
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Learning Curves and p-charts for a preliminary estimation of asymptotic performances of a manufacturing process /
Franceschini, Fiorenzo. - In: TOTAL QUALITY MANAGEMENT. - ISSN 0954-4127. - STAMPA. - v.13, n.1:(2002), pp. 5-
12. [10.1080/09544120120098528]

Original

Learning Curves and p-charts for a preliminary estimation of asymptotic performances of a
manufacturing process

Publisher:

Published
DOI:10.1080/09544120120098528

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1400110 since:

Routledge, part of the Taylor & Francis Group



TOTAL QUALITY MANAGEMENT, VOL. 13, NO. 1, 2002, 5- 12

Learning curves and p-charts for a

preliminary estimation of asymptotic

performances of a manufacturing process

Fiorenzo Franceschini
Politecnico di Torino, Dipartimento di Sistemi di Produzione ed Economia dell’Azienda, Corso

Duca degli Abruzzi, 24; 10129 Torino, Italy

abstract This paper presents a method for a preliminary estimation of asymptotic performances of

a manufacturing process based on the knowledge of its learning curve estimated during the setting

up of p-chart. The main novelties of the method are the possibility of estimating the asymptotic

variability of a process and providing a simple approach for evaluating the period of revision of

process control limits. An application of the method to a real example taken from the literature is also

provided.

Introduction

As a ® rst approximation, a manufacturing process can be described as a framework able
to convert input raw material into ® nished or partly ® nished products. Mechanisms of
transformation, speci® c for each context, are ruled by a sequence of organized activities that
involve interaction among operators, machinery and production equipment. The combined
eþ ect of these elements together with the inner and outer in¯ uence quantity are the causes
of variability in a manufacturing process.

Control charts are a proven technique to provide diagnostic information and to monitor
the variability of a process over time. They are used according to two steps: setting up a chart
and monitoring the manufacturing process (Duncan, 1986; Montgomery, 1996). The setting
up phase requires the detection of `assignable’ causes, the estimation of the natural tolerance
and the process control limits.

Usually, the accepted hypothesis is that without assignable causes the process maintains
its performance characteristics over time. Assignable causes may determine an average
shifting or a change of the process dispersion. Assignable causes can be divided into two
categories: `positive’ and `negative’ . We de® ne as positive those which generate an increase of
process variability; and negative the causes that operate in the opposite direction (`favourable
assignable cause’ (Duncan, 1974). Wear and tear phenomena are typical examples of positive
assignable causes, while trends or shifts can appear as positive or negative causes.

Each cause has a proper dynamic. However, the process manager observes a global
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6 F. FRANCESCHINI

combined eþ ect, having no possibility of discriminating a single contribution. During the life
of a process we assist with a continuous `overlap’ of the two types of causes. The prevalence
of positive or negative causes is detectable by means of statistical control charts.

Referring to a generic process, after removing initial out-of-control causes, we usually
observe a gradual reduction of variability over time due to the l̀earning’ mechanism. The
`physiological’ variability shown by a process in the early life period is not the same as that
manifested after a learning period on the ® eld: the so-called `asymptotic’ variability. The
phenomenon occurs since the operators’ knowledge about the process ¯ ow, the production
equipment and the materials becomes more thorough over time, allowing a more eý cient
allocation of production factors. It is not true, in general, that the asymptotic variability is
zero. The variability reduction depends upon the adaptability of the entire organization to
changing conditions of the process (Cherrington et al., 1987; Dada & Marcellus, 1994; Fine,
1986; Franceschini & Rossetto, 1995, 1998; Li & Rajagopalan, 1998). However, the
mechanism has not the same intensity over time. After a preliminary phase characterized by
relatively high learning, we assist with a progressive attenuation. As Box and LucenÄ o say: `̀ It
is practically certain that, given appropriate training and empowerment, quality teams can
discover better ways to do things’ ’ (Box & LucenÄ o, 1997, p. 19).

The asymptotic variability cannot be reduced further since the process is in the condition
of maximum `eý ciency’. Variability reduction is the main factor that pushes the process
manager to revise, after a certain period, the process control limits.

Referring, for example, to a generic manufacturing process, what is the asymptotic
fraction nonconforming that the process will produce in the best conditions? The problem is
particularly important since the knowledge of asymptotic performances can help to address
better process resources. From these results, for example, we could decide to redesign or
strengthen some speci® c subsystems or parts of a process.

The paper presents a method for a preliminary estimation of asymptotic performances
of a manufacturing process based on the knowledge of its learning curve and information
collected during a p-chart setting up. Practical results obtained by the method are ® nally
shown on a real example taken from the literature.

The method

Usually, the implementation of a control chart follows two steps:

· Phase 1: control chart setting up;
· Phase 2: control limits veri® cation after a preliminary trial stage and process monitoring.

The revision of control limits becomes necessary whenever there are margins to improve
process performances. The time period for a revision of process control limits is not a priori

® xed; it is usually decided on the trend of the process over time (Montgomery, 1996). The
`photographs’ of a process provided by the two phases of chart implementation may be used
to give a preliminary estimation of asymptotic performances of a manufacturing process.

With reference, for example, to a generic process managed by a p-chart, we propose a
method for estimating the `asymptotic fraction nonconforming’, and the time required to
achieve it.

The general assumption is that the learning mechanism, which can determine a process
improvement, follows some evolutionary laws that are not dependent on the speci® c applica-
tion context. Learning curves provide a means to observe and track that improvement
(Abernathy & Wayne, 1974; Adler & Clark, 1991; Kantor & Zangwill, 1991; Mukherjee
et al., 1998).
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LEARNING CURVES AND P-CHARTS 7

A literature survey shows a wide variety of studies about particular aspects of learning
curves: the eþ ect of prior experience (Lippert, 1976; Cherrington et al., 1987), the relearning
mechanism (Bailey & McIntyre, 1997), the setting of performance standards for productivity
improvements achieved during the learning stage (Cherrington et al., 1987) and so on.

The concept of the learning curve has been used extensively by economists, management
scientists and engineers in analysing production processes. The main areas of investigation
have been the empirical measurement of learning curve, the economic implication of this
phenomenon and its use in improving managerial decisions. Detailed surveys can be found
in Venezia (1985) and Muth (1986).

The most common models of learning curve are the following.

Power law model

p 5 a t 2 b + c + e (1)

where p is a general learning metric (for example, the fraction nonconforming of a manu-
facturing process), a is the fraction of nonconforming for the ® rst learning cycle, b is the rate
of learning, c is the asymptotic fraction nonconforming and e is the random error term
(e 5 NID(0, r 2)).

Exponential model

p 5 c + (p0 2 c )e 2 t /s + e (2)

where p is a general learning metric (for example, the fraction nonconforming of a manu-
facturing process), p0 is the initial fraction conforming, c is the asymptotic fraction noncon-
forming, s is the learning curve time constant and e is the random error term (e 5 NID(0, r 2)).

The selection of a particular learning model is carried out on the basis of the speci® c
application context (Muth, 1986; Schneiderman, 1988).

A recent paper by Zangwill and Kantor (1998) has introduced a kind of unifying scheme

for the various models. The authors present ® ve postulates that underlie certain types of
industrial learning and give rise to a diþ erential equation, which describes that learning. With
this interpretation all models become parametric solutions of the Volterra-Lotka diþ erential
equation. This equation is used to describe the evolution of animal populations, according
to the logic of the paradigm of predators and preys. In this context the preys are the fraction
nonconforming, wastes and other ineý ciencies that impair the operations of a process. The
predators are management because they are attempting to eradicate the ineý ciencies in order
to improve the system (Zangwill & Kantor, 1998). The diþ erential equation is:

dS(t)

dt
5 2 aW(t)S(t) (3)

where S(t) represents the number of preys, W(t) is the number of predators and a is a scale
factor.

With the aim of providing a `preliminary estimate’ of asymptotic performances of a
manufacturing process, we build a learning model by means of information gathered during
phase 1 (p-chart setting up) and phase 2 (veri® cation of control limits). If (tÅ 1, pÅ 1) and (tÅ 2, pÅ 2)
are, respectively, the coordinates of the average values of the fraction nonconforming related
to the two phases, and pÅ i 5 (a /tÅ i) + c + e i a simpli® ed version of the power law model (a), with
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8 F. FRANCESCHINI

b 5 1, we may obtain a preliminary estimation of the learning process parameters from the
following relationships:

a 5
pÅ 1 2 pÅ 2

1/tÅ 1 2 1/tÅ 2

(4)

c 5 pÅ 1 2 a /tÅ 1 (5)

where pÅ 1 5 R k
i 5 1pi /n and pÅ 2 5 R m

i 5 1pi /m are the average values of fraction nonconforming, tÅ 1 and
tÅ 2 are the average veri® cation times; and k and m are the number of points analysed for each
phase.

It can be shown that a and c are two unbiased estimators of a and c : E(a) 5 a ; E(c) 5 c .
As regards the variance, assuming statistically independent nonconforming fraction pi,

we can show that

r 2
a 5 ( tÅ 2 ´ tÅ 1

tÅ 2 2 tÅ 1
)2

(r 2
pÅ 1

+ r 2
pÅ 2

); r 2
c 5 ( tÅ 2

tÅ 2 2 tÅ 1
)2

r 2
pÅ 2

+ ( tÅ 1

tÅ 2 2 tÅ 1
)2

r 2
pÅ 1

(6)

Now, de® ne a percentage distance h from the asymptotic target, we can determine the time
t* to its achievement. Substituting this value in the learning model, we ® nd

c + hc

100
5

a

t*
+ c and therefore t* 5

a

hc
´ 100 (7)

As regards the variance of t*, we have

r 2
t* 5 ( 1

hc )2

r 2
a + ( a

hc 2 )2

r 2
c (8)

An example of application

Let us consider a process of frozen orange juice concentrate packing in 6-oz cardboard cans.
The cans are formed on a machine by spinning them from a cardboard stock and attaching
a metal bottom panel (Montgomery, 1996).

By inspection of a can, we are able to determine whether, when ® lled, it could possibly
leak either on the side seam or around the bottom joint. We wish to set up a control chart to
monitor the process and to improve the fraction of nonconforming cans.

To establish the control chart (phase 1), 30 samples of n 5 50 cans each were analysed
at hourly intervals over a three-shift period in which the machine was in continuous operation.
Table 1 shows the data gathered.

When pÅ 1 5 R 30
i 5 1 pi /n 5 0.2313, a preliminary estimate of the upper and lower control

limits of the fraction conforming control chart (p-chart) is the following:

UCL 5 pÅ 1 + 3 Î [ pÅ 1(1 2 pÅ 1)/n] 5 0.2313 + 0.1789 5 0.4102

LCL 5 pÅ 1 2 3 Î [ pÅ 1(1 2 pÅ 1) /n] 5 0.2313 2 0.1789 5 0.0524

where UCL is the upper control limit and LCL the lower control limit.
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LEARNING CURVES AND P-CHARTS 9

Table 1. Fraction of nonconforming data collected in the process for 30 samples of n 5 50 cans (Montgomery, 1996)

Sample Number of non- Sample Number of non-
No. conforming cans pi No. conforming cans pi

1 12 0.24 16 8 0.16
2 15 0.30 17 10 0.20
3 8 0.16 18 5 0.10
4 10 0.20 19 13 0.26
5 4 0.08 20 11 0.22
6 7 0.14 21 20 0.40
7 16 0.32 22 18 0.36
8 9 0.18 23 24 0.48
9 14 0.28 24 15 0.30

10 10 0.20 25 9 0.18
11 5 0.10 26 12 0.24
12 6 0.12 27 7 0.14
13 17 0.34 28 13 0.26
14 12 0.24 29 9 0.18
15 22 0.44 30 6 0.12

As Montgomery states, two points plot above the upper control limit (samples 15 and
23). The related assignable causes are detected and removed. Eliminating these points, the
new revised control limits become:

pÅ 1 5 +
28

i 5 1

pi /n 5 0.2150

UCL 5 0.3893 and LCL 5 0.0407

Sample 21 exceeds the new upper control limit, however a further analysis of the data does
not produce any reasonable assignable cause. We may conclude that the process is in control.
The revised control limits may be adopted for monitoring current production.

We observe that the process nonconforming fraction is too high. A detailed analysis of
the process indicates that several adjustments can be made on the machine. After these
interventions an additional 24 samples are collected, with the aim of verifying the process
improvement (phase 2). Table 2 shows the new gathered data.

Table 2. Fraction of nonconforming data collected for additional 24 samples of n 5 50 cans (phase 2 control limits

veri® cation) (Montgomery, 1996)

Sample Number of non- Sample Number of non-
No. conforming cans pi No. conforming cans pi

31 9 0.18 43 3 0.06
32 6 0.12 44 6 0.12
33 12 0.24 45 5 0.10
34 5 0.10 46 4 0.08
35 6 0.12 47 8 0.16
36 4 0.08 48 5 0.10
37 6 0.12 49 6 0.12
38 3 0.06 50 7 0.14
39 7 0.14 51 5 0.10
40 6 0.12 52 6 0.12
41 2 0.04 53 3 0.06
42 4 0.08 54 5 0.10
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10 F. FRANCESCHINI

Figure 1. Fraction nonconforming control chart for samples of n 5 50 elements. The ® gure shows the control limits

calculated in the chart setting-up phase (phase 1) and in the control limits veri® cation (phase 2) (Montgomery, 1996).

The third phase regards the estimation of the `asymptotic’ control limits determined by the process learning curve.

As it appears from Fig. 1, we obtain a considerable reduction of nonconforming fraction.
Montgomery (1996, pp. 258- 259) said `̀ It is not unusual to ® nd that the process performance
improves following the introduction of formal statistical process-control procedures, often
because the operators are more aware of process quality and because the control chart
provides a continuing visual display of process performance’ ’ .

With these new data the process nonconforming fraction becomes

pÅ 2 5 +
54

i 5 31

pi/n 5 0.1108

The diþ erence between the two average nonconforming fractions can be tested by means of
the following hypothesis testing:

H0 : p1 5 p2

H1 : p1 > p2

An approximate test based on the normal approximation to the binomial is:

Z0 5
pÅ 1 2 pÅ 2

Î [ pÅ (1 2 pÅ ) (1/n1 + 1/n2)]
; where pÅ 5

n1pÅ 1 + n2pÅ 2

n1 + n2

Substituting the values obtained, we ® nd Z0 5 7.10 > Z0.05 5 1.645. Consequently, the null
hypothesis is rejected in favour of the alternative hypothesis (Montgomery, 1996).

Re-estimating the control limits for the nonconforming fraction, one obtains
UCL 5 0.2240 and LCL 5 0 (see Fig. 1). Hypothesizing the learning model pÅ i 5 (a /tÅ i) + c + e i,
we determine the asymptotic nonconforming fraction of the process, and the necessary time
to achieve it.

Rettangolo



LEARNING CURVES AND P-CHARTS 11

Applying equations (4) and (5), we have:

a 5
pÅ 1 2 pÅ 2

1/tÅ 1 2 1/tÅ 2

5
0.2150 2 0.1108

1/15 2 1/42
5 2.43

c 5 pÅ 1 2 a /tÅ 1 5 0.2150 2 2.43/15 5 0.053

where tÅ 1 and tÅ 2 are, respectively, the average times related to the two phases of p-chart setting
up and control limits veri® cation.

We assume for c and a a normal distribution. The c statistic is the estimation of the
asymptotic fraction nonconforming of the process. It represents the fraction value that can
be asymptotically achieved by the process as a consequence of the learning mechanism.

By the c value, we may determine the asymptotic control limits of the p-chart (see
Figure 1):

UCL 5 c + 3 Î [c(1 2 c)/n] 5 0.053 + 0.095 5 0.148

LCL 5 c 2 3Î [c(1 2 c)/n] 5 0

The uncertainty associated with the estimation of a and c is (see equation (6)):

sa 5 ! f ( tÅ 2 ´ tÅ 1

tÅ 2 2 tÅ 1
)2

(s2
pÅ 1

+ s2
pÅ 2

) g 5 1.71

sc 5 ! f ( tÅ 2

tÅ 2 2 tÅ 1
)2

s2
pÅ 2

+ ( tÅ 1

tÅ 2 2 tÅ 1
)2

s2
pÅ 1 g 5 0.076

where sa and sc are, respectively, the estimation of the standard deviation of a and c statistics,
and spÅ 1 5 Î [ pÅ 1(1 2 pÅ 1) /n] 5 0.058, spÅ 2 5 Î [ pÅ 2(1 2 pÅ 2) /n] 5 0.044, the estimation of the
standard deviation of pÅ 1 and pÅ 2.

The 95% two-sided con® dence interval for the two parameters is:

c 5 c 6 z0.025 sc 5 0.058 6 2 ´ 0.076

a 5 a 6 z0.025 sa 5 2.36 6 2 ´ 1.71

As regards the time t* to achieve a pre® xed percentage distance from the asymptotic value,
for example h 5 10%, we have

t* 5
a

hc
´ 100 5

2.43

10 ´ 0.053
´100 5 460 hours

This value is about 19 days of continuous process operation. The standard deviation of t* is
st* 5 736 hours.

Conclusions

The paper presents a method for the estimation of asymptotic performances of a manu-
facturing process. The method is based on the knowledge of the process learning curve and
the information collected during the setting-up phases of a p-chart.

With a limited eþ ort the method is able to give a preliminary estimation of the
performance target reachable by the process and the time to achieve it.
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12 F. FRANCESCHINI

The main novelties of the method are:

· the possibility to estimate the asymptotic variability of a process;
· the evaluation of the coherence between the asymptotic process nonconforming

fraction and the related design speci® cations;
· the possibility to select among more alternative processes those more `capable’ , from

the asymptotic performances point of view;
· providing a simple approach for evaluating the period of revision of process control

limits and their asymptotic values.

Further developments of the method are ® nalized to the de® nition of a procedure able to
automatically adapt a new estimation to continuous information collected by the process.
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