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Qualitative Analysis of the Dynamics
of the Time-Delayed Chua’s Circuit

Mario Biey, Fabrizio BonaniMember, IEEE Marco Gilli, Member, IEEE and Ivan Maio

Abstract—Several variants of the Chua’s circuit have been
recently proposed in order to enlarge the class of nonlinear
phenomena that can be generated by relatively simple circuits.
In particular, Sharkovsky et al. proposed the so called time-
delayed Chua’s circuit (TDCC), where the original lumped LC
resonator is substituted by an ideal transmission line, thereby
generating an infinite dimensional system. The TDCC has been
studied in details in the absence of the capacitoC, the only
lumped dynamic element left in the circuit. This paper studies
the effects of the presence o€ on the dynamics of the circuit.
After recasting the circuit equations in a suitable normalized
form, their characteristic equation is theoretically investigated
and the regions in the parameter space where all the eigenvalues
have negative real part are exactly evaluated along with all the Fig. 1. TDCC.
possible qualitative eigenvalue distributions. This analysis allows
for a qualitative description of the TDCC dynamics in presence
of the capacitor C. In particular, it is shown that, for particular  In this case, the equations may be reduced to one nonlinear
sets of circuit parameters, an evensmall value of C, e.g., & (difference equation with a continuous argument and the circuit

gﬁgafr']t;,e;":ﬁgt’omg ﬁgrr?(?"iﬁ;y?B%”gleésﬁigﬁzg"t'ﬁg (geTrilgdc-c exhibits chaotic behaviors similar to those observable in “dry”

adding phenomenon forC' = 0, still continues to present this SYStemSs, i.e., in absence of viscosity [9].

phenomenon even if asmall capacitor C' is added to the circuit. The presence ofC' leads to a nonlineardifferentiak
difference equation [1], [10], which does not admit a complete

analytical treatment (see [11]). So far, some partial results on

the qualitative behavior of the circuit have been reported in

|. INTRODUCTION [10] and [12].

I N THE LAST few years, a great deal of interest has been The purpose of this paper is to explore the behavior of

focused on exploring the complex dynamics of nonlinedP?CC as the capacitance is varied, supporting extensive
circuits. numerical simulations by a theoretical analysis of the circuit

Chua’s circuit has been widely studied in this context, fgyharacteristic equation. In Section Il, the circuit equations are
its capability to show a great variety of behaviors obseryecasted in a suitable form, valid for both= 0 andC’ # 0.
able in other more complicated nonlinear circuits and as the Section lll, the cas€’ = 0 is briefly summarized, and the
structurally simplest autonomous electric circuit which maynk between the circuit dynamics and the component values
produce chaotic signals. Recently, variants of this circuit ha® reviewed through a detailed discussion of the related 1-
been investigated, to enlarge the class of nonlinear phenom&hgaps. Finally, in Section IV, the effects of the capacitor
that can be generated by relatively simple circuits [1]-[8]. &€ exan_nned by stu_dymg t.he circuit character!sug equation in

In particular, the work of Sharkovslat al.[1], [2] increases each region of linearity, which allows for a qualitative analysis

the dimension of the state space by substituting the lumpgg TDCC dynamics.

LC resonator with an ideal (i.e., lossless) transmission line

(TL); furthermore, a dc voltage source is series connected I

to the piecewise linear resistor (Fig. 1) in order to break the ) o

symmetry in the original Chua’s diode- characteristic. ~ The TDCC and the Chua’s diode characteristic are shown
This circuit, hereafter called the time-delayed Chua’s circdft F19s- 1 and 2, respectively, where the variables involved in

(TDCC), has been studied in details for = 0 [1], [2], [8]. _thg analy5|§ are _also fjefmed. A cons_tant voltagg gene@?or

is inserted in series with the Chua’s diode, to shift its original
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and the switching voltage,, of the Chua’s diode, the source
voltage £/, and the lumped linear elemenisand . The line
parameters relate to the line per-unit-length inductaheed
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Ai= gvy) presence Qf the diﬁer.ential term. Second, the equations al!ow a
scattering interpretation of the problem and can be effectively

\\ Mo exploited in the numerical simulation of the circuit response.

! A simple description of the scattering process starts from

! Bp (5), which yields the signat(t) injected into the TL as a sum

1 > of a contribution from the reflection of the sigrigk), coming

out of the line, and a contribution from the transmission of the

signalv(t). Voltagev(¢), in turn, is determined by(¢) up to

time ¢ through (4). The last equation (6), here kept separate

from (5) to highlight its physical meaning, is the reflection

equation of the distortionless line.

Fig. 2. Piecewise linear characteristic of the Chua’s diode. The numerical solution of the equations is obtained through

a recursive procedure suggested by the scattering process.

Capa_citaﬂce:7 and to the line |engt|’£ asT = 2£\/£_C and The time axis is divided into left open time interva],% =
Z = JiJe [(n = 1YT,nT), lasting one line delayl”. Starting from the

The equations describing the lumped part of the network dpétial conditionw(0), b(t) assigned fot € I, (that is the signal
outcoming from the TL if0, 77), (4) is solved obtaining(t)
C@ +g(v(t) = E) +i'(¢,0) =0 in I, thenb(t) in I, is computed from (5) and (6), and the
dt , . procedure is repeated for the next time interval.

Glu(t) —v'(t,0)] =¢'(£,0) (1) In order to facilitate the numerical calculation and the
where g(-) is the piecewise-linear function represented ignalytical study, in_the foIIowing_we use a nor_m_alized version
Fig. 2. As a consequence, the TDCC is a piecewise-lingd(4)—(6)- We obtain such equations by combining (5) and (6),
circuit with three regions of linear operation, selected b@,nd by introducing the following normalized input parameters

!
&
<

s

the value ofv; = v — E. For v; < —B,,|v;| < B, and 9 =RC/T 7)
v1 > B, the Chua’s diode operates on its leftmost, central Z-R (-1
and rightmost linear branch, respectively. In the following, = TR rrl (8

) . ) A +R  (+1
these regions of linear operation are indicated By, Rg (¢ = ) Rmy, — 1
and R, respectively. In the linear regiofk, the function g = —1 g=-1,0,1 9)
g(v1) of Fig. 2 is expressed by(v;) = mgv1 + Amg, Where (C+1)Rmq +1
Amg = q(mo — mg)By, andq = —1,0,1. For the sake of where¢ = Z/R. The parameteF is the reflection coefficient
simplicity, in this paper we assume_, = m; andB, = 1, of the TL with respect ta? (so that|T'| < 1 for ¢ > 0) andh,
so thatAm, = g(mo — my). is a fundamental parameter for the c&%e- 0 [see (14)]. The

Resorting to the voltage wavest, z) and(t, z) associated normalized equations in the parametéésr, h,, E} write
to v/(¢,z) and ¢'(¢, z):

d . —— — _
Ut 2) =alt, ) + bt, 2) 0 0(7) + Apg[o(r) = E] + q(Apo — Apy)
i/(t7 Z) :[a(t,z) —b(t,z)]/Z (2) — (1 _1‘*) |:5(7_) _ §:|’ qg= _1’0’1 (10)
the input characteristic of the TL is effectively expressed by ~ . 1
the constraint “b(r+1) =Tb(r) - 5(1 +1)o(r) (11)
b(t,0) = —a(t — T,0). ()  where
Since the line variables are considered only:at 0, the z Ap, = 11-17 (12)
argument will be dropped hereafter. 720 -n,
The first set of circuit equations is obtained by replacifg an
ands:’ of (1) with their voltage wave expressions (2), subject
to constraint (3): T=1t/T. (13)
C@ +gu(t) — E) + v(t) _ 2 b(t) (4) !n the;e equatior!s, the. tilde indicates functions of the normal-
dt R+7Z R+Z ized timer, andgq is the index of the region of linear operation
at time 7 selected by the value af(r) — E.
at) = = 2b() + 2 u(t) ©)
R+27 R+27 lIl. OVERVIEW OF THE CASE C' = 0
b(t+T) = —a(t) (6) The TDCC withC = 0 has been detailedly_studie_d in a
series of papers (e.g., see [1], [2], [8]). In this section, we
where R = 1/G. review its main features within the framework of (10) and (11).

This set of equations has some convenient features. First, Tire reader is referred to Appendix | for proofs and discussions
inclusion of the lumped capacitor affects only (4), through th&upporting the results here summarized.
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1.0+ - 04
bw+1) T .-\ .
g=-1 T b(w+1)=Tb(7) + 0.51+I") ]
P T 0.2
P 0.5 4 |
L7 ’ S 0.0
t ———t +—+ 02
-1.0 -0.5 0.0 0.5 (1)
qg=0 - -7 -0.4 T T T T T T
05 s -26 22 -18 -14 -10 -6 -2 2
P hg
~ ~ T -7 - Fig. 4. Bifurcation diagram showing the period-adding phenomenof fer
b+ =I'b(7)-0.5(0+I") 4 g=1 0. The bifurcation parameter is; the other parameters are; = 0.49,T" =
P 0.6, E = 0.78.
-7 0t

Fig. 3. Example of piecewise linear mapping describing the TDCC behavigf simplicity, in what follows, we suppose the normalized TL
The function represented is obtained far = —2, h; = 0.2,I" = 0.6. impedanceﬁ to be positive, so that a|Ways we haﬁd <1.

If ¢ = 0, ie, 6 = 0, the differential term of (10) IV. TDCC wiTH CAPACITOR
vanishes andi(r) becomes an algebraic function &fr). In The behavior of the TDCC is strongly influenced by the
this case, (10) and (11) can be reduced to a nonlinear firstesence of the capacitor. @ # 0,%(r) is a state variable,
order difference equation, i.e., a mapping whose propertig§iution of the first order differential equation (10) havirig)

are responsible of the system dynamics. as the source term, and the whole problem is of differential-
The family of mappings for the circuit variablgr), i. difference type. In particular, (10) and (11) can be reduced to a
®: b(r) — b(r + 1), is reported here in the cage = 0: first order nonlinear differential-difference equation of neutral

type [10], which may be of some help in the circuit study.

b(r +1) = hob(r) + Ay, ¢=-10,1 (14) General results are scarcely available for problems of this

where kind [1], [11], [13]. In fact, owing to the infinite dimension
1 14T of the state space, the dynamics of the above equations is
Ahy = 5 ﬁ(ho — hy)g. unlikely to be described by analytical methods and by standard
— Ito

techniques developed for finite dimensional systems (e.g.,
In the above equationy = 0 holds for |5(T)| < [bo| with Poincaé maps, detection of homoplinic and heteroclinic qrbi.ts,
bo = (1/2) (1 + /T — ho)iq = —1 holds foré(;) < —bp if etc.). There are, hovyever, two simple tools for a quallltatlve
bo >0 and forb(r) > —by if by <0;¢q = 1 holds forb(7) > by study O.f.th.e dyna_lm|cs .Of such a system: the dngcUon of
if bo > 0 and forE(T) <bo if bo < 0. It is useful to remark that the equilibrium points with the analysis of their stability, and

: L ; extensive numerical simulations.
the slopes of the mapping coincide with thehq parameters. o . :
A member of the family (14) is shown in Fig. 3, along with The equilibrium points are independent ©f and are ob-

the boundaries dividing the plarfé(r), b(r + 1)) in the three tained in the usual way by intersecting the 1-D mapping

regions of linear operation. The stability properties of the fixdd™) — b(7 +1) with the straight lineb(r + 1) = b(r).

points of (14) (i.e., those points satlsﬁrbgf 1) = b( ) For C = 0, since the dynamics of the system is completely

show that fori'| < 1 (andE = 0) no chaotic behavior can bedescribed by the mapping, the stability properties of the
obtained for any value of, [10] (see Appendix I) equilibrium points follow directly from the slopek, of the
q . ; .
A chaotic behavior of the TDCC witl = 0 has been mapping & (see Append_lx D _ .
shown in [1] by introducing the voltage generatBt Such When the capacitor is added, the equilibrium points do

t change, but their stability properties may vary. In fact,
a generator breaks the symmetry of the mapplngs (14), B ) . !
dragging them of a quantity?/2 along theb( axis and rythe dynamical case, such properties are determined by the
—E/2 along theE(T +1) axis. In this way, mappings of thecharacterlsnc frequencies;, of the circuit in each region of

. . . earity q.
Hpeﬁzf '1:8 aﬁiﬂ tl)ee aggnt\gerttﬁed ;)netrcl) Oghzdrgﬁ]%plgﬁeﬁz(:nvg (lWThe characteristic frequencies, hereafter called eigenvalues,

described in [1] and shown in a particular case in Fig. 4. are solutions of the characteristic equation below, which is ob-

Other chaotic families of mappings can be obtained fro{ﬁ“ned from (10) and (11) by eliminating every source term and

the TDCC withC = 0 and £ = 0 by slight modifications. As ooking for a solution of the forni;(v) = bo exp(A7), 6(7.) -
example, the family of canonical tent functions can be obtainde ©P(A7), whereb, andv, are constants antl = A, +jA,;.
by proper negative values @ (see Appendix I). For the sake AMA+Apy) =T(A+Any) (15)
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where 8
_ | 5
ADq = ADq/Q, ANq = hqADq/F. (16) i I (a)
The above equation has infinitely many roots and it can be 4 :
shown that it defines a set of eigenfunctions which represents l
the solution of (10) and (11) completely (see Appendix Il). ~ A _C | 6 //
< o '

A. Solution of the Characteristic Equation

A direct parametric analysis of the eigenvalue location is
prevented by the lack of an analytical expression for the roots
of (15). In order to gain some insight into the effects of the 41
parameter values, we have found the regions of the parameter
space where the circuit is stable, i.e., where all the eigenvalues ) /
have negative real part. Then, this stability map is used as a . 1 Z :IO /
guide for a numerical study of the eigenvalue distributions as ev’(O-S 1 15 2
the parameter spac@, hy,['} is explored.

0
In such a parameter spad€, = 0 corresponds t¢ = O; 8
in this case the stability of the fixed points follows from the 6, ///
h, values. ' (b)
For C # 0 the stability regions can be determined by 4 /
resorting to [11, Theorems 13.7 and 13.3], originally stated
by Pontrjagin. Such theorems give a set of conditions that | /A
|

N

N
i

1

has to be verified in order that all the roots of a polynomial
P(z,exp(z)) have negative real part; the application of such™ 0+
results to (15) is not trivial and requires a lengthy proof
(summarized in Appendix Il and reported in [14]), which
leads to the following proposition:

Proposition 1: In each linear regioriR,, all the roots of
(15) with |T'| <1 have negative real part iff, for any given ]
value ofl", parameters,, andé satisfyh, > 1 andé > 6,(h,), 6o
or —1<h,<I',or hy < —1 andé > 6,(h,), where the curves -8 , ,
6, and 8, have the following parametric equation: 0 0.1

L L7 7 Z

4

4

: _T12
g — sy 1-T Fig. 5. Stability map in(6,k,) plane: (@) forI' = 0.6. (b) for

o 2(F — Y COoS y) - hq I' = —0.58156. In the dashed regions all the eigenvalues have negative
_ real part, whereas outside there exists at least one eigenvalue with positive
ho_ 1—-Tcosy

(17) real part.

7 cosy-T
and are defined for different ranges of the paramgter circuit parameters leaves thg, axis and enters théd, h,)
plane. Fig. 5 shows that, in this transition, an equilibrium point
61:0 <y <arccosl’ (18)  remains stable it-1 < h, < I', remains unstable (i.e., at least
05 arccosl’ <y < . (19) one eigenvalue has positive real part)if| > 1, and switches

from a stable to an unstable statelif< h, < 1. It is worth

Two examples of stability maps for two differefitvalues remarking that the jump from stable to unstable state happens
are shown in Fig. 5, where points in the dashed areas repredentany arbitrary smallg. Furthermore, a transition from
parameter values leading to stable eigenvalues. The valueun$table to stable state can be obtained|fgf > 1 by large
I' affects the aspect of the maps, as Fig. 5 shows, but not themough capacitors (i.e., by large enodgbalues), whereas the
structure, which is always composed of two stable areas: agguilibrium point remains unstable for any positive value of
above the leveh, = +1 and one below the level, = I'. if ' < h; <1. As a conclusion, the stability map highlights
Additional characteristic elements of the stability maps are thew the introduction of the capacitaf' in the TDCC can
abscissaé, = (1+1")/2(1 —T (where thed; curve intersects completely change its dynamics and points out the importance
the h, = +1 boundary) andd, = (1/2)v/1 —I'?/arccosI') of parasiticC' values for particular combinations 6f, andI.

(the vertical asymptote of; and 65). More details will be given in the next section.

The stability map offers a first insight into the effects of Further information on the eigenvalue distribution can be
the capacitor. Fof = 0 (i.e., C = 0), the stable region is obtained by the numerical computation of eigenvalues. We
composed of the segmemt,| < 1 on the h, axis. When base our numerical procedure on the modulus and phase con-
# takes a finite, nonzero value, the point representing thi&ions arising from (15), because their graphic representation
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allows also qualitative predictions of the eigenvalue location
for entire portions of the parameter space. Such conditions are
A (A 4 Apg)® + Af] = P2[(Ar + Ang)® + A7)
A; +arg{A, + Apg + jA;} = arg{I'}
+arg{A, + Ang + A} + 2kn
k=-,-1,0,1,2,--.

(20)

The modulo condition states that, for any. value, the
possible roots can have only the following values of their
imaginary partA;:

Ay = i\/FQ(Ar + Ang)? — (A + Apy)2e?hr '

) 21)

A second locus of possibl&; values is obtained by replacing
(21) into the phase condition:

f2k (A1) = _arg{Ar + ADq + Jfl (A1)}
+ arg{r} + arg{AT + ANq + Jfl (A7)} + 2]6'7(,
k=, =1,0,1,2,-. (22)

Fig. 6. fi(A,) curves (lines) and some of the eigenvalues (solid circles) for
I' =06,h, =15 andd = 0.0, 0.04, 0.12, 0.18, 0.21, corresponding to
points on the patm-C' of Fig. 5(a). Thefi(A,) minor branch of they =
0.04 case does not appear because it is located fop> 4, whereas at =

. . . 0.21 th i b h has just joined th i .
The intersections of1 (A,) and fo,(A,.) give the roots\, of € minor branch Nas Just joined the main one

(15). They can be extimated graphically and, if needed, refingdqye to a couple of complex conjugate eigenvalues shifting

by a suitable numerical method. in the right half plane, or that the unstable behavior of region
The graphic analysis of curve§(A,) and fzi(Ar) ShOWS g~ g andT < &, < 1 (i.e., types Il or Il or VII of Table I)

that there are 10 different types of eigenvalue distributions, que to a positive real eigenvalue. It turns out that this real

which hold in 10 regions of the parameter space [14]. Theggyenvalue is proportional te A, and hence td /6; in this

regions are listed in Table I, along with the correspondingyse  therefore, the smaller is the capacitance, the stronger

qualitative loci of eigenvalues dsis varied. In Table I, dots g the instability of the equilibrium and the presence of any
indicate the eigenvalue locations fér< 1 and arrows show parasitic capacitance cannot be neglected at all.

the trajectories of eigenvalues éds increased.
The eigenvalue distributions fof 0 can be easily g Qualitative Analysis and Simulation Results

obtained from (15), which simplifies texp(A) = h,. Thus, N .
f1(A,) is the vertical lineA, = In(|h,]), and fox(A,) is the The knowledge of the stability map and of the eigenvalue

horizontal lineA; = arg{h,} + 2k=. The eigenvalues, lie distribution in each region of_Iin_earity (see_ Fig. 5 and Tablt_e 1)
on the vertical line, spaced @&r and simmetrically located allows us to perform a qualitative analysis of the dynamical

with respect to the\, axis. A realAy, exists only ifi, > 0 behavior of the TDCC. , _ _

whereas all the eigenvalues have negative (non-negative) redy!@nly there are two things of interest: the behavior for a

part if |hy| < 1 (Jhy| > 1). genericd > 0 and that for small values @ in order to evaluate
For 6 ; 0 fl(A(,I) becomes the curve described by (21)t.he effects of parasitics on the dynamics of the difference

It exists only wheref2(A,) is non-negative, has a vertical®guation, which describes the circuit fér= 0.
asymptote atA,, = In(I|) <0 and is composed of a First, we consider the case of a genefic- 0. As shown

main branch (evolution of the vertical line for te = o N Appendix Il, the solutiono(r) in each region of linearity
case, which bends toward the., asymptote) and, possibly,c@n be expressed as the sum of two terms, associated to
minor branches located arourd\ p, and—A . A numerical real a_1r_1d complex elgenvalues,_res_pecn_vely. _For generic initial
example of the evolution of thefi(A,) curve and of the condl_t|ons, each of_ these contributions is mainly mflue_nced by
eigenvalue locations fdr = 0.6, , = 1.5 andd varying from the eigenvalues with the largest real part, that for this reason

§ = 0tod = 0.21 is given in Fig. 6. The parameter value¥/ill be calleddominant eigenvalues , _
of this example lie on the patd-C' on the stability map of In particular, we define the set of tlilwminanteigenvalues

Fig. 5(a) and the eigenvalue distribution obtained corresporfds the seét composed by all the eigenvaligssatisfying any

to type VI of Table I.

of the following two conditions:

The stability map and Table | provide a detailed qualitative ®
knowledge of the eigenvalue location for the whole parameter
space, allowing to identify the parameter values for which *
interesting dynamical behaviors are most likely to occur. As
an example, they point out that the transition from stable to
unstable configuration by crossing éf (i.e., h, > 1, types |

if Agis real, thenAy > A Yk, whereA, . is a generic

real eigenvalue;

if Ay is complex with a finite imaginary part, then
Re[Ay4] > Re[Aix] YK, where A;;, is a generic complex
eigenvalue.

Table | shows that region®, and R4+; may exhibit 10

or VI of Table I) or§, (i.e.,h, < —1, types V or X of Table 1) different eigenvalue distributions, 5 for< 0 and 5 forl’ > O,
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TABLE |
TYPES OF EIGNEVALUE DISTRIBUTIONS. THE DISTRIBUTIONS ARE QUALITATIVELY REPRESENTED IN THEPLOTS, WHERE SOLID
CIRCLES INDICATE THE EIGENVALUE LOCATIONS IN THE UPPERHALF A PLANE FOR A SMALL 8 VALUE, THE ARROWS INDICATE THE
EIGENVALUE TRAJECTORIES FORGROWING & AND THE DASHED VERTICAL LINES REPRESENT THEA -, ASYMPTOTES

{Akq] at @ << 1 (dots) and their
trajectories for growing 8

Remarks

{Akq} at 8@ << 1 (dots) and their
trajectories for growing 6

Remarks

1 F<0and hg > 1 the star indicates | VI ~ I'>0andhg>1 the star indicates
A AA; the last eigenvalue the last eigenvalue
! crossing the A; axes crossing the A; axes
!
|
|
| x
| ¥ Ar

1L I<0and|Tl<h, <1

the real positive
eigenvalue never
crosses the A; axes
and rcaches the
origin for 6= o

the real positive
eigenvalue necver
crosses the A; axes
and reaches the
origin for 8=«

III T <Oandlhyl <’} the real positive VIII T'>0and0<hy<T

eigenvalue never
crosses the A; axes
and reaches the
origin for = e

always stable

v F<0and-1<hy < T IX T>0and-1<h,<0

Elxr\«v A;
I

<

:k.

always stable always stable

| <o A

~

A" I'<0and hg <-1 I'>0and hy <-1

:Arv Ai
i

the star indicates | X
the last eigenvalue
crossing the A; axes

the star indicates
the last eigenvalue
crossing the A; axes

* A

I
I
I
|
|
|
{

r
P

respectively. Sincé’ is a global parameter, an exhaustive ex-
amination of the dynamic behavior would require to consider  a bifurcation parameter, i.e., a Hopf-bifurcation (in the

50 cases. We will restrict our discussion to some examples, sense explained in [16]) occurs;

with the purpose of showing that the TDCC dynamics canc) in the central region there are one positive real eigen-
be qualitatevely studied by taking into account the stability = value and two complex eigenvalues with negative real
map (similar to those of Fig. 5), the eigenvalue distributions  part.

reported in Table | and the dominant eigenvalues, computedrhe use of stability maps (like those of Fig. 5) and of Table |

as described in Section IV-A. allows us to recognize when a similar situation may occur in

In particular, we concentrate on the chaotic behavior of thike case of the TDCC.

TDCC. We will show that bifurcation processes and strange From Table | it turns out that if > 0, there are no values
attractors similar to those occurring in the classical Chuads i, satisfying the condition b).

circuit (CC) [15] can be obtained if the dominant eigenvalue On the other hand, if' <0 and || > 1, the stability map
distribution of the TDCC is close to the eigenvalue distributiofe.g., Fig. 5(b)] and Table | (cases | and V) show that the
of the CC in each region of linearity. condition b) is satisfied ifR, for suitable values of. In fact:

It is known (see [15]) that a CC, which exhibits a period « there exists a valué = 6, which corresponds to a Hopf-
doubling bifurcation process leading to chaos, presents the pijfyrcation, i.e., such that all the roots of the characteristic
following properties: equation (15) have negative real part, with the exception

a) in each linear region there exists an equilibrium point; of a pair of imaginary eigenvalues, which are dominant.

b) in the outer regions there are one negative real eigen- This value ofé may be computed through (17), after

value and a pair a complex eigenvalues whose real choosing a value fof' and h;.

part, originally negative, becomes positive by varying
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TABLE I
DOMINANT EIGENVALUES AND DYNAMIC BEHAVIOR OF THE TDCC FOR hg = 0.35827%+1 = —4.90733AaND I' = —0.58156

Dominant Figenvalues

0 Ro Ry Dynamic behavior

0.18 A1 = 1.63373 A = —3.41716 Period-1 limit cycle

Aoz = —1.09964 £ 72.13018 | Ay3 = 0.0508564 + 72.34353
0.1725 A = 1.7338 Ay = —3.59282 Period-2 limit cycle

Ayz = —1.13699 £ 52.09662 | Aoz = 0.083246 + 72.34133

0.169 A = 1.78358 Ay = —3.67931 Period-4 limit cycle

Aoz = —1.15554 £ 52.08035 | Ag3 = 0.0987297 + §2.34064
0.16850 A = 1.79086 Ap = —3.69191 Spiral attr.

Agz = —1.15825 + j2.07799 | Agz = 0.100962 % j2.34056
0.16830 A1 = 1.79378 A1 = —3.69697 Periodic window

Agz = —1.15933 &+ 72.07705 | Ay3 = 0.101855 =+ 52.34052

0.165 Ay = 1.84304 A = —3.78197 Double Scroll attr.

Agz = —1.17765 + j2.06125 | Mgz = 0.11672 + 72.34011
0.1644 A = 1.85221 A = —3.79774 Periodic window

Aoz = —1.18105 %+ 72.05834 | Aqg3 = 0.119445 + 52.34006
0.1635 A1 = 1.86608 A = —3.82158 Double Scroll attr.

Agg = —1.1862 + 72.05394 | Ag5 = 0.123548 + 72.33999

« for values of # close to §,, there is only one real regionsR4; can be analytically computed through (17) and
eigenvalue, that therefore is also dominant; such amns out to be#,, = 0.19230279. In Table Il we have
eigenvalue is negative. reported the TDCC dominant eigenvalue for some values of

Moreover, ifI’ < 0, in cases Il and Il of Table | the condi- lying in the left neighborhood of;,,,: as expected they satisfy
tion c) is satisfied: in fact, in these cases, any generic regithe conditions b) and c) listed above.

R, exhibits one positive real eigenvalue (that is dominant), In order to perform a detailed comparison, we have reported
whereas all the other eigenvalues have negative real part (dmel eigenvalues of the considered CC in Table Il assur@ing
among them there is a pair of complex dominat eigenvalue®ee [15, Fig. 1]) as bifurcation parameter.

The above considerations suggest that for reproducing arables Il and Il show that not only the TDCC and the
dominant eigenvalue distribution satisfying the above condEC eigenvalue distributions are close, but also that they move
tions b) and c), it is convenient to chooBeh;, andhg in  according to similar rules, when the bifurcation parameters are
such a way that case | or V of Table | holds #r, whereas varied. In fact by decreasingin the TDCC (orC; in the CC)
case Il or Ill holds forRy. we observe that:

As a first example, we have chosen a TDCC strictly re-
lated to the CC of Fig. 1 of [15], whose dynamics has
been studied in great details in several papers. The lumpegq
elements of the TDCC have been fixed to the same values
of those of the considered CC, i.& = 1/9,G = 10/7, real eigenvalue decreases.

mg = —0.8,m; = —0.5. Thus, the two circuits have the he simulati £ th has b ; db )
same equilibrium values of the capacitor voltage and, hence,T e simulation of the TDCC has been performed by using

condition a) is verified. The TL characteristic impedance & Runge-Kutta algorithm with fixed step and starting from
assumed equal t& = /L/C, = 1/y/7, being L and C,, 2 constant initial condition of the typé(0) = 0.1 V and
respectively, the inductance and the second capacitance U4&d = 0:7 €]0,1]. The results are reported in Fig. 7 and 8

in [15]. This choice, in terms of the parametérsandT yields and confirm that, owing to the distribution of its dominant
ho = 0.358275,hy; = —4.90733, and” = —0.58156:4 is eigenvalues, the TDCC exhibits a period-doubling route to

the bifurcation parameter. chaos and a sequence of strange attractors similar to those
The eigenvalue distributions iR, and R, are of type vV Observed in the classical CC. In fact:

and Ill, respectively, according to the previous considerations.s for § > 8, the two equilibrium points located iR+, are

The value of# which gives rise to the Hopf-bifurcation in stable; the equilibrium point irR, is unstable because

in all the regions the absolute value of the real (imaginary)
part of the complex eigenvalues increases (decreases);
in the central regionk, the positive real eigenvalue
increases whereas in the outer regidhs, the negative
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EIGENVALUES AND DYNAMIC BEHAVIOR FOR THE CLASSICAL CHUA'S CIRCUIIAOEIT:IIEG.”]I. OoF [A5]witTH L = 1/7,C> = 1, G = 0.7,mg = —0.5AND m; = —0.8
Figenvalues
Cy Ry R4t Dynamic behavior
0.125 A = 1.3396 A = —2.4509 Period-1 limit cycle
Agg = —0.61978 & 71.9484 |  Ag3 = 0.0754 £ 72.136
0.120 A = 1.4107 A = —2.5554 Period-2 limit cycle
Agz = —0.63866 £ 71.9306 | Ap3 = 0.094353 + 52.1346
0.1185 A = 1.4331 A = —2.5881 Period-4 limit cycle
Agz = —0.64462 1 j1.9252 | Ap3 = 0.10016 % 52.1342
0.117 A = 1.4561 A1 = —2.6215 Spiral attr.
Azz = —0.65072 £ 51.9197 | Ay3 = 0.10604 £ 52.1338
0.116618 A = 1.4621 A = —2.6301 . Periodic window
Agz = —0.65223 £ j1.9183 | g3 = 0.10755 + 5j2.1337
0.113 A = 1.5204 Ay = —2.7140 Double Scroll attr.
Agz = —0.66770 £ 71.9049 | Ay = 0.12203 £ 52.1331
TABLE IV
DOMINANT EIGENVALUES AND DYNAMIC BEHAVIOR OF THE TDCC FOR hg = 0.358275,h41 = 5 AND ' = —0.58156
Dominanl Iigenvalues
[4 Ro R Dynamic behavior
0.17 A = 1.76914 A = —2.62869 Period-1 limit cycle
A9z = —1.15016 £ j2.08504 | A9z = 0.045111 £ 72.00222
0.167 A = 1.81296 Ap = —2.69871 Period-2 limit cycle
Agg == —1.16647 £ j2.07087 | Agz = 0.0650341 £ 71.99613
0.164 Ap = 1.85836 ) A = —2.77061 Spiral attr.
Aoz = —1.18334 £ §2.05639 | Apz = 0.0852714 £ j1.99026
0.16125 A =1.90143 Ay = —2.83825 Double Scroll attr.
Aoz = —1.19932 4 52.04283 | A9z = 0.104099 £ 51.98508

of the positive real eigenvalue; therefore any trajectory It is worth noting that, with a finite value of, chaos is
converges toward one of the equilibria lying R . observed even in absence of the voltage sow¢ehis is a
beyond the Hopf bifurcatiortd < 65,) a period-1 limit major difference with respect to the static c#se 0, where
cycle appears [see Fig. 7(a), with= 0.18]; chaos may occur only if a suitable voltage soufeés added

by further decreasing the system goes through a sein series to the Chua’s diode. Furthermoref i set to zero,
quence of period doubling bifurcation® [= 0.1725, (i.e., if the capacitance vanishes), the circuit turns out to be
period-2 limit cycle, Fig. 7(b)f = 0.169, period-4 limit described by a nonsingle valued mappibgThe presence of
cycle, Fig. 7(c)], until a spiral-like attractor [Fig. 7(d)]the capacitor (i.e.f >0) causes the circuit to be described
is observed. Continuing in decreasifigseveral periodic by the differential-difference equations (10) and (11), thereby
windows appear, (one of them is reported in Fig. 8(aimplying the uniqueness of the solution.

6 = 0.1683), and finally double-scroll like attractors (see As a second example, we assufmg = 5, without varying

Fig. 8(b), # = 0.1650, and Fig. 8(d),¢ = 0.1635) are the parameterd, andl’, in such a way that in each region
found. As for Chua’s circuit, between two successivihere exists an equilibrium point [condition a)] and that the
double-scrolls, periodic windows are present, as showeigenvalue distributions irRy; and Rq are of type | and

in Fig. 8(c) (¢ = 0.1644). This alternance of periodic I, respectively. By choosing as bifurcation parameter, the
windows and double-scroll like attractors continues untilominant eigenvalues are reported in Table IV: it is seen that
# = 0.1465; for lower values of9 all trajectories become they satisfy conditions b) and c) listed above, and that also in
unbounded. this case their distribution is close to that of the considered CC.
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Fig. 7. Phase portrait of a period-doubling phenomenon. (a) Period-1 linfitg. 8. Phase portrait of stable limit cycle windows in a chaotic region. (a)
cycle (8 = 0.18). (b) Period-2 limit cycle(6 = 0.1725). (c) Period-4 limit period 6 limit cycle(é = 0.1683). (b) Double scroll(# = 0.165. (c) 2 — 2
cycle (¢ = 0.169). (d) Spiral attractof¢ = 0.1685). The other parameters window (¢ = 0.1644). (d) Double scrol{¢ = 0.1635). The other parameters
arehg = 0.35828,h1 = —4.9073,I"' = —0.58156, and E = 0. arehg = 0.35828,h1 = —4.9073,I' = —0.58156, andE = 0.

The simulations shown in Fig. 9 confirm that, as expected, th&h Pe considered a continuous functiordoin these cases,
TDCC exhibits a period-doubling route to chaos very simild} 1S réasonable to conjecture a continuous variation of the
to that previously observed. dynamics a¥ appears. More precisely, we say that, in a region

Now let us turn our qualitative analysis to examine whdte- the eigenvalue distribution for a small valueéfnay be
happens wherf assumes very small positive values: thisonsidered a continuous evolution of that correspondirfg=to

analysis may be of interest in assessing the effects of parasific the eigenvalues\;, satisfy
on the dynamics of the difference equation, which describes lim Re[Ay] =In|h,| VE
the circuit foré = 0. =0t
Comparing the eigenvalue distributions reported in Tableekcept for a finite number of eigenvaluas such that
with those ford = 0, it is apparent that in some cases

. . . o lim Re[A;] = —oc.
there is a displacement of the eigenvalue distributions that 6—0+
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TABLE V
COMPARISON BETWEEN THE EIGENVALUE DISTRIBUTIONS AND THE DYNAMIC BEHAVIORS FORf = 0 AND FOR SMALL 8’s. THE MEANING OF THE ACHRONIMA ARE THE
FoLLowING: C': CONTINUITY; C'S': DISCONTINUITY WITH CHANGE OF SIGN OF THE REAL PART; NC'S': DISCONTINUITY WITHOUT CHANGE OF SIGN OF THE REAL PART

Case etg. distribution dynamic behavior
Ro R Ro R f=0 small 0
ho<T hyr < T C C similar dynamic behavior
F<hy<l|T<hy<l| CS cS one globally asymploli- | unstable

cally stable equilibrium
point, belonging either to
Ryg or to Ry, depending

on the value of E

T<hy<1 hiy >1 CS NCS | locally stable if there| unslable
exists one equilibrium
point in Ry, unstable

otherwise

hg > 1 F<hyy <1 | NCS CS completely stable, with | unstable
one or two stable equilib-
rivm points belonging to
R

hg > 1 her > 1 NCS NCS unstable unstable

If the above conditions are not satisfied, we say that theretli® case = 0. Assumingd = 0.01, the simulations of the

a discontinuity in the eigenvalue distribution @sppears. TDCC show a limit cycle of periody = 2.2 for hg = —1.2
According to this definition and to Table I, cases IV, V[Fig. 10(a)]; decreasing.;, a chaotic region is encountered
VIII, IX, and X are continuous, whereas cases |, II, lll, Vland for hg = —2.6 the chaotic attractor of Fig. 10(b) is

and VII are not. Note that the discontinuity is essentially dugbserved. A further decrease iy reveals a new periodic

to the appearance of a large positive eigenvalue. Iféfet  window; Fig. 10(c) shows the limit cycle of peridthy = 4.4

0 the eigenvalues have also positive real part, we say tlodtained forh, = —3.05. Continuing in decreasing,, a new

the discontinuity takes place with no change of sign (NC$haotic region appears [Fig. 10(d)].

in the real part; if this is not the case, the discontinuity is As a concluding remark, we would like to point out that the

accompanied by a change of sign (CS) of the real part. Agesult presented above is general. In fact, in [1] it is proved

consequence, cases | and VI are NCS-discontinuous, wherbad the existence of the period-adding phenomenon requires

cases Il, lll, and VII are CS-discontinuous. ho < —1 and0 < h; < 1; since the single value mapping
The constraints (28) given in Appendix | for a single valuedondition (28) holds and sincg’| < 1, the condition of row

mapping restrict all the possible combinationshgfvalues to 1 of Table V is satisfied, thereby implying the continuity of

those reported in Table V. eigenvalue distributions. This would suggest thay TDCC
From this table it turns out that if a CS-discontinuity occura/hich exhibits the period-adding phenomenon for= 0,

in a region which exhibits a stable equilibrium point, theshould present a similar dynamics even if a small capacitor

the dynamic behavior for smafl has an abrupt change withis added to the circuit.

respect to the case = 0 (see rows 2, 3, and 4). This fact

has been confirmed through extensive simulations. On the

contrary, forho<I' and hy; <I' (see row 1 of Table V),

since the eigenvalue distribution varies continuously with  In this paper we have studied in details the effects of the

we expect a similar dynamic behavior both fo= 0 and small presence of the capacitor on the dynamics of the TDCC.

#. Such a conjecture has been verified by several simulatiofie. this end, the circuit equations have been recasted in a
As an example we report the simulations that refer to thrmalized form, suitable for the investigation of the related

casehy; = 0.49,I" = 0.60, F = 0.78 andhy within the characteristic equation in each region of linearity. By studying

interval [-4, —1]. For # = 0, as shown in Fig. 4, the systemsuch an equation, the regions in the parameter space, where

exhibits the period-adding phenomenon (see also [1, Fig. 11§)l the eigenvalues have negative real part, have been exactly
By assigning a small value th a similar succession of limit determined, along with all the possible qualitative eigenvalue

cycles, separated by chaotic regions, may be again obserdédributions.

as hg is varied. Of course, due to the small Hinite value For a finite value ofC, this analysis has allowed to

of 8, the extension of these regions may vary from that afistinguish 10 different kinds of eigenvalue distributions in

V. CONCLUSIONS
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Fig. 10. Capacitor voltage versus time fér= 0.01, after a transient of
190. (a)ho = —1.2: periodic attractor of periody = 2.2. (b) hy = —2.6:
strange attractor. (d)o = —3.05: periodic attractor of perioglro =4.4. (d)
ho = —3.9: strange attractor. The other parametershare- 0.49,I" = 0.60,
and E = 0.78.

distribution of the CC and if one (unstable) equilibrium point
is present in each region of linearity. In contrast to the dase
0, with a finite value off, this chaotic behavior is observed
even in absence of the constant voltage souice
Fig. 9. Phase portrait of bifurcation process: (a) period-1 limit cycle For a small capacitof (e.g., a parasitic element), we have
(6 = 0.17); (b) period-2 limit cycle(¢ = 0.167); (c) spiral attractor shown that the behavior of TDCC may completely change
(6 = 0.164): (d) double scroll(6 = 0.16125). The other parameters are: if the eigenvalue distribution, in each region of linearity
ho = 0.35828,h; = 5, = —0.58156 and E = 0. '
exhibiting a stable equilibrium point, does not approach that
of the caseC = 0. Furthermore, we have shown that, for the
each region of linearity, which give rise to 50 possible casggt of parameters giving rise to the period-adding phenomenon
of different dynamic behaviors. Moreover, the analysis hag ¢ = 0, the eigenvalue distribution is continuousCat= 0
shown that, in each region of linearity, the dynamics of thignd, hence, it is reasonable to conjecture that the period-adding
infinite dimensional System is mainly influenced by a finite Sghenomenon still exists even ifsamall Capacitorc is added
of eigenvalues, called dominant eigenvalues. to the circuit.
In order to test the validity of our qualitative analysis
we have concentrated on a complex dynamic behavior: the
occurrence of chaos. We have found that the TDCC may
exhibit a bifurcation process and strange attractors similar toln this appendix, we derive and discuss the piecewise linear
those occurring in the classical Chua’s circuit if the dominambappings which model the TDCC fa& = 0. For the sake of
eigenvalue distribution of the TDCC is close to the eigenvalgenerality,I’ may assume any real value in this Appendix.

APPENDIX |
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0 can be generated with the following graphic procedure (see
Fig. 11). First draw the boundaries of the linear regions in the
(b(1),b(T+1)) plane, which, for real?, can take any positive

or negative slope. Then draw tlye= 0 branch as a segment
through the origin, with arbitrary slope and end points on the
boundary lines. The; = +1 branches compatible with the
obtained configuration are the lines starting at the end points
of theq = 0 branch which are completely contained in fg;
regions and lead to a single valued mappingAn example of

this procedure is shown in Fig. 11, where the lines leaving the
end points of they = 0 branch represent admissible branches
of @, 5,.r in R41. The constraints of this procedure lead to
the following relation thal’, Ag andh4; must satisfy in order

to define a single valued mapping

(ho<T and hyy <T") or (ho>Tand hyg >T). (28)
Denoting with {p,} the intersections of the three straight

linesb(r + 1) = hyb(7) + Ahy with the lineb(r + 1) = b(7),

a point p,; is an actual (virtual) fixed point ofy, 4, r if

it belongs (does not belong) t&,, moreover, it is a stable

Fig. 11. lllustration of the graphic procedure to generate every possifignstable) fixed point ifh,| <1 (|hy| > 1).
piecewise linear mapping for the TDCC of Fig. 1. The fixed parameters are For |'| < 1, the possible configurations nyq} are limited

hy = —2.028571"' = — 1.4.

It is expedient to start from th& = 0 case. FoiC = 0 and

E =0, (10) and (11) become

Apq¥(7) + (Ao = Apg) = (1 = )b(7)

b(r +1) =Tb(r) — 1(1+T)i(7).

The mapping®y, 4,.r: b(1) — b(r + 1) can be obtained by

solving (23) for(7):

1-T-

Apg

o(r) =

b(r)

Substituting (25) into (24), (14) of Section Il is obtained

_ a(Apo — Apy)
Aby

b(r +1) =hyb(7) + Ahy,

Ap, =L 1FT

operating.

T2T—ho
whereq is the index of the linear region where the circuit is

q(ho — hq)

qg=-1,0,1

by the slopes of the boundary lines (27), and are such that
only asimptotically stable, unstable or periodic behaviors are
possible. Therefore, no chaotic behavior can be obtained from
@}, 1,,r for [I'|< 1 (i.e., for¢> 0, or R> 0, sincez <0
is unpractical) and® = 0.

In [1] a chaotic behavior is obtained f¢f'| < 1 by intro-

(23) ducing the voltage generatds. When E # 0, (23) must be

(24)

replaced with

KDq[ﬂ(T) — E] + q(KDO - KDq)

=(1-0) {5(7) - g} g=-1,0,1. (29)

(25) The resulting mappingb,,, », r,z, however, coincides with

q= _1707 1 (26)

&y, 1, ¢ after a suitable shift of the origin, i.e., by using the
variables

o) =i(r) - B
(1) - B/2

b(r)
(r+1)+E/2.

=b
b(r+1)=b

(30)

From a graphic point of view, this transformation means

In the plane(b(r), b(r + 1)), regionsR,, are separated by that ®,, 1.1z, Can be obtained by shiftingg;, ,, r of,
boundary lines obtained by replacitig= +1 into (24): i

b(r+1) =Tb(r) F 31 +1).

The region between these two boundaries correspon@®&to by —oco < hy < —1,0 < h;<I' and any £ such that
and contains thg = 0 branch of (26). The upper and lower—[(14+I)/2(I'=ho)](14-ho) < E < [(1+1)/2(I'=ho)](1—ho)

regions are, respectivelyR _; and R; if (14+T)>0,R;

respectively,+£/2 and —E/2 along theb(r) and b(r + 1)

(27) xes, which may also lead to skew tent mappings (e.g., see

Fig. 3). In particular, the family of skew tent mappings defined

shows the period-adding phenomenon described in Fig. 11 of

and R_; otherwise. A particular example of mapping andLl].

boundary lines is given in Fig. 3.
The elements of (26) are selected by setting the valuesdiftained by assumind’| > 1 (i.e., by introducing a negativg

I', ho and hy. Any real value, bufl’, is possible forh, [see element). In this case, the slope of the boundary lines between

(9)]; however, we will consider only combinationsIofa, and

As an alternative possibility, chaotic dynamics can be

the linear regions is larger than 1 or smaller that, and

hi leading to single valued mappings. The whole set of singédlows, among the possible mappings, also the whole family

valued mappings possible for the TDCC with= 0 andF =

of tent functions (e.g., see Fig. 11).
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APPENDIX |l wherec is a suitable real value, greater than the greatest real
In this Appendix we will prove the following theorem. ~ Part of the zeros ofi(s). _
Theorem 1:In each region of linearity?,, g = —1,0,+1 In order to prove that (37) and (32) are equivalent, let us

the solutioni(r) of the set of differential-difference equationsConsider the following integral:
(10) and (11) (hereafter denoted#@g$7)) can be expressed as

1 cHjoo
- 507 h™1(s)exp(s7) ds (38)
0u(r) =Vou + €27 0(0) = o)+ [ e oo
df (') 0 which can be written as
. [ — + Aqu('r’)} dr’ 7<1 (31)
L Z ress—a,, [h () exp(sT)]
Tq() = Vog + ) ressmny, [Wy(s) exp(s7)] z
k 1 ..
. — — lim / ht(s)exp(sT) ds (39)
Vot Y puenr) T3l (32 2 N Jo,, 1) eRoT)
k
where C is a semicircumference in the left-half plane of
wher? radius Ry and centers = ¢, containing all the zeros of(s),
* Vi represents the equilibrium point, possibly virtual, ohnd such thatRy — oo as N — oo. Moreover, from the
region g, obtained by setting/v,/dr = 0 in (10): relationh=1(s) = O(1/s) (i.e., there exists a positive constant
-1 < H
. 2F —1[ Ah, . 5E1 + by @) ?h;mh thajh=1(s)| < v/|s| for large values ofs|) it follows
M 1—hy T 1—hy

o f(n) = 9(n — 1) = Vo, (0< < 1) denotes the initial
condition;

/C : h™(s) exp(sT) ds

w
« the functionW¥,(s) of the complex variable is defined as < —yexp(er) Rat [exp(=7Rx) - 1] (40)
Wyls) =h7(s) [(1 = Te™)(34(0) = Vo) and therefore
0 di . —1
HTT( Ay [ [ |, (e expar) ds
1L odn N .
)= T an = i {=vexp(en) T len(-fix) - 11}
=0 Vr>0o. 41
h(s) =s+ Apg — (s + Ang)e™?; (35) T= (41)
» “res” denotes the residue),, are the eigenvalues inThen’ (37) can be written, according to (39)
region g, pxq(7) is a polynomial inr of degreer — 1 if 1 ctjoo
Ayq is a root of multiplicityr (in particular,py, reduces 57 Wy(s)exp(sT) ds
to a constant ifr = 1). T Je—joo
Proof: Combining (10) and (11), the following = Z ress=n,, [Wq(s) exp(sT)]
differential-difference equation is obtained: k .
dwy(T) dwy (T — 1) — — lim Wy(s)exp(sT)ds  (42)

——— + Apguwy(r) =T

e + Anqwg(m — 1) 2mj N—oo Joy,

dr
(36) whereW,(s) is given by (34). By substituting (34) in (42),
B it is easily verified that:
wherew, (1) = 04(7) — Voq.
For 0 <7 < 1, sincef(r) = w(r — 1), a direct integration . _
of (36) yields (31). Algréo o Wy(s)exp(st)ds =0 7> 1. (43)
As far as the case > 1 is concerned, from (36) it is readily _
verified thatW,(s), defined in (34), is the Laplace transformin fact, (41) yields
of w, (7). In order to perform the inverse Laplace transform of
W, (s), it is worth noting that its singularities, i.e., the zeros of  lim / h™(s)wy(0)exp(sT) ds =0 Yr >0 (44)
function i(s) (35), are the roots of the characteristic equation N=ooJoy
(15), which ha\(e b_ounded real parts (e.g., see Section IV-%.]d therefore
Thus, w,(7) is given by
etjoo lim / R (s)['w,y(0) exp[s(T — )] ds =0 Vr > 1.
/ Wy(s)exp(sT) ds (37) N—ooJoy !
c—joo (45)

we(T) =
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TABLE VI

COLLECTION OF THE SEVEN CASES USED IN THE PROOF OF PROPOSITIOND IN

Moreover the integral
lim / R7(s)[e ™ T(1 + Ang)
N—oo Cx

L

+ wq(n)} e dn} exp(sT) ds (46)

satisfies the hypotheses of the Fubini-Lebesgue theorem (see

[17, Proposition 28, p. 33]), and then can be written as

0
/ [ lim / R=H(s)T(1 + Any )71 ds}
1 N—oo Cn

. @47

+ wq(n)} dn.
Due to (41), the above limit is zero fer> 1. Finally by using

(42), (44), (45), and the definition,(7) = v,(T) — Voq, (32)
is readily derived.

APPENDIX Il

In this appendix we summarize the proof of Proposition
1 of Section IV-A, which can be fully found in [14]. The P

condition and three sufficient conditions for the zeros of
a characteristic functiondf(A), made of an exponential

polynomial and having a principal term (see [11, ch. 13]),
to have negative real part. Furthermore, the proof is more
easily developed in théAp,, hy) plane, and the results can
be rephrased in th&, h,) plane by means of (12) and (16).
In the following, the necessary condition ([11, Theorem 13.2

THE (Apg, hq) PLANE. THE NUMBERED REGIONS ARE DEFINED IN FiG. 12

hg < =1 | (Apg, hy) € {region 1} | {c) verified

(Apg, hq) & {region 1} | (n) violated

Ap, >0 | hgl<1 (c) verified
hy>1 (n) violated

hy <1 (n) violated

Apg <0 hy>1 | (Apg, hy) € {region 3} | (c) verified
{Apg, hy) & {region 3} | (n) violated

ig. 12. Stability map in(Apg, ) plane. In the dashed regions all the
igenvalues have negative real part, whereas outside there exists at least one

formula 13.6.1]) will be denoted as condition (n), whereas thgenvalue with positive real part.

three sufficient conditions will be denoted as a), b), c) with
the same notation of the cited theorem. The conditions refer
to H(A) evaluated forA = jy, beingy a real variable.

We note that (15) has the principal term; far= jy the
characteristic function assumes the form:

H(jy) =F(y) +G(y)

F(y) =Apgcosy —ysiny — hgApg (49)
G(y) =y(cosy —I') + Apgsiny. (50)
Seven cases can be distinguished, according to the value
of Ap, and k,. For each of them, the application of [11
Theorems 13.7 and 13.3] yields the results summarized
Table VI (for a complete proof, see [14]). These results support
the picture shown in Fig. 12, where tii&\p,, hy) plane is
divided into two regions: in the dashed regions, all the rootgi]
of H(A) have negative real part due to the fullfilment of the
sufficient condition c), while in the complementary regionsp
there exists at least one root with positive real part, because
the necessary condition (n) is violated.

The two boundary curves; and v, of Fig. 12 have the
same parametric equation:

(3]
(4]
(5]
(6]

y(cosy = T)
siny
hy = 1—-Tcosy

Apg =

51
cosy — I (1)

ut are defined for different ranges of the paramgter

v1:0 L y<arccos I' (52)

oz arccos I' <y < 7. (53)

(48) These expressions can be recasted in the form of (17)-(19)
using (12) and (16).
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