improve the per-
formance only when the chunk size is smaller than 512 bytes,
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while the completion time increases up to about 175%, when
the buffer is managed in packets, i.e., the chunk size is equal to
1500 bytes and the bottleneck queue stores up to 100 packets.
This degradation in performance is due to two reasons. First, the
generation process of the packets that Smart Framing sources
send in the network is burstier, since they are allowed to send
four 375-byte-long segments; this translates into the request to
allocate four buffer chunks of 1500 bytes all at once. Second, by
allocating 1500 bytes per 375-byte-long segment, a worse usage
of the router memory is achieved, since the effective memory
usage is only that of classic TCP.

For what concerns the first reason mentioned above, the im-
pact of the higher burstiness of the packet generation process of
Smart Framing is amplified by the considered scenario which
is a sort of unrealistic, worst-case scenario. In it TCP sources
inject back-to-back packets directly in the bottleneck queue,
without any traffic mixing and multiplexing by previous nodes.
We therefore consider a more realistic scenario, which differs
from the previous one only because TCP sources, instead of
being connected to the same access node and then to the bottle-
neck link, are now connected to one of 10 possible access nodes;
the access nodes are then connected to the bottleneck by links
with 1.5 Mb/s capacity and 1 ms propagation delay. Results are
reported in the bottom plot of Fig. 14, where TCP-SF outper-
forms Classic TCP over all chunk sizes, even the largest one.
Notice also that all TCP variants benefit of the reduced bursti-
ness at the packet level achieved by assuming the more realistic
scenario with 10 access nodes. These results confirm the posi-
tive findings from live measurements discussed in Section IV.

VII. IMPACT OF PROTOCOL OVERHEAD

We now explicitly consider the waste of bandwidth due
to the protocol overhead, which is the major drawback of
TCP-SF. For example, when no losses occur and for flows
that can exit the small-window-regime, FS-TCP-SF sends
28 small-size segments before switching back to large-size
segments, VS-TCP-SF sends 12 segments, while Classic TCP
always sends 7 segments. This translates into a 300% protocol
overhead increase for FS-TCP-SF with respect to Classic TCP
and 70% for VS-TCP-SF. However, this is a worst case anal-
ysis. By considering: 1) the real traffic distribution obtained
in Section II; 2) a segmentation based on bytes;
3) IP/TCP protocol overhead of 40 bytes; and 4) by assuming
that no segment is lost, the percentage of the average waste
of bandwidth due to protocol overhead accounts to: 5.6% for
Classic TCP, 8.0% for FS-TCP-SF, and 6.5% for VS-TCP-SF.
Thus, if we compare the bandwidth waste of Classic TCP and
VS-TCP-SF, the latter scores performance improvements up to
35% at the cost of 3% increase of bandwidth waste. In order
to also consider the impact of loss probability on the waste of
bandwidth, we employ the analytical model proposed in the
previous section, which, we recall, refers to the small window
region only.

In Fig. 15, we plot the percentage of the bandwidth employed
for the overhead versus the full-size segment loss probability.
The value corresponding to loss probability equal to 0 represents
the amount of bandwidth needed to carry the additional bytes
in the protocol headers. As the loss probability increases, the
waste of bandwidth accounts also for the bytes retransmitted due

Fig. 15. Bandwidth wasted for the protocol overhead in the small window
region for TCP-SF and Classic TCP.

to lost segments. Clearly, the waste of bandwidth of TCP-SF is
larger when the loss probability is constant instead of linear with
the segment size, since in this case the loss probability results
to be larger for TCP-SF. The largest waste of bandwidth can
be observed for FS-TCP-SF; for example, when the loss prob-
ability is small, FS-TCP-SF wastes 10% of the available band-
width in overhead in the small window regime region, which is
3 times what is wasted by Classic TCP, and twice the waste of
VS-TCP-SF. Notice, however, that, in the linear case with loss
probability larger than 0.08, the waste of Classic TCP is larger
than that of VS-TCP-SF; when the loss probability reaches 0.12,
the waste of Classic TCP is even larger than that of FS-TCP-SF.

In summary, we have shown that, under several common sce-
narios and settings, the improvements achieved by the smart
segmentation algorithm of TCP-SF are worth the cost of the
overhead increase. In addition, the gain appears to be higher
when the network is congested and translates into a better ex-
ploitation of resources.

VIII. CONCLUSION

We proposed an enhancement to the TCP protocol that is
based on the key idea of transmitting small-size segments when
the congestion window is small, without changing the degree
of aggressiveness of the source. This allows the sender to re-
ceive more feedback from the destination, and thus use the Fast
Recovery algorithm to recover from segment losses, without
waiting for a Retransmission Timeout expiration to occur.

TCP-SF is particularly effective for short-lived flows, but im-
proves the responsiveness of long file transfers also. In a current
Internet traffic scenario, TCP-SF outperforms Classic TCP in
terms of both Completion Time, and probability to trigger Fast
Recovery to detect segment losses, stealing little or no band-
width from Classic TCP. In highly congested networks, it also
guarantees a better exploitation of resources.

The proposed modification is extremely simple and can be
implemented on top of any TCP flavor, and requires changes on
the server side only.
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