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Composition laws for learning curves of industrial manufacturing

processes

F. FRANCESCHINIy* and M. GALETTOy

The theory of learning curves is widely investigated in many fields related to
production planning, quality improvement and cost analysis. Many different
approaches to describe the learning mechanism of a process are reported in the
academic literature. The aim is to analyse the behaviour of complex systems
composed of a network of elementary processes whose learning curve is
known. Composition laws of two basic aggregation structures, series and parallel,
are discussed and analysed. The effects of these composition laws are shown in a
series of practical examples.

1. Introduction

The theory of learning curves has been widely investigated by many authors
(Yelle 1979, Venezia 1985, Muth 1986, Cherrington et al. 1987, Zangwill and
Kantor 1998, Dar-El Ezey 2000, Franceschini 2002). Its main applications are in
the areas of production planning, quality improvement and cost analysis.

Learning curves are employed to describe the evolution over time of many
business processes, such as labour costs, time to market, outgoing defect levels,
time delivery, lead time, manufacturing cycle time, process defect level, yield, etc.
Organizations use these curves to promote the elimination of problems, to enhance
the rate of improvement and to provide process behaviour forecasts. They are
also employed to estimate the labour costs related to a production process of new
products.

Many different learning models based on theoretical or empirical approaches
have been proposed (Levy 1965, Sahal 1979, Roberts 1983, Venezia 1985, Muth
1986, Cherrington et al. 1987, Schneiderman 1988, Zangwill and Kantor 1998).
The most common ones are the exponential and the power models, which are applied
in a wide variety of fields from process analysis to quality and cost analysis
(Cherrington et al. 1987, Schneiderman 1988, Franceschini 2002).

The main characteristics of learning curves, as described in a wide part of litera-
ture, are as follows (figure 1).

. Upward concavity (Muth 1986, Zangwill and Kantor 1998).

. Asymptotic ‘plateau effect’ (due to the eventual lack of any improvement with
additional output) (Conway and Shultz 1959, Baloff 1971).

. In some cases, an initial downward concavity (Garg and Milliman 1961, Muth
1986).
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Further, some authors observe that, in certain circumstances, an unexpected discon-
tinuity happens (e.g. in production cycles learning, a sudden reduction in labour
hours may occur after significant periods of no improvement at all (Abernathy
and Wayne 1974).

As a first approximation, a manufacturing process can be described as a frame-
work able to convert raw materials into finished products. Complex production
systems can be thought of as a composition of single processes connected to each
other in different ways. The aim of this paper is to present a method for the study of
learning, interpreted as a Quality Improvement, in complex manufacturing systems,
composed of a network of processes.

2. Learning curves in production analysis

Theories attempting to describe the learning curve for a manufacturing process
have been developed by Crossman (1959), Levy (1965), Sahal (1979), Roberts (1983),
Venezia (1985), Muth (1986) and Zangwill and Kantor (1998). Experimental ana-
lyses have been proposed by Cherrington et al. (1987), Schneiderman (1988) and
Bailey and McIntyre (1997).

The earliest model attempting to explain productivity improvements and tech-
nological change was formulated by March and Simon (1958). Their theory relies on
a ‘performance gap’, which is the difference between actual and desired (aspired)
performance. Search activity intensifies as the performance gap widens and wanes as
it narrows. The theory asserts that search activity never fully stops, not even in the
limit, so the theory is inconsistent with a level plateau (Muth 1986).

Crossman (1959) assumed that an individual facing a new task tries out various
methods, retaining the more successful ones and rejecting the less successful (’trial-
and-error learning’).

Levy’s (1965) theoretical approach, at least under certain conditions, predicts the
change in concavity. The model developed by Levy is based on the assumption
that the rate of increase in the rate of production as the firm gains experience is
proportional to the amount that the process can improve. The family of curves that
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Figure 1. Typical example of an average learning curve model (continuous line) and the
corresponding experimental results (stars). LðqÞ is the fraction of non-conforming units of
a manufacturing process, where q is the production cycle (cumulative input) after the
start-up.
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comes out has an initial downward concavity and approaches a plateau gradually.
An important limitation of Levy’s model is that a differential equation describes little
of the process by which innovation takes place (Muth 1986).

Venezia (1985) indicates that if the firm learns about the parameters of the
production function from previous observations of allocations and their outputs,
then a learning curve phenomenon will emerge. The model assumes the existence of
an objective function f ðxÞ with a maximum at x ¼ x*. The maximizing value x* is
not known, but is approximated with decreasing error as additional information is
received. Venezia’s model implies that better estimates from past operating data lead
to improved allocation of resources.

Another approach is presented by Muth (1986), who analysed the construction of
learning curves on a theory based upon random search within a fixed population of
technological possibilities. The theory is consistent with the power function relation
between unit costs and cumulative output. It is also consistent with initial rates of
improvement smaller than those predicted later by the power function relation.

From an empirical point of view, Cherrington et al. (1987) show that learning
curves can be described by two basic families of models: the hyperbolic and the
exponential.

Schneiderman (1988) argued that for the analysis of Quality Improvement
Process the most practical model is the exponential model:

L tð Þ � Lmin ¼ L0 � Lminð Þ � e
�a � ðt�t0Þ

t1=2

� �
ð1Þ

where LðtÞ is the defect level over time (errors, rework, yield loss, unnecessary
reports, and, in general, any measurable quantity that is in need of improvement),
Lmin equals the minimum achievable defect level, L0 is the initial defect level, t equals
time, t0 equals initial time, a equals ln(2) and t1=2 equals ‘defect half-life’ (the nature
of this parameter is that for each increment in time that is equal to the half-life, the
defect level drops, on average, by 50%). Many experimental investigations confirm
this law (Schneiderman 1988).

In a recent work, Bailey and McIntyre (1997) analyse the relation between fit of
experimental data and prediction. Their analysis is based on power models that take
into account learning and relearning effects.

Recently, Zangwill and Kantor (1998) showed that a great deal of basic models
to describe evolution curves may all be related to a unique differential equation
based on the Volterra–Lotka form (usually called ‘prey–predator equation’)
(Murray 1989). This represents an important contribution to the unification of the
entire learning curves theory. The relevant part of the Zangwill and Kantor model is
the so-called ‘Postulate Five’. It states that the total metric value (which can be, for
example, the fraction of non-conforming units of a manufacturing process) for the
entire process is the sum of the metric values on the components of the process. In
this way, the basic hypothesis of Zangwill and Kantor’s model can be extended to
the analysis of networks of elementary processes.

3. Proposed method

The present paper proposes a new approach for describing the learning mechan-
ism of a complex system. The basic idea is to interpret a complex manufacturing
system as a ‘network’ of processes (‘elementary blocks’), referring to one variable
factor of production (Venezia 1985). This approach is reminiscent of network use in
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calculating the failure rate of a complex system, in accordance with reliability theory.

We assume as a factor of production the rate of non-conforming units of an

industrial manufacturing plant. We define as an ‘elementary block’ a process

whose learning curve can be described by means of one of the models described in

the previous section. A ‘series structure’ is a combination of cascade blocks (figure

2a). It is assumed that each elementary block operates independently (without

mutual influence) of other blocks. A ‘parallel structure’ consists of n elementary

blocks sharing the production load (figure 2b). We define a ‘network of processes’

as a complex structure composed of series and/or parallel processes.

Let us consider, for example, a manufacturing plant for the production of coach-

works in an automotive firm. The system can be subdivided into the following

processes (figure 3): cutting of metal sheet, pressing and assembling. Each manufac-

turing phase can be represented as an elementary block. The learning curve of the

whole plant is conditioned by the learning curve of each single process and by their

specific connections. Monitoring Quality Improvement means detecting the fraction

of non-conforming products over production cycles of the entire manufacturing

plant, i.e. its learning curve (Schneiderman 1988).
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Figure 2. (a) Example of a ‘learning block diagram’ for a series structure. (b) Example of a
‘learning block diagram’ for a parallel structure.
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Figure 3. Scheme of a manufacturing system for the production of automotive coachworks.
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4. Quality improvement learning curve

Let us consider a generic manufacturing process. We define as q the production
cycle (cumulative input) of the entire process after the start-up, and DðqÞ the
cumulative number of scrapped components. Let us also define as FðqÞ the fraction
of cumulative scrapped components over cumulative input (figure 4):

F qð Þ ¼ D qð Þ
q

ð2Þ

In accordance with the cited learning models, the theoretical learning curve of the
whole system can be expressed as follows:

L qð Þ ¼ dD qð Þ
dq

: ð3aÞ

The learning curve for a discrete manufacturing process can be expressed as:

L qð Þ ¼ �D qð Þ
�q

¼ D qþNð Þ �D qð Þ
qþNð Þ � q

; ð3bÞ

where N is an established number of production cycles (as, for example, a daily
production).

According to equations (2) and (3) the relationship between FðqÞ and LðqÞ is:

L qð Þ ¼ F qð Þ þ q � dF qð Þ
dq

; ð4aÞ

or, equivalently:

F qð Þ ¼

ðq
0

L xð Þ � dx

q
: ð4bÞ

Defining DðqÞ as a positive non-decreasing quantity, LðqÞ is also a positive function
describable by the mathematical models of learning curve literature (Zangwill and
Kantor 1998). Figure 4 shows a comparison between DðqÞ, FðqÞ and LðqÞ, when
LðqÞ has an exponential behaviour.
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Figure 4. Comparison between DðqÞ, FðqÞ and LðqÞ for a generic manufacturing process.
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5. Series structures

Let us consider the series manufacturing process reported in figure 5. Let us

define as q the production cycle (cumulative input) of the entire process after the

start-up, DAðqAÞ the cumulative number of scrapped components after the

processing of qAth cycle in the block A, DBðqBÞ the cumulative number of scrapped

components after the processing of qBth cycle in the block B,

D qð Þ ¼ DA qAð Þ þDB qBð Þ the cumulative number of scrapped components after

the processing of qth cycle in the series structure A �!S B:
Let us also define the following quantities.

. FA qAð Þ ¼ DA qAð Þ
qA

the fraction of scrapped components at qAth cycle by

process A.

. FB qBð Þ ¼ DB qBð Þ
qB

the fraction of scrapped components at qBth cycle by process

B.

. Feq qð Þ ¼ D qð Þ
q

the fraction of scrapped components at qth cycle by the ‘equiva-

lent’ process (process A �!S BÞ:

. LA qAð Þ ¼ dDA qAð Þ
dqA

process A learning curve at qAth cycle.

. LB qBð Þ ¼ dDB qBð Þ
dqB

process B learning curve at qBth cycle.

. Leq qð Þ ¼ dD qð Þ
dq

process A �!S B learning curve at qth cycle.
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Figure 5. Scheme of a series structure, where DðqÞ is the cumulative number of scrapped
components after the processing of qth cycle in the series structure, DAðqAÞ is the
cumulative number of scrapped components of process A at the qAth cycle, DBðqBÞ is
the cumulative number of scrapped components of process B at the qBth cycle.
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Under the condition of a complete independence among processes (i.e. without
‘knowledge’ exchange between processes), it can be shown that (see Appendix):

Leq qð Þ ¼ LA qð Þ þ LB q � 1 � FA qð Þ½ 
f g � LA qð Þ � LB q � 1 � FA qð Þ½ 
f g ð5Þ

Knowing processes A and B learning curves, we can determine LeqðqÞ:

5.1. Example of series structures
Let us consider again the manufacturing plant for the production of automotive

coachworks (figure 3).

(1) A is a process (cutting of metal sheet) with an average learning curve
described by the following exponential form:

LA qAð Þ ¼ 0:07 þ 0:19 � 0:07ð Þ � e�
qA

30000;

where qA is the cumulative number of cycles performed by process A.
From a practical point of view, the process presents at the start up phase

a percentage of non-conforming equal to 19% and an asymptotic non-
conforming value of 7%. Furthermore, 30 000 is the process ‘time constant’.

(2) B is a process (pressing) with an average learning curve described by the
following exponential form:

LB qBð Þ ¼ 0:08 þ 0:21 � 0:08ð Þ � e�
qB

20000;

where qB is the cumulative number of cycles performed by process B.
This process, at the start up, presents a percentage of non-conforming

equal to 21% and an asymptotic value of 8%. 20 000 is the B process ‘time
constant’.

Figure 6 shows, respectively, the learning curves for the processes A and B, and
the equivalent process A �!S B.
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In accordance with equation (5), the equivalent learning curve for the whole
manufacturing process is:

Leq qð Þ ¼ 0:1444 þ 0:1104 � e�
q

30000 þ 0:1209 � e�
q � 1� 0:07þ 0:19�0:07ð Þ�30000

q � 1�e
� q

30000

� �� �� �
20000 þ

� 0:0156 � e�
q

30000 � e�
q � 1� 0:07þ 0:19�0:07ð Þ�30000

q � 1�e
� q

30000

� �� �� �
20000 :

The start up value is Leqð0Þ ¼ 36:01%, and the asymptotic value is
Leqð1Þ ¼ 14:44%:

As intuitively expected, these results show that the series structure has a LeqðqÞ
constantly higher than the two single process learning curves. From the learning
point of view, a series connection manifests a ‘learning delay’. This is due to the fact
that the number of working cycles of block B depends on the output of block A. As a
consequence, the learning process of block B is ‘lowered’ by that of block A.

6. Parallel structures

Let us consider the parallel structure reported in figure 7. We define as q the
production cycle (cumulative input) of the entire process after the start-up, DAðqAÞ
the cumulative number of scrapped components after the processing of qAth cycle in
block A, DBðqBÞ the cumulative number of scrapped components after the
processing of qBth cycle in block B, and D qð Þ ¼ DA qAð Þ þDB qBð Þ the cumulative
number of scrapped components by the parallel structure A==B after the processing
of qth cycle.

1438 F. Franceschini and M. Galetto

D(q) EQUIVALENT
PROCESS

A // B

q - D(q)

q

PROCESS

A

PROCESS

B

q

qA = q��fA

DA(qA)

qA - DA(qA)

DB(qB)

qB - DB(qB)

qB = q���fB

q - DA(qA) - DB(qB)

EQUIVALENT

SCHEME

Figure 7. Scheme of a parallel structure, where D(q) is the cumulative number of scrapped
components after the processing of the qth cycle in the parallel structure, DAðqAÞ is the
cumulative number of scrapped components of process A at the qAth cycle, DBðqBÞ is the
cumulative number of scrapped components of process B at the qBth cycle, and fA and fB
are, respectively, the fraction of components worked by process A and B.
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Let us also define:

. fA ¼ qA

q
the fraction of components worked by process A, when the whole

system has worked q components; and

. fB ¼ qB

q
the fraction of components worked by process B, when the whole

system has worked q components.

Under the condition of a complete independence among processes (i.e. without
‘knowledge’ exchange between processes), it can be shown that (see Appendix):

Leq qð Þ ¼ fA � LA q � fAð Þ þ fB � LB q � fBð Þ: ð6Þ

Introducing the ‘capacity parameter’ f ¼ fA=fB; equation (3) becomes:

Leq qð Þ ¼ f

1 þ f
� LA q � f

1 þ f

� 	
þ 1

1 þ f
� LB q � 1

1 þ f

� 	
: ð60Þ

Knowing processes A and B learning curves we can determine LeqðqÞ:

6.1. Example of parallel structure
Let us consider again the manufacturing plant of automotive coachworks. The

learning curves of two similar assembling processes, A and B, are respectively:

LA qAð Þ ¼ 0:04 þ 0:12 � 0:04ð Þ � e�
qA

30000 and LB qBð Þ ¼ 0:03 þ 0:10 � 0:03ð Þ � e�
qB

20000:

Processes A and B have different asymptotic values. Furthermore, process B is
quicker in learning than process A, so the plateau level is reached earlier by process B
and later by process A.

Process A and B capacity parameter is f ¼ 3
2
:

In accordance with equation (6 0) the equivalent learning curve becomes (figure 8):

Leq qð Þ ¼ 0:036 þ 0:028 � e�
q

50000 þ 0:048 � e�
q

50000:
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Figure 8. Average learning curve for a parallel structure: Process A learning curve
(assembling 1) (triangles); Process B learning curve (assembling 2) (stars); Equivalent
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The start up value for the equivalent learning curve is Leqð0Þ ¼ 11:2%, and the
asymptotic value Leqð1Þ ¼ 3:6%. As intuitively expected, the asymptotic value of
the parallel structure is contained between the asymptotic values of each single
process. However, the equivalent learning curve can be higher than the two single
learning curves of the two composing blocks (figure 8).

It is interesting to note that, if f ¼ 1:

Leq qð Þ ¼
LA

q

2

� �
þ LB

q

2

� �
2

: ð7Þ

Furthermore, if LAðqÞ ¼ LBðqÞ:

Leq qð Þ ¼ LA

q

2

� �
¼ LB

q

2

� �
: ð8Þ

From the learning point of view, equation (8) shows that a system composed of two
equal parallel blocks is slower than each single block. However, as production rate
increases over time the equivalent process learning increases too.

7. Process network

A complex manufacturing plant can be interpreted as a network of processes
connected to each other by series or parallel structures. Figure 9 shows a manufac-
turing scheme of a coachwork in an automotive firm (see section 3). A and B are two
parallel processes for the cutting of metal sheet, and C is a pressing process.

The learning curves for A, B and C are respectively (figure 10):

LA qAð Þ ¼ LB qBð Þ ¼ 0:065 þ 0:21 � 0:065ð Þ � e�
qA

35000

and
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LC qCð Þ ¼ 0:075 þ 0:2 � 0:075ð Þ � e�
qC

25000:

Processes A and B capacity parameter is f ¼ 3
2
:

By sequentially applying the composition laws, we can define the equivalent
curve for A==B and the total equivalent curve LeqðqÞ for A==Bð Þ �!S C (figure 10).

The start up learning value for this network is Leqð0Þ ¼ 36:8%, and its asymptotic
value is Leqð1Þ ¼ 13:5%.

These values are bigger than each single elementary process. This is due to the
combined effect of series and parallel structures which produces a delay in the
learning of the composed system.

In accordance with the proposed model, only similar processes can be connected
in parallel. We define ‘similar’ two processes that produce the same part or
component (e.g. two processes producing the same kind of a car door). If the two
processes are not similar, the situation becomes more complicated. Referring to the
case of two ‘not-similar’ processes that produce complementary components (e.g.
respectively producing right- and left-side car doors), the effective production of the
whole system is really the minimum of their two productions and not a combination
of them. In this case, the two different parallel processes must be considered as one
unique process with a learning curve equal to the minimum of the two.

Furthermore, it is possible to highlight certain special behaviours for the output
of particular networks. Let us consider, for instance, a series structure composed by
the following processes:

LA qAð Þ ¼ 0:06 þ 0:9 � 0:06ð Þ � e�
qA

40000 and LB qBð Þ ¼ 0:04 þ 0:8 � 0:04ð Þ � e�
qB

14000:

Figure 11 shows the learning curves of processes A, B and their composition. We
observe a change in concavity of the equivalent learning curve. The curve shows an
initial downward concavity, followed by an upward concavity which presents a
‘plateau effect’. This behaviour is probably due to a lack of any improvement with
additional input. The shape can be explained by considering a sort of inertial effect
due to the contemporary activation of the two systems (Muth 1986).
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It must be noted that this phenomenon is due to a very high percentage of non-
conforming units at the start up (90% process A and 80% process B) and a very fast
decreasing of the learning curves till the condition of plateau (very small, in
comparison to the start-up value).

The series start up value is LSð0Þ ¼ 98%, and the asymptotic value is
Leqð1Þ ¼ 6:38%. As in the previous series cases, the composed learning curve is
constantly higher than the original two.

8. Organization of the method

The proposed method can be used as a planning tool to forecast the learning
behaviour of new complex systems or plants over cumulative production.

From a practical point of view, it can be organized as follows.

. Definition of one or more possible plant configurations (design alternatives) in
order to satisfy specific production requirements.

. Determination of the learning curves for each simple process; management can
study the performance of similar processes or may determine them by means of
experimentation or simulation analysis.

. Reduction of the complex network to a single equivalent block (equivalent
learning curve LeqÞ:

. Comparison and analysis of the equivalent learning curves; evaluation of ‘time
constant’ and asymptotic behaviours.

. Choice of the best solution from the learning point of view (under the same
productivity conditions) (figure 12).

The main characteristic of the method is related to its capability to provide a
forecast of non-conforming units of a complex plant. This information is very
helpful during the preliminary design phases, allowing a rationalization of process
schemes.

If we consider two different design solutions to satisfy a given production, the
method helps to evaluate which has to be preferred from the asymptotic non-
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conforming (learning) point of view. This analysis can be conducted both on existing
production systems and on new plants.

Furthermore, this approach is superior to the trivial ‘practitioner approach’
which consists in defining for each of the system components its own learning
curve equation, calculating the number of defective units for every production
cycle, summing them, and generating a new learning curve based on a regression
line of the summation points. First, as we have shown, the new learning curve cannot
be obtained by a mere summation of the learning curves of each single block.
Second, the proposed method can be used as a planning tool to make an ‘a priori’
comparison of different plant configurations without building them operatively.

The method can be easily automated by implementing a software package able to
analyse complex networks composed by the two basic series and parallel structures.

Furthermore, suppose management wants to speed up the learning in a produc-
tion process. To begin doing this, it wants to invest some money to improve the
learning rate of one operation (elementary block). Suppose the cost to obtain a given
percent improvement in the learning rate is the same for all operations. With the
support of the proposed method, it is possible to evaluate all possible configurations,
and select which operation the management should try to improve first.

9. Further considerations

As it is possible to see by previous examples the learning expression for series and
parallel structures confirm the intuitive hypothesis that the equivalent learning pro-
cess is decreasing with the increasing of system complexity. Up to this point, we only
analysed processes that interact in a complex structure, without influencing each
other. All conclusions achieved in the first part of the paper are obtained under
the condition of a complete independence among processes. However, in real
manufacturing systems it is easy to find configurations with a ‘mutual influence’
among processes. Let us consider, for example, a parallel structure composed by
two communicating processes. The exchange of ‘knowledge’ between the two

1443Composition laws for learning curves of manufacturing processes

PROCESS

A

PROCESS

B

PROCESS

B'

or

PROCESS

B

PROCESS

A

PROCESS

A'

(a)

(b)

Figure 12. Comparison between two different design alternatives from the learning point of
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processes can influence the respective learning curves. As a first approximation, this
event can be modelled by introducing a new parameter describing the learning
exchange.

For two parallel processes A and B with f ¼ 1 and LAðqÞ ¼ LBðqÞ, we can model
the synergic effect defining a learning coefficient � which takes into account their
mutual influence:

L��eq qð Þ ¼ 1 � �ð Þ � LA

q

2

� �
0 � � < 1; ð9Þ

where � is the parameter that describes the synergy under the hypothesis of a
‘constructive’ influence. If � ¼ 0 there is no synergy. Some preliminary experimenta-
tion shows that � can assume values close to 0 (typical values are 0/0.05).

Let us consider the configuration reported in figure 13. The equivalent learning
curve with no mutual influence, with LB qð Þ ¼ LA qð Þ and f ¼ 1, is:

Leq qð Þ ¼ LA

q

2

� �
þ LC q � 1 � FA

q

2

� �� �h i
�LA

q

2

� �
� LC q � 1 � FA

q

2

� �� �h i
: ð10Þ

Considering a mutual influence between the two parallel blocks A and B, we obtain
the following expression:

Leq qð Þ ¼ 1 � �ð Þ � LA

q

2

� �
þ LC q � 1 � 1 � �ð Þ � FA

q

2

� �� �h i
þ

� 1 � �ð Þ � LA

q

2

� �
� LC q � 1 � 1 � �ð Þ � FA

q

2

� �� �h i
: ð11Þ

This last relationship produces a sensible reduction of the equivalent learning curve
values. Figure 14 shows the two equivalent learning curves with, respectively, � ¼ 0
and 0.05.
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According to Landry and Oral’s classification, five types of validation can be
defined: conceptual, logical, experimental, operational and data validation (Landry
et al. 1983, Landry and Oral 1993). In this paper, we mainly focus our attention
towards conceptual and experimental validation. In order to verify the behaviour of
a complex network composed by a set of elementary blocks (processes), theoretical
results have been tested by a MATLAB simulation program. Tests have been carried
out with the assumption of a complete independence among processes. Currently, an
experimental campaign to test composition laws validity, conducted on automotive
exhaust-systems assembling process, is in progress.

In particular, we are analysing the launching phase of a new production regard-
ing the complete exhaust-systems of a new model of automobile. Two production
lines, related to different powered car (motorization A and B), are investigated. The
two plants can be schematized using a series structure composed by six functional
macro-phases including one or more working station. After each phase, a quality
control is performed in order to individuate and scrape the defective units. For every
macro-phase and for the whole systems the characteristic learning curves are calcu-
lated and compared.

First results appear in agreement, at least from the asymptotic point of view, with
model predictions.

10. Conclusion

The paper introduces a new approach to determine learning curves of complex
manufacturing systems or plants. The method is based on the composition of simple
structures: series and parallel, which constitute the basic elementary blocks (pro-
cesses) of a generic complex manufacturing system.

The main novelty of the method is its ability to provide a preliminary forecast of
the learning performances of complex manufacturing plants. Some examples related
to Quality Improvement have been analysed. Moreover, the method allows one to
highlight the synergic learning effect due to the exchange of ‘knowledge’ (mutual
‘knowledge’) between processes.
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Future work will be dedicated to the development of a thorough model for
overall ‘mutual influence’ analysis, as well as differentiated experimental investiga-
tions for on-field validation of the method.

Appendix

For a series structure (where qA ¼ q and qB ¼ q � ½1 � FAðqÞ
Þ; the following
equation holds:

Feq qð Þ ¼ DA qAð Þ þDB qBð Þ
q

¼ qA � FA qAð Þ þ qB � FB qBð Þ
q

¼ q � FA qð Þ þ q � 1 � FA qð Þ½ 
 � FB q � 1 � FA qð Þ½ 
ð Þ
q

¼ FA qð Þ þ FB q � 1 � FA qð Þ½ 
f g � FA qð Þ � FB q � 1 � FA qð Þ½ 
f g

ð12Þ

Substituting equation (4) into equation (12), we obtain:

Leq qð Þ ¼ LA qð Þ þ LB q � 1 � FA qð Þ½ 
f g � LA qð Þ � LB q � 1 � FA qð Þ½ 
f g; ð13Þ

which is the same as equation (5).
For a parallel structure (where qA ¼ q � fA, qB ¼ q � fB and fB ¼ 1 � fAÞ, the

following equation holds:

Feq qð Þ ¼ DA qAð Þ þDB qBð Þ
q

¼ qA � FA qAð Þ þ qB � FB qBð Þ
q

¼ q � fA � FA q � fAð Þ þ q � fB � FB q � fBð Þ
q

¼ fA � FA q � fAð Þ þ fB � FB q � fBð Þ: ð14Þ

Substituting equation (4) into equation (14), we obtain:

Leq qð Þ ¼ fA � LA q � fAð Þ þ fB � LB q � fBð Þ; ð15Þ

which is the same as equation (6).
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