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1. Introduction

It is well known that for globally supersymmetric theories, with particle content of spin

0, 1/2, 1 any theory with N supersymmetries can be regarded as a particular case of a

theory with a number N ′ < N of supersymmetries [1]. To prove this it is sufficient to

decompose the N supersymmetry-extended multiplets into N ′-multiplets.
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Of course N -extended supersymmetry is more restrictive than N ′ < N supersymmetry

implying that the former will only allow some restricted couplings of the latter. As we are

going to show in the present paper the same argument does not apply to supergravity the-

ories. Indeed, let us consider a standard N -extended supergravity theory with N gravitini

and a given number of matter multiplets with spin 0, 1/2, 1: then the N ′-extended super-

gravity obtained by reduction from the mother theory will no longer be standard because

a certain number N −N ′ of spin 3/2 multiplets appear in the decomposition. Therefore to

obtain a standard N ′-extended supergravity one must truncate out at least the N−N ′ spin

3/2 multiplets and all the non-linear couplings they generate in the supergravity action.

The most known example is N = 2 supergravity in presence of hypermatter [2]–[5].

The non-linear couplings of the hypermultiplets generate what is called a “quaternionic

geometry” [2]. If we regard the N = 2 hypermultiplets as a pair of N = 1 Wess-Zumino

multiplets, what we obtain is incompatible with N = 1 supergravity where the non-linear

couplings must describe a Kähler-Hodge manifold geometry [6]. Therefore, in order to

consistently reduce a N = 2 supergravity to a N = 1 theory, the former theory must

have the property that a certain submanifold of the original quaternionic manifold be a

Kähler-Hodge manifold.

Note that in rigid supersymmetry hypermultiplet couplings are described by Hy-

perKähler geometry which is instead compatible with N = 1 supersymmetry.

As an illustrative example let us consider maximal N = 8 supergravity in D = 4 [7]

truncated to lower N ′ supergravities. In this situation the consistent truncation consists

in deleting only spin 3/2 multiplets for sufficiently high N ′ (N ′ = 6, 5, 4), but for N ′ ≤ 4,

where the matter sectors begin to appear, the consistent truncation also requires to delete

some matter multiplets. We will illustrate how this process of reduction can be understood

in group-theoretical and geometrical terms, by requiring that certain geometrical condi-

tions dictated by supergravity define some submanifold of the original scalar manifold

E7(7)/SU(8) of N = 8 supergravity.

Returning to the N = 2 −→ N = 1 case, we can show that this generally demands a

reduction of both special Kähler manifold (MSK(nV )) [3, 8, 9, 5] and quaternionic manifold

(MQ(nH)), where nV and nH are the number of vector multiplets and hypermultiplets

respectively. By equipping these manifolds with complex coordinates zI ∈ MSK (I =

1, . . . , nV ) and real coordinates qu ∈ MQ (u = 1, . . . , 4nH) the Riemann tensors are given

respectively by:

RIJKL = gILgKJ + gKLgIJ − CJLNCIKMgMN

Ruv
pqUαAu UβBv = − i

2
Ωx
pq(σx)

ABCαβ + Rαβ
pq ε

AB , (1.1)

where the SU(2) triplet and singlet parts are the SU(2) and Sp(2nH) curvatures respec-

tively.1 Here A,B = 1, 2;x = 1, 2, 3 are indices of the fundamental and adjoint represen-

tation of SU(2) and α, β, . . . = 1, . . . , 2nH are indices in the fundamental representation of

Sp(2nH) .

1Here by Sp(2nH) we denote the compact form of the symplectic group sometimes called USp(2nH) (i.e.

Sp(2) = SU(2)).

– 2 –
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The Kähler metric gIL = ∂I∂LK, with K = −log[i(XΛFΛ−FΛXΛ)], is given in terms

of (XΛ, FΛ) which are the holomorphic symplectic sections ofMSK (they are related to the

covariantly holomrphic symplectic sections (LΛ,MΛ) by (LΛ,MΛ) = eK/2(XΛ, FΛ)). The

tensor CIKM is threefold symmetric and covarianty holomorphic, i.e. CIKM = eKWIKM

(with WIKM holomorphic).

OnMQ, UαA denotes the vielbein 1-form. Furthermore, we have:

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = −iCαβ(σx)ABUαA ∧ UβB ,

Rα
β ≡ d∆α

β +∆α
γ ∧∆γ

β

= −εABUAα ∧ UBβ + UAγ ∧ UBδεABCαρΩρβγδ , (1.2)

where Ωρβγδ is completely symmetric in its four indices.

The N = 2 → N = 1 reduction imposes a number of conditions on the above defined

structures, which have to be satisfied in order to have a consistent reduction. In particular,

we find that the two scalar manifoldsMSK andMQ have to be reduced to the submanifolds

MR(nC) ⊂MSK andMKH(nh) ⊂MQ, where nC ≤ nV − n′V , nh ≤ nH are the complex

dimensions of the two Kähler–Hodge manifolds MR and MKH and n′V is the number of

N = 1 vector multiplets.

We first discuss the two extreme cases n′V = nV (nC = 0) and n′V = 0 ( nC = nV ).

In the first case no N = 1 chiral multiplet coming from N = 2 vector multiplet is retained

and all N = 1 vector multiplets may remain. In the second case, all the N = 1 vector

multiplets are truncated out, and no restrictions appear on the special-Kähler manifold:

MR =MSK .

In the general case, let us decompose the coordinates onMSK :

zI → (zi, zα) (1.3)

and those onMQ:

qu → (ws, ws, nt, nt) , (1.4)

where zi (i = 1, . . . , nC) and ws (s = 1, . . . , nh) are the holomorphic coordinates in MR

andMKH respectively, and zα (α = 1, . . . , n′V = nV −nC) and nt (t = 1, . . . , nH −nh) are
the holomorphic coordinates in their orthogonal complements. Splitting furthermore the

N = 2 vector indices Λ → (Λ, X), where Λ = 1, . . . , n′V and X = 0, 1, . . . , nC , we find the

following constraints to be satisfied on MR ×MKH from supersymmetry reduction. On

MR we get, for consistent reduction of the special geometry sector in the ungauged case:

Cijα|MR
= 0 ; Cαβγ |MR

= 0

LΛ|MR
= 0 , fΛi |MR

≡ ∇iL
Λ|MR

= 0

fXα |MR
≡ ∇αL

X |MR
= 0 .

(1.5)

The parent (non holomorphic) vector kinetic matrix NΛΣ satisfies onMR:

NΛY |MR
= 0 . (1.6)

– 3 –
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Furthermore we obtain that N ΛΣ|MR
≡ 1

2fΛΣ is holomorphic, while NXY has no restric-

tions and gives the period matrix onMR, which is indeed a Special-Kähler manifold.

For the hypermultiplet sector, the reduction is more subtle because we have to reduce

the holonomy from SU(2)×Sp(2nH) to U(1)×SU(nh) which corresponds to decompose the

SU(2) indices A,B, . . . ,→ (1, 2) and the Sp(2nH) indices α, β . . . → (I, İ). The following

constraints are found on the geometrical structure of the manifoldMKH ⊂MQ

ΩIJKL̇|MKH = 0

U2I |MKH = (U1İ)∗|MKH = 0 . (1.7)

In particular, the second equation implies that the complex scalars of the chiral multi-

plets coming from the reduced quaternionic manifold are at most half of the quaternionic

dimension of the original N = 2 manifold [10].

The present investigation concerning the N = 2→ N = 1 reduction is further analyzed

in the most general case when isometries of the scalar manifolds are gauged.

In particular we find that the number of reduced N = 1 vector multiplets and of

N = 1 chiral multiplets obtained by truncation of the N = 2 vector multiplets (which are

in the adjoint representation of some gauge group G(2)) depend on the gauge group G(1)

under which the reduced hypermultiplets are charged. Indeed, if Adj(G(2))→ Adj(G(1)) +

R(G(1)), then the chiral multiplets coming from N = 2 vector multiplets are in R(G(1)).

The reduction of the gauge group further implies constraints on the special geometry

and quaternionic Killing vectors and prepotentials [11, 5]. For the kählerian Killing vectors

kIΛ and prepotential P 0Λ we find:

kiX = 0 , kαΛ = 0

kiΛ = igi∂P
0
Λ 6= 0

P 0X = 0 . (1.8)

Furthermore, for the quaternionic Killing vectors kuΛ and SU(2)-valued prepotentials P x
Λ,

we find:

ksX = 0 , ktΛ = 0 ,

ksΛ = igss∂sP
3
Λ 6= 0 ,

P 3X = 0 ,

P iΛ = 0 , (i = 1, 2) . (1.9)

The N = 1 D-term and superpotential are respectively given by:2

DΛ = −2(Imf)−1ΛΣ(P 0Σ(z, z) + P 3Σ(w,w))

L = e
KR+KH

2 W (z, w) =
i

2
LX

(
P 1X − iP 2X

)
, (1.10)

where KR, KH are the Kähler potentials onMR andMKH respectively.

2Particular cases of these formulae have been obtained in [12]–[22].

– 4 –



J
H
E
P
0
3
(
2
0
0
2
)
0
2
5

This reduction may find applications and is in fact related to many interesting aspects

of string theory orM theory compactified on a Calabi-Yau threefold. IndeedM -theory on a

Calabi-Yau threefold originates a N = 2 theory in five dimensions [23]. Trivial reduction on

S1 would give a N = 2 theory in D = 4. However, if we reduce on the orbifold S1/Z2 [24]–

[28], then we obtain a N = 1 theory with a particular truncation of the D = 5, N = 2

supergravity states. Other applications are related to brane-dynamics where the theory on

the brane has lower supersymmetry than the theory on the bulk [29, 30].

A different mechanism is obtained by considering type IIB theory on a Calaby-Yau

threefold in presence of H-fluxes [12]–[22] where also N = 1 (or N = 0) supersymmetric

vacua can be studied.

A related issue is the partial supersymmetry breaking of N = 2 down to N = 1

through a superHiggs mechanism [31, 32]. If one integrates out the massive gravitino, then

the theory should become a N = 1 theory. In this case to “integrate out” is in principle

different from truncating unless very special situations occur. However in the minimal

model studied in reference [31], the resulting N = 1 lagrangian is a particular case of the

general case studied here.

The paper is organized as follows: in section 2 we study the decomposition of the

N = 8 supergravity multiplet into N ′ < 8 supermultiplets and infer the reduced theories

from group-theoretical arguments.

In section 3 we extend the analysis to three, five and six dimensional maximal super-

gravities reduced to eight supercharges.

In section 4 we give the interpretation of the reduction procedure in a geometrical

setting which will be useful to apply our results to the specific problem of the N = 2 −→
N = 1 reduction.

In section 5 we discuss the constraints coming from supersymmetry when the reduction

procedure is applied to ungauged theories.

In section 6, which is the heart of the paper, we give the analysis of the N = 2 −→
N = 1 reduction in detail, also in presence of gauging, both in the vector multiplet and

hypermultiplet sectors. At the beginning of the section we discuss the constraints coming

from the gravitino truncation, while in section 6.1 and 6.2 we study the reduction of the

N = 2 vector multiplet sector. Subsection 6.3 is devoted to the truncation of the hyper-

multiplets sector, while subsection 6.4 discusses further consequences of the gauging. In

subsection 6.5 the computation of the reduction of the scalar potential is given, and finally

in subsection 6.6 we give examples of supergravity models which realize this consistent

truncation.

The appendices include some technical details related to the reduction. In particular,

in appendices A and B we show the consistency of the N = 8→ N = N ′ truncation in the

superspace Bianchi identities formalism and we apply it to the N = 2→ N = 1 reduction

of gauged supergravity. In appendix C we prove a formula valid for the N = 2 vector

multiplets which is useful for the truncation. Appendix D refers to the reduction of the

special-Kähler manifolds with special coordinates; appendix E contains the reduction of an

important relation valid on quaternionic geometry in presence of isometries and appendix F

shows the consistency of the reduction of the N = 2 scalar potential to N = 1 and exploits

– 5 –
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some magic properties of the supersymmetry Ward identities. Finally, appendix G contains

the explicit form of the N = 2 and N = 1 lagrangians which are left invariant under the

supersymmetry transformation laws given in the text.

2. N = 8 −→ N ′ reduction without gauging

Reduction of N = 8 supergravity to 2 ≤ N ′ ≤ 6 offers interesting examples of consistent

truncations of standard supergravity [33, 34].

We restrict our analysis to theories whose σ-models are given by symmetric spaces

G/H. This includes all the theories with N ′ ≥ 3 and a subset of the N = 2 theories. The

analysis turns out to be particularly simple in all these cases.

Let us first consider N ′ = 5, 6 where the reduction only involves the graviton multiplet

and N −N ′ spin 3/2 multiplets.

In the N = 6 case the N = 8 R-symmetry group SU(8) decomposes as:

SU (8)→ SU(6)×U(1)× SU (2) , (2.1)

where SU(2) is the group commuting with the N ′ = 6 R-symmetry U(6). Correspondingly

the N = 8 graviton multiplet decomposes into N ′ = 6 spin 2 and 3/2 multiplets, as follows:

[
(2), 8

(
3

2

)
, 28(1), 56

(
1

2

)
, 70(0)

]
−→

−→
[
(2), 6

(
3

2

)
, (15 + 1)(1), (20 + 6)

(
1

2

)
, (15 + 15)(0)

]
⊕

⊕ 2

[(
3

2

)
, 6(1), 15

(
1

2

)
, 20(0)

]
.

The hypersurface corresponding to freeze 40 scalars of the spin 3/2 multiplets is precisely

the N ′ = 6 σ-model described by the symmetric space SO?(12)/U(6). Therefore by just

deleting the two spin 3/2 multiplets one obtains standard N = 6 supergravity.

Let us now consider N ′ = 5. In this case the decomposition of the N = 8 graviton

multiplet into N ′ = 5 multiplets, corresponding to the R-symmetry decomposition

SU (8)→ SU (5)×U(1)× SU (3) (2.2)

is:
[
(2), 8

(
3

2

)
, 28(1), 56

(
1

2

)
, 70(0)

]
−→

[
(2), 5

(
3

2

)
, 10(1), (10 + 1)

(
1

2

)
, (5 + 5)(0)

]
⊕

⊕3
[(

3

2

)
, (5 + 1)(1), (10 + 5)

(
1

2

)
, (10 + 10)(0)

]
.

(2.3)

If we delete the three spin 3/2 multiplets we obtain standard N = 5 supergravity, or,

geometrically, freezing the 60 scalars inside the spin 3/2 multiplets corresponds to single

out the manifold SU(5, 1)/U(5) ⊂ E7(7)/SU(8).

– 6 –
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When N ′ ≤ 4 a new phenomenon appears since in this case also matter multiplets start

to appear in the decomposition of N = 8 supergravity into N ′-extended supergravities.

Therefore in this case deleting the spin 3/2 multiplets is only a necessary, but not sufficient

condition to obtain a consistent N ′-extended supergravity theory.

Let us first start with N ′ = 4 (this actually corresponds to compactify a type II theory

in ten dimensions on T2⊗T4/Z2). The decomposition of the N = 8 graviton multiplet into

N ′ = 4 multiplets, corresponding to

SU (8)→ SU (4)× SU (4)×U(1) (2.4)

is:
[
(2), 8

(
3

2

)
, 28(1), 56

(
1

2

)
, 70(0)

]
−→

[
(2), 4

(
3

2

)
, 6(1), 4

(
1

2

)
, 2(0)

]
⊕

⊕ 4

[(
3

2

)
, 4(1), (6 + 1)

(
1

2

)
, (4 + 4)(0)

]
⊕

⊕ 6

[
(1), 4

(
1

2

)
, 6(0)

]
. (2.5)

If we now delete the 4 spin 3/2 multiplets this is equivalent to freeze 32 scalars. When this

occurs the E7(7)/SU(8) manifold reduces to the submanifold (SU(1, 1)/U(1)) × SO(6, 6)/

SU(4)×SU(4), corresponding to the product space of the N = 4 supergravity σ-model and

the σ-model of 6 vector multiplets. In this case a standard N ′ = 4 supergravity coupled to

6 vector multiplets corresponds to a consistent truncation since E7(7) ⊃ SU(1, 1)×SO(6, 6).

Let us now consider N ′ = 3. In this case we have the following decomposition of the

N = 8 R-symmetry group:

SU (8)→ SU (3)×U(1)× SU (5) (2.6)

SU (3) × U (1) being the R-symmetry of the N = 3 theory. Note that this case is dual to

the N ′ = 5 case with the roles of SU(N ′) and SU(N −N ′) exchanged. The decomposition

of the N = 8 multiplet is now:
[
(2), 8(3/2), 28(1), 56

(
1

2

)
, 70(0)

]
−→

[
(2), 3(3/2), 3(1),

(
1

2

)]
⊕

⊕ 5

[
(3/2), 3(1), 3

(
1

2

)
, 2(0)

]
⊕

⊕ 10

[
(1), (3 + 1)

(
1

2

)
, (3 + 3)(0)

]
. (2.7)

If we now delete the spin 3/2 multiplet we freeze the corresponding 10 scalars. In this

case, however, it is obvious that we cannot define a submanifold of E7(7)/SU(8): indeed

the standard N = 3 supergravity coupled to n vector multiplets [35] has a non linear σ-

model of the form SU(3, n)/SU(3) × U(1) × SU(n) and , for n = 10, SU(3, 10) is not a

subgroup of E7(7). Therefore we must ask the question whether there is some n for which

SU(3, n) ⊂ E7(7). The answer is n = 4 since

E7(7) ⊃ SU(4, 4) ⊃ SU(3, 4) ×U(1) . (2.8)

– 7 –
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Therefore the maximal N ′ = 3 supergravity contained inside the N = 8 theory corre-

sponds to the coupling with 4 matter multiplets and the corresponding σ-model lives in

the submanifold

U(3, 4)/U(3)×U(4) ⊂ E7(7)/SU(8) . (2.9)

As far as (continuous) duality is concerned, we see that the 3 graviphotons and 4 matter

vectors are in the fundamental of SU(3, 4) as required by supersymmetry since

56→ 21 + 21′ + 7 + 7′ . (2.10)

This means that the 15+6 vectors coming from the five gravitino multiplets and six residual

matter multiplets should combine in the antisymmetric of SU(3, 4).

We note that if we instead use the chain

N = 8→ N ′ = 4→ N ′ = 3 (2.11)

we would only obtain a non-maximal theory with three matter multiplets since in that case

E7(7) → SU(1, 1) × SO(6, 6)→ SU(3, 3) ×U(1) . (2.12)

The latter is a particular case of the more general fact that N = 4 with 2n vector multiplets

can be consistently truncated to N = 3 with n vector multiplets3 using the chain4

SO(6, 2n) ⊃ SU(3, n)×U(1) (2.13)

and
SO(6, 2n)

SO(6)× SO(2n)
⊃ SU(3, n)

SU(3)× SU(n)×U(1)
(2.14)

The last case we would like to consider is N ′ = 2 where there are two kinds of matter

multiplets, namely the vector multiplets and the hypermultiplets. In the standard N = 2

theory the corresponding σ-model generally is not a coset, but we limit ourselves to examine

this case, namelyM = G/H. The consistent truncation will now receive severe constraints

on the matter content since the submanifold of the N = 8 σ-model must factorize as:

MSK(nV )×MQ(nH) ⊂ E7(7)/SU(8) , (2.15)

where we have denoted withMSK(nV ) andMQ(nH) the special-Kähler and quaternionic

manifolds of real dimensions 2nV and 4nH respectively.

The decomposition of the N = 8 graviton multiplet gives now:

[
(2), 8(3/2), 28(1), 56

(
1

2

)
, 70(0)

]
−→ [(2), 2(3/2), (1)]⊕ 6

[
(3/2), 2(1),

(
1

2

)]

⊕15
[
(1), 2

(
1

2

)
, 2(0)

]
⊕ 20

[(
1

2

)
, 2(0)

]
. (2.16)

3Note that in string theory this would imply n = 11 in agreement with [36]
4N = 3 models based on brane flux supersymmetry breaking have recently been constructed [37].

– 8 –
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We immediately see that deleting the spin 3/2 multiplets all the scalars survive. So the

question is now, how many scalars we must delete so that the scalar submanifold enjoys

the above property of reducing toMSK(nV )×MQ(nH).

Two immediate solutions are obtained [38]. For nH = 0, nV = 15 we find:

MSK(nV = 15) =
∗
SO(12)/U(6) ⊂ E7(7)/SU(8) (2.17)

which is indeed a special-Kähler manifold (coinciding with the σ-model of N = 6 super-

gravity). The other solution is nV = 0, nH = 10 for which

MQ(nH = 10) = E6(2)/SU(6)× SU(2) ⊂ E7(7)/SU(8) (2.18)

which is indeed a quaternionic space. It corresponds to the σ-model obtained by compact-

ification of type IIB on T6/Z3 where only the untwisted states were retained.

By c-map of (2.18) we obtain another solution with nV = 9 and nH = 1 corresponding

to type IIA on T6/Z3 [39]:

SU(3, 3)

SU(3)× SU(3) ×U(1)
× SU(2, 1)

SU(2)×U(1)
⊂ E7(7)/SU(8) (2.19)

If we look for other maximal subgroups G1 ×G2 ⊂ E7(7) we find [40] (see table 1):

SO(6, 2n) ⊂ SU(3, n)×U(1)

G1 ×G2 = Sp(6, R) ×G2(2) ; SU(1, 1) × F4(4) ; SU(1, 1) × SO(6, 6) ; SU(4, 4) . (2.20)

The first two correspond to (nV , nH) = (6, 2) and to its c-map image (1, 7), namely:

Sp(6, R)

U(3)
×

G2(2)

SO(4)
⊂ E7(7)/SU(8) (2.21)

SU(1, 1)

U(1)
×

F4(4)

Usp(6)×Usp(2)
⊂ E7(7)/SU(8) (2.22)

From the last two cases we can obtain a N = 2 truncation of N = 4 and N = 3 supergrav-

ities with six and four hypermultiplets respectively:

SO(6, 6)

SO(6) × SO(6)
−→ SO(6, 4)

SO(6)× SO(4)
(2.23)

SU(4, 3)

SU(4) × SU(3) ×U(1)
−→ SU(4, 2)

SU(4) × SU(2) ×U(1)
(2.24)

with (nV , nH) = (1, 6) and (nV , nH) = (0, 4) respectively.

The first, together with its c-map (nV , nH) = (5, 2)

SU(1, 1)

U(1)
× SO(2, 4)

SO(2)× SO(4)
× SO(4, 2)

SO(4)× SO(2)
(2.25)

corresponds to type IIB (type IIA) on T6/Z4.
5 The last is a truncation of the (nV , nH) =

(0, 10) case and its c-map is

SU(3, 1)

SU(3) ×U(1)
× SU(2, 1)

SU(2)×U(1)
(2.26)

5Note that SO(4,2)
SO(4)×SO(2)

∼ SU(2,2)
SU(2)×SU(2)×U(1)

.
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with (nV , nH) = (3, 1) (This is a truncation of the (nV , nH) = (9, 1) case.).

By the decomposition

SO(6, 6) −→ SO(4, 6 − p)× SO(2, p) (2.27)

we can obtain the additional cases:

(nV = 2, nH = 5)p = 1

(nV = 4, nH = 3)p = 3

(nV = 3, nH = 4)p = 2

(nV = 6, nH = 1)p = 5

(nV = 7, nH = 0)p = 6 . (2.28)

Their c-map do not give new models. We note that the case p = 6 is a truncation of the

(nV , nH) = (15, 0) case and that the case p = 5 is not a subcase of the (nV , nH) = (9, 1)

case because the corresponding quaternionic manifold is in this case Usp(2,2)
Usp(2)×Usp(2) which is

not the same of the (nV , nH) = (9, 1) case.

In conclusion we have found eleven “maximal” cases: the cases (nV , nH) = (15, 0), (6, 1)

which have no c-map counterpart, the case (nV , nH) = (3, 4) which is self conjugate under

c-map and four pairs conjugate under c- map, namely:

(nV = 6, nH = 2)
c−map←→ (nV = 1, nH = 7)

(nV = 5, nH = 2)
c−map←→ (nV = 1, nH = 6)

(nV = 0, nH = 10)
c−map←→ (nV = 9, nH = 1)

(nV = 4, nH = 3)
c−map←→ (nV = 2, nH = 5) . (2.29)

Many of these cases can be retrieved from type II string theories compactified on ZN

orbifolds which preserve one left and one right supersymmetry [39, 41].

3. D = 3, D = 5 and D = 6 reduction of maximal supergravity to theories

with eight supercharges

The same analysis can be carried out in N = 2 theories (eight supercharges) in D = 3,

D = 5 (for the cases where the scalars span a symmetric space) and in D = 6.

In D = 5, N = 8 supergravity has a non-linear σ-model E6(6)/USp(8) [33]. We

consider only the N = 8→ N = 2 case.

The 42 scalars, decomposed with respect to the N = 2 theory, consist of 14 scalars

belonging to vector multiplets and 4× 7 = 28 scalars belonging to quaternionic multiplets,

giving (nV = 14, nH = 0) and (nV = 0, nH = 7) models which correspond to SU∗(6)
USp(6) ⊂

E6(6)
USp(8) and

F4(4)
USp(6)×USp(2) ⊂

E6(6)
USp(8) [38]. For each model in D = 4 there is a parent in D = 5

(the above correspond to the nV · nH = 0 cases).

If we now look to spaces with isometry groups G1 ×G2 ⊂ E6(6), where G1, G2 corre-

spond to real special geometry and quaternionic geometry respectively, we find (see table 1):

G1 ×G2 = SL(3,C)× SU(2, 1) (3.1)
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which give rise to

SL(3,C)

SU(3)
× SU(2, 1)

SU(2)×U(1)
⊂

E6(6)

USp(8)
(nV = 8 , nH = 1) (3.2)

and [40]

G1 ×G2 = SL(3,R)×G2(2) (3.3)

giving
SL(3,R)

SO(3)
×

G2(2)

SO(4)
⊂

E6(6)

USp(8)
(nV = 5 , nH = 2) . (3.4)

If we go through the N = 4 theory we also get the series of six cases

SO(1, 1)× SO(1, p)

SO(p)
× SO(4, 5 − p)
SO(4)× SO(5 − p) (nV = p+1 , nH = 5−p), 0 ≤ p ≤ 5 . (3.5)

So we see that there are ten D = 5 cases with similar types of quaternionic manifold as in

D = 4 (with the only exception of the nH = 10 case.).

In D = 6 the N = 8 ((2, 2) theory) σ-model is SO(5, 5)/SO(5)× SO(5). If we decom-

pose the (2, 2) theory with respect to the (1, 0) theory we get 5 tensor multiplets and 5

hypermultiplets corresponding to

SO(1, 5)

SO(5)
⊂ SO(5, 5)

SO(5)× SO(5)
,

SO(4, 5)

SO(4) × SO(5)
⊂ SO(5, 5)

SO(5) × SO(5)
. (3.6)

These are the nT · nH = 0 cases.

Again we can now look at subgroups G1 × G2 ⊂ SO(5, 5) where G1 = SO(1, nT ) and

G2 is the isometry group of a quaternionic manifold.

We find a series analogous to the D = 5 case (3.5), with

G1 = SO(1, p) , G2 = SO(4, 5 − p) (nT = p, nV = 5− p) (3.7)

corresponding to the manifolds

SO(1, p)

SO(p)
× SO(4, 5 − p)

SO(4)× SO(5− p) (nT = p , nH = 5− p), 0 ≤ p ≤ 5 (3.8)

which contains also the above mentioned nT · nH = 0 cases (3.6).

The reduction of N = 8 → N = 2 supergravity studied in D = 6, 5 and 4 finds a

further simplification if we look for theories with eight supercharges in D = 3, where the

R-symmetry is SU(2)1 × SU(2)2.

In fact, if we compactify type II on a Calabi-Yau threefold times S1, down to D = 3,

then type IIA and IIB become the same theory with 1 ⇔ 2. The N = 4 σ-model is a

product of two quaternionic geometries, where nH1 = h1,1 + 1, nH2 = h2,1 + 1, the extra

quaternion coming from the graviton and graviphoton degrees of freedom.

More generically, suppose we have a theory which at D = 4 has a σ-modelMSK(nV )×
MQ(nH), then its dimensional reduction to D = 3 will give rise to a N = 4 SU(2)1×SU(2)2
theory with σ-model MQ1(nH1 = nV + 1) ×MQ2(nH2 = nH), where MQ1 is the dual

quaternionic manifold ofMSK(nV ).
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Using the previous recipe, if we look to the D = 4, N = 2 theories of section 2 obtained

from N = 8, we can predict N = 4 theories at D = 3 which are embedded in the
E8(8)
SO(16)

σ-model of D = 3, N = 16 maximal supergravity.

From (nV = 15, nH = 0) and (nV = 0, nH = 10) we respectively obtain:

(nH1 = 16, nH2 = 0) ,
E7(−5)

SO(12) × SU(2)
⊂ E8(8)

SO(16)

(nH1 = 1, nH2 = 10) ,
SU(2, 1)

SU(2)×U(1)
× E6(2)

SU(6) × SU(2)
⊂ E8(8)

SO(16)

(nH1 = 2, nH2 = 7) ,
G2(2)

SO(4)
× F4(4)

USp(6) ×USp(2)
⊂ E8(8)

SO(16)
. (3.9)

Also, by using the embedding [42] E8(8) ⊃ SO(8, 8) we have the further possibility:

E8(8)

SO(16)
⊃ SO(8, 8)

SO(8) × SO(8)
⊃ SO(4, k) × SO(4, 8 − k)

SO(4)× SO(k)× SO(4) × SO(8− k) (3.10)

with nH1 = k, nH2 = 8 − k (k = 0 is a subcase of the (nH1 = 16, nH2 = 0) case, since

SO(4, 8) × SU(2) ⊂ E7(−5).). They are all dimensional reductions of the cases previously

studied at D = 4.

For the decomposition of the isometry group of maximal D = 3 supergravity to maxi-

mal subgroups, see table 1.

4. Geometrical interpretation

It is interesting to analyze the results of the previous section in geometrical terms, that

is to explore the consistency of the reduction of the N = 8 σ-model E7(7)/SU(8) to the

appropriate submanifolds for different values of N ′. A consistent truncation of a manifold

of dimension n to a submanifold of dimension n− k can be obtained by considering a set

of k 1-forms φi, i = 1, . . . , k, which vanish on the submanifold and such that they are in

involution, that is:

dφi = θij ∧ φj , (4.1)

where θij are suitable 1-forms on the manifold.

To apply this result, known as Frobenius theorem, to our problem we consider the

coset representative U of E7(7)/SU(8) in the 56 fundamental representation of E7(7) and

the corresponding left invariant 1-form:6

Γ ≡ U−1dU =

(
Ω P

P Ω

)
(4.2)

satisfying the Cartan-Maurer equation

dΓ + Γ ∧ Γ = 0 . (4.3)

6We use notations as in ref. [43].
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Some Maximal subgroups of E8(8):

SO(16)

SO(8, 8)

E7(−5) × SU(2)

E6(2) × SU(2, 1)

G2(2) × F4(4)
Some Maximal subgroups of E7(7):

SU(8)

SU(4, 4)

E6(2) × SO(2)

SO∗(12) × SU(2)

SO(6, 6) × SU(1, 1)

SU(3, 3) × SU(2, 1)

SU(1, 1) × F4(4)
Sp(6,R)×G2(2)

Some Maximal subgroups of E6(6):

USp(8)

F4(4)
SU∗(6) × SU(2)

SO(5, 5) × SO(1, 1)

SL(3,R)×G2(2)
SL(3,C)× SU(2, 1)

Table 1: Decomposition of “duality” groups of maximal D = 3, 4, 5 supergravities with respect to

maximal subgroups relevant for supergravity reduction [42, 40].

Here the 28 × 28 subblocks Ω and P embed the SU(8) connection and the vielbein of

E7(7)/SU(8). Introducing indices A,B = 1, . . . , 8 we have explicitly:

Ω ≡ 2ω
[A
[Cδ

B]
D] ; P ≡ PABCD , (4.4)

where ωAB is the SU(8) connection and PABCD is the vielbein of E7(7)/SU(8), antisym-

metric in its four indices and satisfying the reality condition:

PABCD =
1

24
εABCDPQRSP

PQRS
. (4.5)

From the Cartan-Maurer equations one easily finds the two structure equations:

RA
B ≡ dωAB + ωAC ∧ ωCB = −1

3
P
ALMN ∧ PBLMN (4.6)

∇PABCD ≡ dP
ABCD − 4ω

[A
LP

BCD]L
= 0 . (4.7)

Equation (4.6) gives the SU(8) Lie algebra valued curvature RA
B in terms of the vielbein

of the symmetric coset E7(7)/SU(8) and equation (4.7) expresses the fact that the same
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manifold is torsionless. Note that, since the coset is symmetric, the Lie algebra connection

ωAB is simply related via a structure constant to the riemannian spin connection.

Let us now consider how the vielbein PABCD decomposes under the holonomy reduction

SU(8) −→ SU(N ′)×U(1)×SU(8−N ′). We call a, b, c, . . . = 1, . . . , N ′ the indices of SU(N ′)

and i, j, k . . . = 1, . . . , 8−N ′ the indices of SU(8−N ′). Then the holonomy reduction gives

the following fragments:

PABCD −→ Pabcd ⊕ Pabci ⊕ Pabij ⊕ Paijk ⊕ Pijkl , (4.8)

where actually some of the fragments can be zero if the number of antisymmetric indices

of SU(N ′) or SU(8 − N ′) exceeds N ′ or 8 − N ′, respectively. Now we observe that Pabcd
satisfies eq. (4.7) which gives for this particular component:

dP
abcd − 4ω

[a
`P

bcd]` − 4ω
[a
iP

bcd]i
= 0 . (4.9)

We see that, in order that eq. (4.9) describe a torsionless submanifold with SU(N ′)×U(1)

holonomy, we must set ωai = 0 and since

Ra
i ≡ dωai + ωac ∧ ωci + ωaj ∧ ωji = −

1

3
P
aLMN ∧ P iLMN (4.10)

we must also impose that, on the submanifold whose vielbeins are P abcd, the curvature with

mixed indices is zero, namely Ra
i = −13P

aLMN∧PiLMN = 0. Using the decomposition (4.8),

eq. (4.10) can be rewritten as follows

dωai = −ωac ∧ ωci − ωaj ∧ ωji −
1

3
P
abcd ∧ Pibcd −

−1

3
P
abcj ∧ Pibcj −

1

3
P
abjk ∧ Pibjk −

1

3
P
ajkl ∧ Pijkl . (4.11)

On the basis of the Frobenius theorem, each term on the r.h.s. of (4.11) must be in involution

with ωai; this is satisfied for the terms bilinear in the ω-connections, but not for those

involving the vielbein. In order to obtain involution, we must also set to zero some of the

vielbein 1-forms and verify that also these are actually in involution. Let us see how we

can achieve this result in the various cases.

When N ′ = 6, Pijkl = Pibjk ≡ 0 because we have 4-fold or threefold antisymmetrization

of the SU(2) indices. Therefore it is sufficient to set

Pibcd ≡ P ibcd
= 0 (4.12)

on the submanifold in order to obtain involution, since in this case eq. (4.11) reduces to

dωai = −ωac ∧ ωci − ωaj ∧ ωji −→ Ra
i = 0 . (4.13)

We still have to verify that also the vanishing 1-forms Pibcd are in involution with themselves

and with ωai. Indeed, from eq. (4.7), we find:

dP
abci

= 3ω
[a
dP

bc]di
+ 3ω

[a
jP

bc]ji
+ ωi dP

abcd
+ ωijP

abcj
(4.14)
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and we see that every term in the r.h.s. contains either P
abcj

or ωai so that we get involution.

We note that condition (4.12) is equivalent to impose that the SU(6) ×U(1) × SU(2)

representation (20,0,2) must be absent in the reduction of the scalar vielbein, and this

implies that all the 40 scalars of the N ′ = 6 spin 3/2 multiplets must be frozen according

to our analysis in the previous section. In conclusion, setting P abcj = 0 and ωai = 0, we

define a consistent truncation of the N = 8 theory down to a N ′ = 6 theory since the

above conditions define a submanifold of holonomy SU(6)×U(1)×SU(2) whose curvature

is easily seen to be given by

Ra
b = −

1

3
P
almn ∧ Pblmn . (4.15)

The corresponding manifold has dimension 30 and of course coincides with SO∗(12)/U(6).

The cases N ′ = 5 and N ′ = 4 can be treated in exactly the same way. For N ′ = 5,

eq. (4.11) does not contain Pijkl and in order to get involution we have to set

Pabci = Pabij = 0 (4.16)

which corresponds to delete, in the holonomy reduction (2.2), the representations (10,1,3)

and (10,−1,3) for the vielbein (because of the reality condition(4.5)). According to the

discussion of the previous section, this is equivalent to freeze the 60 scalars of the spin

3/2 multiplets. Using again eq. (4.7), we can immediately verify that Pabci, Pabij and ωai
are indeed in involution so that the reduction to the submanifold SU(1, 5)/U(5) is indeed

consistent.

For N ′ = 4, eq. (4.11) contains all the terms bilinear in the vielbeins. However it is

sufficient to set

Pabci = Paijk(≈ P
abci

) = 0 (4.17)

to achieve the vanishing of the r.h.s. of (4.11) on the submanifold. This corresponds to

delete, in the holonomy reduction (2.5), the representations (4,1,4) and (4,−1,4) in the

decomposition of the scalar vielbein, that is to freeze the 32 scalars appearing in the N ′ = 4

spin 3/2 multiplets. Again the structure eq. (4.7) can be used to show that Pabci, Paijk and

ωai are in involution so that we get a consistent reduction to the N ′ = 4 submanifold

SU(1, 1)/U(1)× SO(6, 6)/[SU(4)× SU(4)].

The reduction to the submanifold of the N ′ = 3 theory requires a little more labor. In

this case equation (4.11) does not contain the term P
abcd ∧ Pibcd and if we set

P abci = Pijkl = 0 (4.18)

then

Ra
i = −

1

3
P
abjk ∧ Pibjk 6= 0 . (4.19)

We could of course set also P
abjk

= 0, but then we would be left with a theory without

scalars, that is pure N ′ = 3 supergravity theory.

In order to obtain a matter coupled N ′ = 3 theory, we further reduce the submanifold

holonomy:

SU(8) −→ SU(3)× U(1)× SU(5) −→ SU(3)×U(1)× SU(4) . (4.20)
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To see that in this case we obtain a consistent submanifold, we split the SU(5) indices

i, j, . . . = 1, . . . , 5 into SU(4) indices α, β, . . . = 1, . . . , 4 and the index 5. Then we have:

Ra
i −→ Ra

α; R
a
5

Ra
α = −1

3
P
abβγ ∧ Pαbβγ −

2

3
P
abβ5 ∧ Pαbβ5

Ra
5 = −1

3
P
abβγ ∧ P5bβγ . (4.21)

The vielbeins Pabαβ and P5βab are in the representations (3,6) and (3,4) of SU(3)×SU(4),

respectively. Hence if we delete the representation (3,6), that is if we set

Pabαβ = P5bβγ = 0 (4.22)

we get Ra
α = Ra

5 = 0. On the light of the discussion given in the previous section for the

same case, this corresponds to select, as different from zero on the submanifold, only the

vielbeins with indices in the (3,4) rep. of the holonomy group U(3) × SU(4). We obtain

in this case a consistent reduction to the submanifold spanned by the vielbeins Pabγ5 since

it can be easily verified that Pabcα, Pabc5, Pαβγδ , Pαβγ5, ω
a
α, ω

a
5 are all in involution among

themselves.

Finally, in the N ′ = 2 case, in order to have involution for ωai = 0, we must have

Ra
i = −

1

3
P
abjk ∧ Pibjk −

1

3
P
ajkl ∧ Pijkl = 0 (4.23)

on the manifold.

If we take P
abjk

(and its complex conjugate Pijk`) or P
ajkl

vanishing on the submanifold

this corresponds to delete the complex representation (1,−1,15) or the real representation
(2,0,20) of the holonomy group SU(2) × U(1) × SU(6). We may check immediately that

in both cases the vanishing vielbein are indeed in involution with ωa
i and with themselves.

Indeed:

dP
abci

= 3ω
[a
dP

bc]di
+ 3ω

[a
jP

bc]ji
+ ωi dP

abcd
+ ωijP

abcj

dP
ajk`

= ωabP
bjk`

+ ωaiP
ijk`

+ 3ω
[j
bP

k`]ab
+ 3ω

[j
iP

k`]ia
(4.24)

and we see that in both cases the involution condition is satisfied. Therefore we have found

a consistent reduction to the submanifolds SO∗(12)/U(6) and E6(2)/SU(6)× SU(2) which

are special-Kähler and quaternionic manifolds respectively of maximal holonomy.

The other cases treated group theoretically in the previous section can be handled

in an analogous way, provided we reduce the holonomy of the resulting submanifold in a

suitable way. We just give an example.

Consider the manifold given in eq. (2.19), corresponding to (nV , nH) = (9, 1). We

decompose the representation 6 of SU(6) into the representation (3,1) + (1,3) of SU(3)×
SU(3). Correspondingly, the index i in the 6 of SU(6) is decomposed:

i→ α, α̇ , (α, α̇ = 1, 2, 3) , (4.25)
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where α and α̇ run on the fundamental rep of the two SU(3) groups. Then we have:

Ra
i → Ra

α , R
a
α̇ (4.26)

and we find:

Ra
α =

(1,3,1)

P
abβγ ∧

(2,1,1)

Pαbβγ +

(1,3,3)

P
abβγ̇ ∧

(2,3,3)

Pαbβγ̇ +

(1,1,3)

P
abβ̇γ̇ ∧

(2,3,3)

Pαbβ̇γ̇ +

+

(2,3,3)

P
aβγδ̇ ∧

(1,1,3)

Pαβγδ̇ +

(2,3,3)

P
aβγ̇δ̇ ∧

(1,3,3)

Pαβγ̇δ̇ +

(2,1,1)

P
aβ̇γ̇δ̇ ∧

(1,3,1)

Pαβ̇γ̇δ̇ , (4.27)

where we have set on the top of each vielbein the rep of SU(2)×SU(3)×SU(3) to which it

belongs. We see that deleting the vielbein in the reps (1,3,1), (2,3,3) and (1,1,3) (and

their complex conjugates) we get Ra
α = 0 so that involution is satisfied. An analogous

computation can be done, with the same conclusions, for Ra
α̇. Note that the vielbein

which survive, Paαβγ and Pabβγ̇ , in the representations (2,1,1) and (1,3,3) respectively,

do in fact describe the vielbein system of the given manifold.

The involution of the deleted vielbein is also easily proved. Indeed:

dP
abβγ

= 2ω
[a
c∧P

b]cβγ
+2ω

[a
α∧P

b]αβγ
+2ω

[a
α̇∧P

b]α̇βγ−2ω[βδ∧P
γ]δab−2ω[β

δ̇
∧P γ]δ̇ab

(4.28)

and we see that each term contains at least a 1-form which is zero on the submanifold.

It is a simple exercise to verify that one can actually further reduce the holonomy to

all the holonomy subgroups of the various cases treated in section 2 and find consistent

reduction to the corresponding special-Kähler and quaternionic symmetric coset submani-

folds.

5. Consistency constraints from supersymmetry

In the previous sections we have analyzed the effects of truncating out some of the su-

percharges in the supergravity theories. In particular, in section 3 we have considered

the effects of the reduction of the holonomy group for the various supermultiplets at the

linearized level, while in section 4 we have studied the consequences of such a reduction on

the scalar sectors.

We still have to analyze if the consistency found at the level of σ-model in the geomet-

rical analysis can be extended to the full supersymmetric level.

For this purpose, we analyze the supersymmetry transformation laws of N = 8 su-

pergravity, when the R-symmetry gets reduced from SU(8) to SU(N ′) × U(1). They are,

neglecting three fermions terms:

δV a
µ = −iψAµ γaεA + h.c.

δψAµ = ∇µεA + T−AB|νργ
ν

µ γρεB

δχABC = PABCD,α∂µφ
αγµεD + T−[AB|µνγ

µνεC]

δAΛΣµ = fΛΣAB

(
ψ
A
µ ε

B + χABCγµεC

)
+ h.c.

δφα = P
ABCD,α

χABCεD + h.c. (5.1)
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(the SU(8) indices A, . . . run from 1 to 8). We use the same notation as in reference [43]:

we call U the coset representative of E7(7)/SU(8) parametrized as follows:

U =
1√
2

(
f + ih f + ih

f − ih f − ih

)
, (5.2)

where fΛΣAB and hΛΣAB (Λ,Σ, . . . = 1, . . . , 8) are labelled by couples of antisymmetric indices

ΛΣ andAB with Λ,Σ = 1 . . . , 8 and A,B = 1 . . . , 8. Therefore they describe 28 × 28 sub-

blocks of the 56×56 symplectic matrix (coinciding with the fundamental 56 representation

of E7(7)). Note that U transforms on the left as the 56 representation of E7(7) and on the

right as the 28⊕ 28 of SU(8) .

In terms of f and h, the 2-form TAB is given by:

TAB = − i

2

(
f
−1
)
ABΛΣ

FΛΣ =
1

2

(
hΛΣABF

ΛΣ − fΛΣABGΛΣ
)
, (5.3)

where GΛΣ is the magnetic counterpart of the field-strength F ΛΣ. The spinor fields ψAµ
and χABC are the N = 8 left-handed gravitinos and dilatinos respectively. Finally, the

covariant derivative acting on the spinors is defined as follows:

∇εA = DεA + ω B
A εB , (5.4)

where ω B
A is the SU(8) connection and Dµ denotes the Lorentz covariant derivative.

Let us first analyze the gravitino decomposition. We want to reduce the theory to an

N ′ ≤ 8 one. Therefore, to reduce the R-symmetry SU(8)→ SU(N ′)×U(1), we decompose

the holonomy indices A, . . . ⇒ (a, i) with a = 1, . . . , N ′ and i = 1, . . . , 8 − N ′. We then

have to truncate out (to set to zero) the 8 − N ′ gravitinos ψiµ and the corresponding

supersymmetry parameters εi. We get:

δψaµ = Dµεa + ω b
a εb + T−ab|νργ

ν
µ γρεb

δψiµ = ω a
i εa + T−ia|νργ

ν
µ γρεa ≡ 0 . (5.5)

The second equation, consistency condition for the truncation, implies

ω a
i = 0 , T−ia = 0 . (5.6)

The first condition in (5.6) confirms the restriction of the scalar σ-models found in the

previous section from the geometrical analysis, while the second one kills the vector super-

partners of the erased gravitinos at the full interaction level.

Then what is left, eq. (5.5), is the correct transformation law for the survived grav-

itini, provided Tab = − i
2(f

−1
)abΛΣF

ΛΣ (and Tij = − i
2(f

−1
)ijΛΣF

ΛΣ for N ′ = 6) de-

scribe the correct expression for the (dressed) graviphotons in the reduced theory, Tab =

− i
2(f

−1
)abΛF

Λ, with Λ running on the appropriate representation of the U duality group

of the reduced theory.7

7With abuse of language, we call U duality group the continuous group whose restriction to the integers

is the U duality group of the theory.
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G = E7(7) G1 ×G2 G→ G1 ×G2
N = 6 (# vect. = 16) SO∗(12)× SU(2) 56 −→ (32, 1) + (12, 2)

N = 5 (# vect. = 10) SU(5, 1) × SU(3) 56→ (10, 1) + (10, 1) + (6, 3) + (6, 3)

N = 4 (# vect. = 12) SO(6, 6) × SU(1, 1) 56 −→ (12, 2) + (32, 1)

N = 3 (# vect. = 4) SU(3, 4) ×U(1) 56 −→ 21 + 21 + 7 + 7

N = 2 (# vect. = nV + 1)

nV = 0 E6(2) ×U(1) 56→ 1 + 1′ + 27 + 27

nV = 15 SO∗(12)× SU(2) 56→ (32, 1) + (12, 2)

nV = 9 SU(3, 3) × SU(2, 1) 56→ (20, 1) + (6, 3) + (6, 3)

nV = 6 Sp(6,R) ×G2(2) 56→ (1, 14) + (6, 7)

nV = 2 SU(1, 1) × F4(4) 56→ (4, 1) + (2, 26)

Table 2: Duality reduction in D = 4.

To this aim, let us first recall that, in all N -extended theories, the electric and magnetic

field-strengths transform in a representation of the U duality group whose dimension is the

same as the fundamental representation of the embedding symplectic group Sp(2nv) [44]

(nv is the total number of vectors). Let us consider separately the cases N ′ = 5, 6, where

all the vectors are graviphotons, from the N ′ ≤ 4 cases, where matter vectors are present.

In the former cases, note that E7(7) (the isometry group of N = 8 theory) contains, as

maximal subgroups: SO∗(12) × SU(2) and SU(5, 1) × SU(3). The duality groups for the

N ′ = 6, 5 are SO∗(12) and SU(5, 1) respectively. The rep 56, in which the N = 8 vectors

field strengths and their duals lie, decomposes respectively as follows (see also table 2):

E7(7) →
∗
SO(12)× SU(2)56→ (32,1) + (12,2) (5.7)

E7(7) → SU(5, 1) × SU(3)56→ (20,1) + (6,3) + (6,3) . (5.8)

We note that in each case only a subset of the 56 field-strengths is transformed only

with respect to the (reduced theory) duality group, while it is a singlet of the SU(8 −N ′)

commuting group, and this immediately identifies the electric and magnetic field strengths

which remain in the gravitational multiplet after truncation. (Indeed this exactly repro-

duces the counting at the linearized level, since we expect to have, in the gravitational

multiplet of the N ′ = 6 (respectively N ′ = 5) theory, 16 (respectively 10) electric field

strengths parametrized by Tab, Tij (respectively by Tab).

Therefore, in performing the truncation, we also have to decompose the representations

of the N = 8 U duality group with respect to its maximal subgroups as in (5.7), (5.8), and

to keep only the irrepses, in the decomposition, which are singlets under the commuting

group, as shown in table 2.

Note that this prescription automatically guarantees the consistency of the truncation,

since the objects to be truncated out (in particular the (12, 2) (respectively (6,3) + (6,3))

field strengths given by Tai and their magnetic duals), being in a non trivial representation

of the commuting group SU(8−N ′), can never mix with those which have been kept, which

are instead singlets.
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Let us now consider the matter coupled theories, and in particular N ′ = 4 (the N ′ = 2

case is similar). Here the argument is reversed with respect to the higher N ′ theories,

but with analogous conclusions. Indeed, the U duality group for the N ′ = 4 theory is

SU(1, 1) × SO(6, n), and, for n = 6, it is indeed a maximal subgroup of the N = 8 U

duality group, (no commuting subgroup). Note that the U-duality group is now factorized

into the S-duality group SU(1, 1), which mixes electric with magnetic field strengths, and

the electric T-duality group SO(6, 6). We have, for the decomposition of the 56 of E7(7) →
SU(1, 1) × SO(6, 6):

56→ (2,12) + (1,32) . (5.9)

In this case it is the (2,12) field strengths (given by the six graviphotons Tab and the six

matter vectors Tij , together with their magnetic counterpart) which have to be retained,

since they have the appropriate transformation property under the U duality group, while

the extra 32 field-strengths (given by Tai and its magnetic dual), which are spinors under

SO(6, 6), have to be truncated out and do indeed belong to the extra gravitini multiplets.

A similar argument as given previously still works for the consistency; indeed the field-

strengths in the (1,32), spinors under SO(6, 6), can be set to zero consistently since they

cannot mix with the other field-strengths which are not in the spinor representation of

SO∗(12). As far as the transformation laws for the vectors, scalars and spin one half fields

are concerned, one sees that the decomposition confirms the results of the analysis at the

linearized level given in section 3, as summarized in table 3.

For the case N = 8 → N = 2, we see from table 2 that the vectors belonging to the

six spin 3/2 multiplets and to those vector multiplets which are truncated out are tied

together by an irrep. of G1 ×G2. This means that to delete only the spin 3/2 multiplets

would be inconsistent.

The same analysis applies to theories in higher dimensions and, for the D = 5 case,

the duality reduction, for some interseting cases, is given in table 4.

6. N = 2 −→ N = 1 reduction

This section is devoted to a thorough analysis of the consistent truncation of N = 2

supergravity down to N = 1 in four dimensions. The N = 2 −→ N = 1 reduction of

the supersymmetry transformation laws presents different features in the vector multiplet

and in the hypermultiplet sectors. The vector multiplet case is simpler since the special

geometry is already a Kähler-Hodge geometry while for hypermultiplets we are confronted

with the more difficult task of reducing a quaternionic manifold to a Kähler-Hodge one.

Note that, differently from what done in the preceeding sections, where we discussed

only ungauged theories, the present reduction is given at the level of the complete N = 2

gauged theory.

In the first two subsections we begin to analyze the reduction in the vector multiplet

sector, where much of the special geometry relations are needed. In subsection 6.3 we

analyze the reduction in the hypermultiplet sector. In both cases the geometrical approach

discussed in section 3 will be essential for the discussion. The other subsections are devoted
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N ′ multiplet max spin multiplicity

8 (gµν , ψAµTAB|µν , χABC , PABCD) 2 1

6 (gµν , ψaµTab|µν , Tij|µν , χabc, χaij , Pabcd, Pabij) 2 1

(ψiµTai|µν , χabi, Pabci) 3/2 2

5 (gµν , ψaµTab|µν , χabc, χijk, Pabcd, Paijk) 2 1

(ψiµTai|µν , Tij|µν , χabi, χaij , Pabci, Pabij) 3/2 3

4 (gµν , ψaµTab|µν , χabc, Pabcd, Pijk`) 2 1

(ψiµTai|µν , χabi, χijk, Pabci, Paijk) 3/2 4

(Tij|µν , χaij , Pabij) 1 6

3 (gµν , ψaµTab|µν , χabc) 2 1

(ψiµTai|µν , χabi, Pabci, Pijk`) 3/2 5

(Tij|µν , χaij , Pabij , Paijk) 1 10

2 (gµν , ψaµTab|µν) 2 1

(ψiµTai|µν , χabi) 3/2 6

(Tij|µν , χaij , Pabij) 1 15

(χijk, Paijk) 1/2 10

1 (gµν , ψaµ) 2 1

(ψiµTai|µν) 3/2 7

(Tij|µν , χaij) 1 21

(χijk, Paijk) 1/2 35

Table 3: Decomposition of N = 8 into N = N ′ supergravity multiplet.

G = E6(6) G1 ×G2 G→ G1 ×G2
N = 2 (# vect. = nV + 1)

nV = 0 F4(4) 27→ 1 + 26

nV = 14 SU∗(6)× SU(2) 27→ (15, 1) + (6, 2)

nV = 8 SL(3,C)× SU(2, 1) 27→ (3, 3′, 1) + (1, 3, 3′) + (3′, 1, 3)

nV = 5 SL(3,R)×G2(2) 27→ (6, 1) + (3, 7)

Table 4: Duality reduction in D = 5.

to a careful analysis of the implications of the gauging, to the reduction of the scalar

potential and to the discussion of some explicit examples.

The reduction is obtained by truncating the spin 3/2 multiplet containing the second

gravitino ψµ2 and the graviphoton.

Here and in the following we use the notations both for N = 2 and N = 1 supergravity

as given in reference [45], the only differences being that we use here world indices I, I =

1, . . . , nV and boldfaced gauge indices Λ = 0, 1, . . . , nV for quantities in the N = 2 vector

multiplets (since we want to reserve the notation Λ and i, ı for the indices of the reduced

N = 1 theory) and that the holomorphic matrix appearing in the kinetic term of the vectors

in the N = 1 theory will be renamed as follows:

NΛΣ(z
i) ≡ fΛΣ(zi) . (6.1)
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Let us write down the supersymmetry transformation laws of the N = 2 theory, up to

3-fermions terms [5]:

Supergravity transformation rules of the (left-handed) Fermi fields:

δ ψAµ = ∇̂µ εA +
(
i g SABηµν + εABT

−
µν

)
γνεB (6.2)

δ λIA = i∇µ z
IγµεA +G−Iµν γ

µνεBε
AB + gW IABεB (6.3)

δ ζα = iUBβu ∇µ q
u γµεAεAB Cαβ + gNA

α εA , (6.4)

where:

∇̂µ εA = DµεA + ω̂
B

µ|A εB + Q̂µεA (6.5)

and the SU(2) and U(1) 1-form “gauged” connections are respectively given by:

ω̂ B
A = ω B

A + g(Λ)A
Λ P x

Λ (σx) B
A , (6.6)

Q̂ = Q+ g(Λ)A
Λ P 0Λ , (6.7)

Q = − i

2

(
∂IKdzI − ∂IKdzI

)
(6.8)

ω B
A , Q are the SU(2) and U(1) connections of the ungauged theory. Moreover we have:

∇µz
I = ∂µz

I + g(Λ)A
Λ
µ k

I
Λ

∇µq
u = ∂µq

u + g(Λ)A
Λ
µ k

u
Λ . (6.9)

Supergravity transformation rules of the Bose fields:

δ V a
µ = −iψAµ γa εA − iψ

A
µ γ

a εA (6.10)

δ AΛµ = 2L
Λ
ψAµεBε

AB + 2LΛψ
A
µ ε

BεAB + i fΛI λ
IA
γµε

B εAB + i f
Λ
I λ

I
AγµεB ε

AB (6.11)

δ zI = λ
IA
εA (6.12)

δ zI = λ
I
Aε

A (6.13)

δ qu = UuαA
(
ζ
α
εA + CαβεABζβεB

)
. (6.14)

Here T−µν appearing in the supersymmetry transformation law of the N = 2 left-handed

gravitini is the “dressed” graviphoton defined as:

T−µν ≡ 2iImNΛΣLΣFΛ−µν (6.15)

while

GI−µν = −gIJ fΓJ ImNΓΛFΛ−µν (6.16)

are the “dressed” field strengths of the vectors inside the vector multiplets. Moreover the

fermionic shifts SAB , W
I AB and NA

α are given in terms of the prepotentials and Killing

vectors of the quaternionic geometry (suitably dressed with special geometry data) and of
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the special geometry Killing vectors, as follows:

SAB = i
1

2
PABΛ L

Λ ≡ i
1

2
P x
Λσ

x
ABL

Λ (6.17)

W I AB = iPAB
Λ gIJ fΛ

J
+ εABkIΛL

Λ
(6.18)

NA
α = 2UAαu kuΛL

Λ
(6.19)

Nα
A = −2UαAu kuΛLΛ . (6.20)

We recall that the Killing vectors kIΛ and kuΛ are related to the prepotentials by:

kIΛ = igIJ ∂JP
0
Λ

kuΛ =
1

6λ2
Ωx|vu∇vP

x
Λ ; λ = −1 , (6.21)

where Ωx
uv is the SU(2)-valued 2-form defined in section 6.3 below, and that the prepotential

P 0Λ satisfies:

P 0ΛL
Λ = P 0ΛL

Λ
= 0 . (6.22)

Since we are going to compare the N = 2 reduced theory with the standard N = 1

supergravity, we also quote the supersymmetry transformation laws of the latter theory [6,

46]. We have, up to 3-fermions terms:

N = 1 transformation laws:

δψ•µ = Dµε• + Q̂µε• + iL(z, z)γµε
• (6.23)

δχi = i
(
∂µz

i + g(Λ)A
Λ
µk

i
Λ

)
γµε• +N iε• (6.24)

δλΛ• = F (−)Λµν γµνε• + iDΛε• (6.25)

δV a
µ = −iψ•γµε• + h.c. (6.26)

δAΛµ = i
1

2
λ
Λ
• γµε

• + h.c. (6.27)

δzi = χiε• , (6.28)

where Q̂ is defined in a way analogous to the N = 2 definition (6.7) and:

L(z, z) = W (z) e
1
2
KV (z,z) (6.29)

N i = 2 gi∇ L (6.30)

DΛ = −2(ImfΛΣ)−1PΣ(z, z) (6.31)

and W (z),K(1)(z, z), PΣ(z, z), fΛΣ(z) are the superpotential, Kähler potential, Killing pre-

potential and vector kinetic matrix respectively [46, 6, 47]. Note that for the gravitino and

gaugino fields we have denoted by a lower (upper) dot left-handed (right-handed) chirality.

For the spinors of the chiral multiplets χ, instead, left-handed (right-handed) chirality is

encoded via an upper holomorphic (antiholomorphic) world index (χi, χı).

The supersymmetric lagrangians which are left invariant by these transformation laws

are given in appendix G.
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To perform the truncation we set A=1 and 2 successively, putting ψ2µ = ε2 = 0, and

we get from eq. (6.2):

δ ψ1µ = Dµε1 − Q̂µε1 − ω̂ 1
µ|1 ε1 + i g S11ηµνγ

νε1 , (6.32)

where D denotes the Lorentz covariant derivative (on the spinors, Dµ = ∂µ − 1
4ω

ab
µ γab),

while, for consistency:

δ ψ2µ ≡ 0 = −ω̂ 1
µ|2 ε1 +

(
i g S21ηµν − T−µν

)
γνε1 . (6.33)

For a consistent truncation in the ungauged case we must set to zero the graviphoton:

T− = TΛF
−Λ = 0 , (6.34)

where

TΣ ≡ 2iImNΛΣLΛ (6.35)

is the projector on the graviphoton [48], and the component ω 2
1 of the SU(2) connection

1-form:

ω21 = 0 . (6.36)

In the gauged case we have the further constraints:

S21 =
i

2
P x
Λ(σ

x)12L
Λ =

i

2
P 3ΛL

Λ = 0 , (6.37)

ω̂ 2
1 = ω 2

1 + g(Λ)A
ΛP x

Λ(σ
x) 2
1 ≡ g(Λ)AΛP x

Λ(σ
x) 2
1 = 0 , (6.38)

while no further restriction comes from (6.7) since the form of the gauged U(1) connection

should not change in the reduced theory.

Comparing (6.23) with (6.32), we learn that we must identify:

ψ1µ ≡ ψ•µ

ε1 ≡ ε• . (6.39)

Furthermore, g S11 = i
2g(Λ)P

x
Λ(σ

x)11L
Λ must be identified with the superpotential of the

N = 1 theory, that is to the covariantly holomorphic section L of the N = 1 Kähler-Hodge

manifold. Therefore we have [12]–[22]:

L(q, z, z) =
i

2
g(Λ)P

x
Λ(σ

x)11L
Λ =

i

2
g(Λ)

(
P 1Λ − iP 2Λ

)
LΛ . (6.40)

We will show in the following (section 6.4) that, after consistent reduction of the special-

Kähler manifoldMSK and of the quaternionic σ-modelMQ, L will in fact be a covariantly

holomorphic function of the Kähler coordinates ws of the reduced manifoldMKH ⊂MQ

and of some subset zi ∈MR of the scalars zI of the N = 2 special-Kähler manifoldMSK .

The condition on the graviphoton T− = 0 will be analyzed in subsection 6.1, while

the condition ω 2
1 = 0 will be discussed in section 6.3 and the constraints appearing in the

gauged theory will be analyzed in section 6.4.

Here and in the following we will denote by MSK and MQ the special-Kähler and

quaternionic manifolds of the N = 2 theory while the special-Kähler and Kähler-Hodge

manifolds obtained by reduction of MSK and MQ will be denoted by MR and MKH

respectively.
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6.1 Reduction of the N = 2 vector multiplet sector

Let us now consider the gaugino transformation laws. When ε2 = 0 we get:

δ λI1 = i∇µ z
Iγµε1 + W I11ε1 (6.41)

δ λI2 = −G−Iµν γµνε1 + gW I21ε1 , (6.42)

where, using (6.18)

W I21 = iP 3Λ g
IJ fΛ

J
− kIΛL

Λ
(6.43)

W I11 = iP 11Λ g
IJ fΛ

J
=
(
P 2Λ − iP 1Λ

)
gIJ fΛ

J
. (6.44)

From eqs. (6.41) and (6.42) we immediately see that the spinors λI1 transform into the

scalars zI (and should therefore give rise to N = 1 chiral multiplets) while the spinors λI2

transform into the matter vectors field strengths G−Iµν (and should then be identified with

the gauginos of the N = 1 vector multiplets).

However, before entering the details of the identification, we have to discuss the impli-

cations of putting to zero the graviphoton T−, eq. (6.34). We observe that this condition

gives a constraint on the scalar and vector content of the N = 1 reduced theory, that is on

the number of chiral and vector multiplets which are retained after truncation.

Now, since the graviphoton projector TΛ (6.35) is a scalar field dependent quantity,

the request that eq. (6.34) is verified all over the manifold can be trivially realized either by

setting to zero all the scalars zI and the graviphoton A0µ, which implies on the symplectic

section LΛ ⇒ (L0 = 1;LΛ = 0,Λ = 1, . . . nV ), or, alternatively, by truncating out all the

vectors AΛ, leaving an N = 1 theory with only chiral matter content.

There is however a more interesting and non trivial way to satisfy eq (6.34), by imposing

a suitable constraint on the set of vectors and of scalar sections which can be retained in the

reduction. Indeed, if we decompose the index Λ labelling the vectors into two disjoint sets

Λ⇒ (Λ, X),Λ = 1, . . . , n′V = nV −nC ;X = 0, 1, . . . , nC , we may satisfy the relation (6.34)

as an “orthogonality relation” between the subset Λ running on the retained vectors and

the subset X running on the retained scalar sections. That is we set:

FX
µν = 0 ;

ImNΛΣLΣ = TΛ = 0 . (6.45)

We note that if we delete the electric field strengths F −X we must also delete their magnetic

counterpart

G−X = NXY F
−Y +NXΣF

−Σ = 0 (6.46)

so that we must also impose

NXΣ = 0 . (6.47)

Then, the constraint (6.45) reduces to

ImNΛΣLΣ = 0 (6.48)
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which implies

LΣ = 0 (6.49)

since the vector-kinetic matrix ImNΛΣ has to be invertible.

Note that conditions (6.48) and (6.49) imply a reduction of the N = 2 scalar manifold

MSK →MR, since it says that some coordinate dependent sections onMSK have to be

zero in the reduced theory.

Let us decompose the world indices I of the N = 2 special-Kähler σ-model as follows:

I ⇒ (i, α), with i = 1, . . . , nC , α = 1, . . . , n′V = nV −nC , where nC and n′V are respectively

the number of chiral and vector multiplets of the reduced N = 1 theory while nV is the

number of N = 2 vector multiplets.

Then from eq (6.53) it follows that the metric onMR is pulled back to the following

form [5, 48]:

gi = −2fXi ImNXY f
Y
 . (6.50)

To examine further the implications of the reduction of the special-Kähler manifold to

the submanifold MR, it is convenient to write the special geometry objects using flat

indices. We then define a set of kählerian vielbeins P Î = P Î
Idz

I on MSK together with

their complex conjugates. Performing the reduction, they decompose as: P Î ⇒ (P I , PA),

where I and A are flat indices in the submanifoldMR and on its orthogonal complement

respectively. By an appropriate choice of coordinates, we call z i the coordinates on MR,

zα the coordinates on the orthogonal complement. Then we may set P I
α = 0, PA

i = 0, so

that the metric gIJ = P Î
IP

Î
J has only components gi, gαβ , while giα = 0.

Then, if we decompose the gauginos λI2 ⇒ (λi2, λα2), the above truncation implies,

by supersymmetry, λi2 = 0 and, for consistency,

δ λi2 = −G−iµνγµνε1 + gW i21ε1 = 0 . (6.51)

Setting G−iµν = 0 gives:

G−iµν = −giJ∇JL
Λ
ImNΛΣF−Σµν = −gi∇L

Λ
ImNΛΣF−Σµν = 0 (6.52)

implying

∇L
Λ
= f

Λ
 = 0 . (6.53)

Moreover, W i21 = 0 implies:

P 3X = 0 , kiX = 0 . (6.54)

Note that the integrability condition of eq. (6.53) is:

∇i∇jL
Λ = iCijKg

KK∇KL
Λ
= iCijkg

kk∇kL
Λ
+ iCijαg

αα∇aL
Λ
= 0 , (6.55)

where Cijk is the 3-index symmetric tensor appearing in the equations defining the special

geometry (see e.g. ref. [48, 5]).

Since the first term on the r.h.s. of eq. (6.55) is zero onMR (eq. (6.53)), eq. (6.55) is

satisfied by imposing:

Cijα = 0 (6.56)

so that only the N = 2 special-Kähler manifolds satisfying the constraint (6.56) are suitable

for reduction.
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Note that, since Cijα is defined as a symplectic scalar product [3, 8, 9, 5] in terms of

the symplectic section U = (LΛ,MΛ):

Cijα = 〈∇i∇jU,∇αU〉 , (6.57)

it follows that

Cijα = 0⇒∇αU = 0⇒∇αL
X = 0 , ∇αMX = 0 . (6.58)

The same constraint (6.56) can also be retrieved by looking at the integrability condi-

tions of the N = 2 special geometry as given in [43]. The relevant ones for our discussion

are the following:

∇P Î = dP Î + iQ ∧ P Î + ωÎ
Ĵ
∧ P Ĵ = 0

RĴ

Î
≡ (dω + ω ∧ ω)Ĵ

Î
= P

Î
∧ P Ĵ − iKδĴ

Î
− C Ĵ

L̂
∧ CL̂

Î
, (6.59)

where Q is the Kähler connection 1-form, K = dQ is the Kähler 2-form, ω Î
Ĵ
is the SU(nV )-

Lie algebra valued connection and the 1-form C Ĵ
L̂
can be written in terms of the 3-world

indices symmetric tensor CIJK, whose properties are given in ref. [43], via:

C Ĵ
L̂
= P ĴIP J

L̂
CIJKdz

K. (6.60)

Let us restrict the previous equations to the submanifoldMR. From the vanishing of the

torsion, eq (6.59), we find:

∇P I = dP I + iQ ∧ P I + ωI
J
∧ P J + ωI

A
∧ PA = 0

∇PA = dPA + iQ ∧ PA + ωA
J
∧ P J + ωA

B
∧ PB = 0 . (6.61)

With the same procedure illustrated in the general discussion of section 4 and in the

example of section 6.1, we easily find that the vanishing of the torsion on MR implies

ωI
A
|MR

= 0, from which it follows, taking into account the Frobenius theorem and the

definition of RĴ

Î
:

RJ

A
|MR

= PA ∧ P
J − CJ

I
∧ CI

A − CJ
B
∧ CB

A = 0 . (6.62)

Now, expanding the vielbein and the C-tensor along the differentials of the coordinates,

we easily find

RJ

A
|MR

= −P Ji
Pα
A

(
CijkC

j
α` + CiβkC

β
α`

)
dzk ∧ dz` = 0 , (6.63)

where we have set to zero the terms in the external directions dzα, and the C-terms

containing both holomorphic and antiholomorphic indices, which are zero already because

of the N = 2 special geometry properties [3, 5]. Again, we see that equation (6.63) is

satisfied by imposing the same condition (6.56) on the special-Kähler manifold.
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From the analysis of the fermionic terms in the supersymmetry transformation laws of

the fermions [49], it is possible to find a further condition on the C-tensor:

Cαβγ |MR
= 0 (6.64)

which, together with (6.56), implies

Ri
αβγ |MR

= 0 . (6.65)

6.2 N = 2 vector multiplets −→ N = 1 matter multiplets

Let us now discuss the precise identification of the N = 1 matter multiplets obtained by

reduction of the N = 2 vector multiplets.

From the above analysis we have found that the indices labelling N = 1 chiral and

vector multiplets are not related anymore, as it was instead the case in the N = 2 theory.

As far as eq. (6.41) is concerned, we immediately see that, after reduction of the index

I and comparison with the corresponding N = 1 formula (6.24), we can make the following

identification:

λi1 = χi (6.66)

gW i11 = N i = ig(X)
(
P 1X − iP 2X

)
gifX (6.67)

that is we may interpret the λi1 as nC N = 1 chiral spinors belonging to N = 1 left-handed

chiral multiplets (χi, zi), i = 1, . . . , nC . It can be easily verified that the consistency

condition

λα1 = 0⇒ δλα1 = 0 (6.68)

gives

kαΛ = 0 (6.69)

using fXα = 0.

Let us now discuss the N = 1 vector multiplets coming from the truncation.

The transformation law for the nV + 1 vectors of the N = 2 theory (6.11) becomes,

after truncation:

δAΛµ = −ifΛi λ
i2
γµε

1 − ifΛα λ
α2
γµε

1 + h.c. = −ifΛα λ
α2
γµε

1 + h.c. (6.70)

δAX
µ = −ifXi λ

i2
γµε

1 − ifXα λ
α2
γµε

1 + h.c. = 0 , (6.71)

where in (6.70) we have used (6.53). Eq. (6.71) is consistently zero if we put

λi2 = 0 (6.72)

since fXα |MR
= ∇αL

X |MR
= 0.8

8This follows by looking at the expression of the N = 2 Kähler metric [5]

gIJ = −2ImNΛΣf
Λ
I f

Σ

J (6.73)

by requiring that its mixed component giα is zero. Indeed, after reduction we get

0 = giα = −2ImNXY f
X
i f

Y
α (6.74)

implying fYα = 0.
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We note that while the gauge index Λ of the N = 2 gaugino runs over nV + 1 values

(because of the presence of the graviphoton) the indices Λ and α take only n′V ≤ nV
values. In particular, the index of the graviphoton A0 belongs to the orthogonal subset

X = 0, 1, . . . , nC , so that the graviphoton is automatically projected out.

To match the corresponding N = 1 formula (6.27) we have to set:

λΛ• ≡ −2fΛα λα2 . (6.75)

Now, we observe that we may trade the gaugino world index I = 1, . . . , nV with a vector

index Λ already at the level of the N = 2 theory, by defining

λΛA ≡ −2fΛI λIA . (6.76)

Here the gauge index Λ of the N = 2 gauginos runs over nV + 1 values (because of the

presence of the graviphoton) while the index I takes only nV values. The extra gaugino,

say λ0, is actually spurious, since λΛA satisfies:

TΛλ
ΛA = −2TΛfΛI λIA = 0 , (6.77)

where

TΛ ≡ 2iImNΛΣLΣ , (6.78)

due to the special geometry relation

ImNΛΣLΛfΣI = 0 . (6.79)

Note that TΛ is the projector on the graviphoton field-strength, according to equation

(6.15) [48].

Using special geometry, one can see that the transformation law for the N = 2 gaug-

ini (6.3) can be rewritten in terms of the λΛA, up to 3-fermions terms, as:

δλΛA = PΛΣF
−Σ
µν γµνεABεB − 2iUΛΣ

(
P 0Σε

AB + PAB
Σ

)
εB , (6.80)

where PΛΣ is the projector on the matter-vector field strengths and UΛΣ a tensor of

special geometry. They are defined below in equations (6.84), (6.83). The derivation of

formula (6.80) is given in appendix C.

The above formulae allow us to perform the reduction of the gaugino λΛ2 = (λΛ2, λX2)

straightforwardly. First of all, λX2 = fXi λ
i2 = 0 as follows from (6.72). Then, setting

A = 2 and Λ = Λ, we have

λΛ• ≡ λΛ2 = −2fΛI λI2 = −2fΛα λα2 (6.81)

since in the reduced theory fΛi = 0, and then:

δλΛ• = PΛΣF
−Σ
µν γ

µνε• − 2iUΛΣ
(
P 0Σ + P 3Σ

)
ε• . (6.82)

Let us now apply the following relations of special geometry [48] to the present reduction:

UΛΣ ≡ fΛI g
IJ fΣ

J
= −1

2

[
(ImN )−1

]ΛΣ
− LΛLΣ (6.83)

PΛΣ ≡ −2UΛΓImNΣΓ = δΛΣ − iTΣL
Λ
. (6.84)
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After decomposing the indices and using fXα |MR
= fΛi |MR

= giα|MR
= 0 we have [5]:

UΛΣ ≡ fΛα g
αβfΣβ = −1

2

[
(ImN )−1

]ΛΣ
; (6.85)

UXY ≡ fXi g
ijfY

j
= −1

2

[
(ImN )−1

]XY
− LXLY ; (6.86)

PΛΣ = (ImN−1)ΛΓImNΣΓ = δΛΣ ; (6.87)

PX
Y = = δXY − iTY L

X
. (6.88)

Eq. (6.82) can then be rewritten as:

δλΛ• =
[
F−Λµν γ

µν + i
(
ImN−1

)ΛΣ (
P 0Σ + P 3Σ

)]
ε• . (6.89)

We observe that the prepotential P 0Σ, which gives the special-Kähler manifold contri-

bution to the D-term, can be given an explicit form in terms of N = 2 objects. Indeed, let

us recall that P 0Σ has the following general form, as shown in eq. (C.10) of appendix C:

P 0Σ = −2iImNΣΓfΓI kI∆L
∆

(6.90)

which gives, after reduction:

P 0Σ = −2iImNΣΓfΓαkαWL
W
. (6.91)

On the other hand, using the following N = 2 special geometry property:

fΓI k
I
∆ = iP 0∆L

Γ − fΓ∆ΣLΣ (6.92)

(fΓ∆Σ are the structure constant of the N = 2 gauge group G(2)) by contracting with L
∆

and reducing it to the submanifoldMR, we also find [5]:

P 0Σ = 2iImNΣΓfΓXY L
X
LY . (6.93)

In conclusion we get the final form of the gaugino transformation law for the N = 1

theory as: (
δλΛ•

)
N=1

= F−Λµν γ
µνε• + iDΛε• , (Λ = 1, . . . , n) , (6.94)

where, in order to retrieve the transformation law (6.25) we have set

DΛ ≡ (ImN−1)ΛΣ
(
P 0Σ + P 3Σ

)
. (6.95)

In order to show that equation (6.94) is the correct N = 1 transformation law of the

gauginos we have still to prove that NΛΣ is an antiholomorphic function of the scalar fields

zi (as it is the case for an N = 1 theory), since the corresponding object of the N = 2

special geometry NΛΣ is not antiholomorphic. For this purpose we observe that in N = 2

special geometry the following identity holds (at least when a N = 2 prepotential function

exists9)[48]:

NΛΣ = FΛΣ − 2iTΛTΣ(L
ΓImFΓ∆L

∆) , (6.96)

where the matrix FΛΣ is holomorphic.

9In appendix D we will discuss the reduction with special coordinates.
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If we now reduce the indices ΛΣ we find:

NΛΣ = FΛΣ − 2iTΛTΣ(L
XImFXY L

Y ) ≡ FΛΣ (6.97)

since TΛ = 0 is precisely the constraint (6.45). Therefore NΛΣ is antiholomorphic and the

D-term (6.95) becomes:

DΛ ≡ 2ifΛαW
α21 = −2(Imf−1(zi))ΛΣ

(
P 0Σ + P 3Σ

)
, (6.98)

where we have defined

FΛΣ(z
i) =

1

2
fΛΣ(z

i) (6.99)

in order to match the normalization of the holomorphic kinetic matrix of the N = 1 theory

appearing in eq. (6.31).

We observe that for choices of symplectic sections such that the function FΛΣ does not

exist, the relation (6.97) does not hold, but still NΛΣ has to be antiholomorphic on MR.

Un explicit example will be given in section 6.6.

As a final observation, we note that the above reduction on the indices of the N = 2

Killing vectors gives rise to kIΛ ⇒ (kiΛ, k
α
Λ, k

i
X , k

α
X). The Killing vectors kiΛ gauge the

isometries of the submanifold MR. On the other hand, kαΛ are zero on the submanifold,

since they correspond to isometries orthogonal to MR; k
i
X are also zero because we have

projected out the corresponding vectors. Finally, kαX are in general different form zero, and

enter in the definition of P 0Σ, eq. (6.91). These conclusions can be formally retrieved by

analyzing the reduction of the special geometry identity [5]

2igIJ k
I
[Λk

J
Σ] = f Γ

ΛΣ P 0Γ . (6.100)

One can easily verify that if we set Λ = Λ;Σ = Σ then one retrieves the analogous of

relation (6.100) onMR provided we set

kαΛ = 0 ; P 0X = 0 . (6.101)

For Λ = Λ;Σ = Y eq. (6.100) is identically satisfied provided we add to the previous

condition the further constraint

kiX = 0 . (6.102)

Finally, when Λ = X;Σ = Y , eq. (6.100) reduces to the relation:

2igαβk
α
[Xk

β
Y ] = f Γ

XY P 0Γ (6.103)

which has to be satisfied all over the manifoldMR.

6.3 Reduction of the hypermultiplet sector

Let us analyze the sector of the hypermultiplets when the reduction is implemented. The

scalars of the hypermultiplets belong to a quaternionic manifold MQ. A quaternionic

manifoldMQ has a holonomy group of the following type [50], [51], [11]:

Hol(MQ) = SU(2)⊗H (quaternionic)

H ⊆ Sp(2nH) . (6.104)
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Introducing flat indices {A,B,C = 1, 2} {α, β, γ = 1, . . . , 2nH} that run, respectively, in the

fundamental representations of SU(2) and Sp(2nH) (nH is the number of hypermultiplets)

we introduce the vielbein 1-form [5]

UAα = UAαu (q)dqu (6.105)

such that

huv = UAαu UBβv CαβεAB , (6.106)

where Cαβ = −Cβα and εAB = − εBA are, respectively, the flat Sp(2nH) and Sp(2) ∼
SU(2) invariant metrics. The vielbein UAα is covariantly closed with respect to the SU(2)-

connection ωx(x = 1, 2, 3) and to the Sp(2nH)-Lie Algebra valued connection ∆αβ = ∆βα:

∇UAα ≡ dUAα +
i

2
ωx (σx)

A
B ∧ UBα +∆α

β ∧ UAβ = 0 , (6.107)

where (σx)AB = εAC(σx) B
C and (σx) B

A are the standard Pauli matrices. Furthermore

UAα satisfies the reality condition:

UAα ≡ (UAα)∗ = εABCαβUBβ . (6.108)

The supersymmetry transformation laws of the fields in the hypermultiplets are given in

eq. (6.4) and (6.14), that we rewrite here using tangent-space indices for the quaternionic

variation:

UαAu δ qu = ζ
α
εA + CαβεABζβεB (6.109)

δ ζα = iUBβu ∇µ q
u γµεAεAB Cαβ + g NA

α εA (6.110)

δ ζα = iUAαu ∇µ q
u γµεA + g Nα

Aε
A . (6.111)

Let us see what happens to equations (6.109), (6.110), (6.111), when the truncation is

implemented.

First of all let us note that the scalars in N = 1 supergravity must lie in chiral

multiplets, and have in general a Kähler-Hodge structure. It is therefore required that the

holonomy of the quaternionic manifold be reduced:

Hol
(
MQ

)
⊂ SU(2)× Sp(2nH)→ Hol

(
MKH

)
⊂ U(1) × SU(n) . (6.112)

Therefore the SU(2) index A = 1, 2 and the Sp(2nH) index have to be decomposed accord-

ingly. We set α → (I, İ) ∈ U(1) × SU(nH) ⊂ Sp(2nH). Since the vielbein UAα satisfy the

reality condition (6.108), we have, in U(nH) indices :

U1I ≡ (U1I)∗ = CIİU2İ

U2I ≡ (U2I)∗ = −CİIU1İ , (6.113)

where we have used the decomposition of the symplectic metric Cαβ =
(

0 C
IJ̇

C
J̇I

0

)
with

CIJ̇ = −CJ̇I = δIJ̇ .
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From equation (6.113) one finds that it is sufficient to refer to the 2nH complex vielbein

U1I ,U2I since the ones with dotted indices are related to them by complex conjugation.

Let us first examine the torsion-free equation obeyed by the quaternionic vielbein

written in the decomposed indices:

dU1I + i

2
ω3 ∧ U1I + i

2
(ω1 − iω2) ∧ U2I +∆I

J ∧ U1J +∆I
J̇
∧ U1J̇ = 0 (6.114)

dU2I − i

2
(ω1 + iω2) ∧ U1I − i

2
ω3 ∧ U2I +∆I

J ∧ U2J +∆I
J̇
∧ U2J̇ = 0 . (6.115)

For the N = 1 reduced Kähler-Hodge scalar manifold, the holonomy has to be U(1)×
SU(nH), with a non trivial U(1)-bundle, whose field-strength has to be identified with the

Kähler form. Since in the N = 2 quaternionic parent theory there is a similar non trivial

SU(2)-bundle, whose field-strength has to be identified with the Hyper-Kähler form, we

assume that the U(1) part of the holonomy should be valued in the U(1) subgroup of the

SU(2) valued connection of N = 2 quaternionic holonomy group.

From equations (6.114), (6.115) we see that, setting

ω1 = ω2 = ∆I
J̇
= 0 (6.116)

we get two Kähler-Hodge manifolds whose respective vielbeins obey the torsionless equa-

tions for each submanifold.

Let us now check the involution property dictated by the Frobenius theorem. As we

know from section 3, this amounts to demand that the curvatures of the connections set to

zero, eq. (6.116), must satisfy the constraints of being also zero on the submanifold. That

is we must have:

Ω1 = Ω2 = RI
J̇
= 0 , (6.117)

where the SU(2) curvature Ωx is given by10

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = iλCαβ(σ

x)ABUαA ∧ UβB (6.119)

while the Sp(2nH) curvature Rα
β is given by:

Rα
β ≡ d∆α

β +∆α
γ ∧∆γ

β

= λεABUAα ∧ UBβ + UAγ ∧ UBδεABCαρΩρβγδ , (6.120)

where Ωαβγδ is a completely symmetric 4-index tensor [2].

From equation (6.119) we see that the constraint (6.117) for involution is satisfied iff

U1I ∧ U2I = 0 (6.121)

that is if, say, the subset U 2I =
(
U1İ
)∗

of the quaternionic vielbein is set to zero on a

submanifoldMKH ⊂MQ.
10Note that Ωx = λKx

uv with Kx
uv given in terms of the three complex structures by:

K
x = K

x
uvdq

u ∧ dqv

K
x
uv = huw(J

x)wv . (6.118)

The scale λ is fixed by supersymmetry of the lagrangian and in our conventions is λ = −1.
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When condition (6.121) is imposed, our submanifold has dimension at most half the

dimension of the quaternionic manifold (in the following we always refer to the maximal

case, where I = 1, . . . , nH) and the SU(2) connection is reduced to a U(1) connection,

whose curvature onMKH is:

Ω3|MKH = iλU1I ∧ U1I = iλU1I ∧ U1I (6.122)

so that the SU(2)-bundle of the quaternionic manifold is reduced to a U(1)-Hodge bundle

for the nH dimensional complex submanifold spanned by the nH complex vielbein U1I .
The truncation corresponds therefore to select a nH -complex dimensional submanifold

MKH ⊂ MQ spanned by the vielbein U 1I and to ask that, on the submanifold, the 2nH
extra degrees of freedom are frozen, that is:

U2I |MKH =
(
U1İ
)∗ |MKH = 0 . (6.123)

Calling ws (s = 1, . . . nH) a set of nH holomorphic coordinates on MKH and nt (t =

2nH + 1, . . . , 4nH) a set of 2nH real coordinates for the space orthogonal toMKH , we see

that equation (6.123), which can be rewritten as:

U2I |MKH =
(
U2Is dws + U2Is dws + U2It dnt

)
|MKH = 0 , (6.124)

implies:

U2Is |MKH = U2Is |MKH = 0 (6.125)

since:

dnt|MKH = 0 . (6.126)

On the other hand, we also have:

U1It |MKH = 0 (6.127)

since the vielbein U 1I is tangent to the submanifold.

Let us note that the conditions (6.117) on the curvatures Ω1,Ω2 imposed on the sub-

manifold do not imply that all their components are also zero there, and indeed from

(6.125), (6.127) and the definition (6.119) it follows:

Ω1ss|MKH = Ω1tt′ |MKH = Ω2ss|MKH = Ω2tt′ |MKH = 0 (6.128)

while the mixed components Ω1st|MKH , Ω2st|MKH (together with their complex conjugates

Ω1st|MKH , Ω2st|MKH ) are different from zero. We also observe that, when the truncation is

performed, also the mixed components of the metric are zero:

hst|MKH =
(
U1Is U1I|t

)
|MKH = 0 . (6.129)

From (6.125), (6.127) and (6.119) it also follows that the only components different from

zero of the 2-form Ω3 are Ω3ss and Ω3tt′ .

Let us now analyze in detail whether the involution of the constraint ∆I
J̇

= 0 is

satisfied:

RI
J̇
= λCJ̇K

(
U1I ∧ U2K − U2I ∧ U1K

)
+

+2CIİ
[
U1K ∧ U2LΩİJ̇KL + 2U1K ∧ U2L̇ΩİJ̇KL̇ + U1K̇ ∧ U2L̇ΩİJ̇K̇L̇

]
= 0 . (6.130)
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After imposing (6.123), the first line in eq. (6.130) is automatically zero, and eq. (6.130) is

reduced to the constraint:

4CIİU1K ∧ U2L̇ΩİJ̇KL̇ = 0 . (6.131)

Furthermore, let us note that when the constraint (6.130) is imposed, the Sp(2nH) holon-

omy gets reduced to U(1)× SU(nH). The U(nH) curvature becomes:

RIJ̇ = λU1I ∧ U2K̇ + CIK̇CJ̇LU1M ∧ U2ṄΩṄK̇ML . (6.132)

Choosing cordinates such that q4s+3 = q4s+4 = 0, s = 0, . . . , nH − 1 we may introduce

complex coordinates ws = q1+4s+iq2+4s with Kähler 2-formK = Ω3 which is automatically

closed. The U(1) connection of the Hodge bundle is given by ω3s as can be ascertained from

the reduced form of eq. (6.114) expressing the vanishing of the torsion on the Kähler-Hodge

submanifoldMKH :

∇U1I ≡ dU1I + i

2
ω3 ∧ U1I +∆I

J ∧ U1J = 0 . (6.133)

In conclusion, what we have found is that the conditions for the truncation of a quater-

nionic manifold (spanning the scalar sector of nH N = 2 hypermultiplets) to a Kähler–

Hodge one (spanning the scalar sector of nh N = 1 chiral multiplets) are the following:

• U2I = ω1 = ω2 = ∆I
J̇
= 0

• The quaternionic manifold cannot be generic; in particular, the completely symmet-

ric tensor Ωαβγδ ∈ Sp(2nH), appearing in the Sp(2nH) curvature, must have the

following constraint on its components:

ΩİJ̇KL̇ = 0 . (6.134)

The resulting submanifold, denoted by MKH , has at most nH complex dimensions [10]

and is of Kähler-Hodge type, with kählerian vielbein P I , P
I
(for its normalization, see

eq. (6.146) below):

U1Iu dqu −→ 1√
2
P
I
sdw

s

U2İu dqu −→ 1√
2
P I
s dw

s (6.135)

(where ws, s = 1, . . . nH are complex coordinates on the reduced Kähler manifold) and

U(1)×U(nH) curvature given by:

RI
J ≡ Ru

vU1Iu Uv1J −→
i

2
Ω3δIJ + RI

J . (6.136)

Once the dimension of the manifold has been truncated, the only constraint on the

quaternionic manifold is given by eq. (6.134). Let us therefore discuss how general it is,

and which quaternionic manifolds satisfy it.
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First of all we note that the family of symmetric spaces Sp(2m, 2)/Sp(2)×Sp(2m) has

a vanishing Ω-tensor, Ωαβγδ = 0 [11], and hence a fortiori satisfies our requirement.

Furthermore we can now show that the special quaternionic manifolds obtained by

c-map [52] from special-Kähler manifolds do indeed satisfy the condition:

ΩİJ̇KL̇ = 0 . (6.137)

Indeed the tensor (6.137) appears in eq. (6.130) multiplied by the product of the vielbein

U1K∧U2L̇. The same sub-block of the Sp(2n) curvature is denoted in [52] by r ′A
B
. Now, it is

easy to recognise that the set of n+ 1 complex vielbein (v, ea) of [52] have to be identified

with our vielbein U1K . However, no wedge product of type v ∧ ea nor of type ea ∧ eb
appear in r′A

B
, which means that the corresponding coefficient ΩİJ̇KL̇ = 0. Therefore, all

the special quaternionic manifolds (including non symmetric quaternionic spaces) can be

reduced to Kähler-Hodge manifolds in a way consistent with our procedure.

There are however other symmetric spaces which do not correspond to c-map of special-

Kähler manifolds, yet they satisfy our constraints. Indeed consider the following reduction

from quaternionic to Kähler-Hodge manifolds:

SO(4, n)

SO(4)× SO(n)
−→ SO(2, n1)

SO(2)× SO(n1)
× SO(2, n2)

SO(2) × SO(n2)
, (6.138)

where (n1 + n2 = n). We see that they satisfy our constraints. Indeed, the Kähler-Hodge

manifold on the right of the correspondence in eq. (6.138) is apparently a submanifold

of the corresponding quaternionic with half dimension. Therefore the conditions for the

validity of the Frobenius theorem have to be satisfied, in particular eq. (6.134). Indeed,

for symmetric spaces we can compute explicitly the Ω-tensor by comparing the general

formula of the Riemann tensor for symmetric spaces:

Ruv
tsUαAu UβBv = −1

2
f
αA|βB

hf
h

γC|δD U
γC
[t UδDs] , (6.139)

(where we have denoted by f
αA|βB

γC the structure constants of the isometry group of the

symmetric manifold K = G/H, the index h running on the Lie algebra of H, the couple of

indices Aα labelling the coset generators) with its general form in the case of quaternionic

manifolds:

Ruv
tsUαAu UβBv = − i

2
Ωx
ts(σx)

ABCαβ + Rαβ
ts ε

AB . (6.140)

One easily obtains

Ωαβγδ = −
λ

2
(CαγCβδ + CαδCβγ)−

i

4
εACεBDfC{α|β}D|hf

h
A{γ|δ}B , (6.141)

where the curly brackets mean symmetrization of the corresponding indices.

Using equation (6.141), we have explicitly verified the validity of (6.134) in the case

of the omega-tensor appearing in (6.138). These quaternionic reductions explicitly appear

in some effective lagrangians coming from superstring theory models [53].
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We still have to analyze the effects of the reduction on the hyperini and on the super-

symmetry transformation laws. They become, after putting ε2 = 0:

U1Iu δ qu = ζ
I
ε1 (6.142)

U2Iu δ qu = −CIJ̇ζ J̇ε1 (6.143)

δ ζI = iU2J̇u CIJ̇ ∇µ q
u γµε1 + gN1

I ε1 =
(
δ ζI

)∗
(6.144)

δ ζJ̇ = iU2Iu CJ̇I ∇µ q
u γµε1 + gN1

J̇
ε1 =

(
δ ζ J̇

)∗
. (6.145)

Choosing the normalization in such a way to match the normalization of the kinetic terms

of the N = 1 theory, we set:

U2J̇CIJ̇ =
1√
2
PIs (6.146)

N1
I =

1√
2
PIsN

s (6.147)

ζs ≡
√
2P sIζI =

√
2gssP

I
sζI , (6.148)

U2J̇u CIJ̇∇µq
u|MKH =

1√
2
PIs∇µw

s (6.149)

which implies:

U2J̇u CIJ̇δ q
u|MKH =

1√
2
P Isδw

s , (6.150)

where ζs denote chiral left-handed spinors with holomorphic world indices, PIs are the

vielbein of the Kähler-Hodge manifold MKH and ws its holomorphic coordinates. We

observe that due to the definition (6.146) the 2-form Ω3 defined in equation (6.122) is one

half the Kähler 2-form onMKH .

In that way we obtain the standard formulae for the N = 1 supersymmetry transfor-

mation laws of the chiral multiplets (ζ s, ws), that is:

δζs = i∇µw
sγµε• + N sε•

δws = ζsε• , (6.151)

where

N s ≡
√
2 g(Λ)P

sJN1
J = 2

√
2 g(Λ)P

sJCJJ̇U1J̇t ktΛL
Λ
. (6.152)

Note that the shift term N s is indeed different from zero, but depends only on the isometries

of the projected out part of the quaternionic manifold.11 The explicit N = 1 form of the

gauging contribution will be given in the next section 6.4.

From equation (6.143), however, we see that the condition U 2I = 0 implies that the

subset of nH hyperinos ζİ have to be truncated out.

Consistency of the truncation in equation (6.145) implies

N1
J̇
≡ 2g(Λ)CIJ̇U1Iu kuΛL

Λ
= 2g(Λ)CIJ̇U1Is ksΛL

Λ
= 0 ⇒ g(Λ)k

s
ΛL

Λ
= 0 . (6.153)

The restrictions on the theory imposed by this constraint will be discussed in the subsec-

tion 6.4.
11Indeed, the request U1İ |M =

(
U1İs dws + h.c. + U1İt dnt

)
|M = 0 implies U1İs = 0 but does not impose

any restriction on the components orthogonal to the retained submanifold.
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6.4 Further consequences of the gauging

The truncation N = 2 → N = 1 implies, as we have seen in the previous subsections, a

number of consequences that we are now going to discuss, and in particular:

• The D-term of the N = 1-reduced gaugino λΛ = −2fΛi λi2 is:

DΛ =W i21 = −2g(Λ)(Imf)−1ΛΣ
(
P 3Σ(w

s) + P 0Σ(z
i)
)
. (6.154)

• The N = 1-reduced superpotential, that is the gravitino mass, is:

L(z, w) =
i

2
g(X)L

X
(
P 1X − iP 2X

)
. (6.155)

• The fermion shifts of the N = 1 chiral spinors χi = λi1 coming from the N = 2

gaugini are:

N i = 2gi∇L . (6.156)

• The fermion shifts of the N = 1 chiral spinors ζ s coming from N = 2 hypermultiplets

are:

N s = −4g(X)ktXL
XU1İt Us2İ . (6.157)

In order for the shifts given in eqs. (6.155), (6.156), (6.157) to define the correct trans-

formation laws of the N = 1 theory, we still have to show that the superpotential L is

covariantly holomorphic with respect to the ws coordinates:

∇sL = 0 (6.158)

and that the N s shift for the chiral multiplets coming from the quaternionic sector can be

written with the standard expression for an N = 1 chiral multiplets shift, that is as:

N s = 2 g gss∇sL . (6.159)

These features do indeed follow, as a consequence of the reduction SU(2) → U(1) in the

holonomy group. Indeed:

∇sL =
i

2
LΛ∇sP

x
Λ (σx) 21 = iktXL

XΩx
st (σ

x) 21 . (6.160)

Now, recalling that:

Ωx (σx) 21 = 2Uα1 ∧ U2βCαβ = 4UI1 ∧ U2J̇CIJ̇ = 4UI1tU2J̇s CIJ̇dn
t ∧ dws (6.161)

we immediatly get: Ωx
st (σ

x) 21 6= 0 while Ωx
st (σ

x) 21 = 0, so that ∇sL = 0 follows.

Let us now compute N s explicitly:

N s =
√
2P sJ g N1

J = 4 g(Λ) CJJ̇g
ssUJ2sU1J̇t ktΛL

Λ

= 4 g(Λ) CJJ̇g
ss i

2
Ωx
ts(σ

x)12k
t
XL

X

= −i g(Λ) gss∇sP
x
X(σx)12L

X
= −i g(Λ) gss∇s

(
P 1X + iP 2X

)
L
X

= 2 g(Λ) g
ss∇sL , (6.162)

that is it has the right expression for an N = 1 chiral shift, according to eq. (6.30).
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Let us now discuss the implications of the gauging constraints (6.37), (6.38) and (6.153)

on the N = 1 theory obtained by reduction, that is the consistency of the truncation of

the second gravitino multiplet δψµ2 = 0 and of the spinors ζİ in the hypermultiplets sector

for the gauged theory:

ω̂ 2
1 = 0 =⇒ g(Λ)A

Λ
(
P 1Λ − iP 2Λ

)
= 0 (6.163)

S12 = 0 =⇒ g(Λ)L
ΛP 3Λ = 0 (6.164)

δζİ = 0 =⇒ g(Λ)k
s
ΛL

Λ
= 0 . (6.165)

Since the vectors of the N = 2 theory which are not gauged do not enter in the previous

equations we may limit ourselves to consider the case where the index Λ runs over the

adjoint representation of the N = 2 gauge group. If we call G(2) the gauge group of the

N = 2 theory and G(1) ⊆ G(2) the gauge group of the corresponding N = 1 theory, then

we have that the adjoint representation of G(2) decomposes as

Adj(G(2))⇒ Adj(G(1)) +R(G(1)) , (6.166)

where R(G(1)) denotes some representation of (G(1)) (the representation R(G(1)) is of

course absent for G(1) = G(2)). The gauged vectors of the N = 1 theory are restricted to

the subset {AΛ} generating Adj(G(1)) (that is the index Λ is decomposed as Λ→ (Λ, X),

with Λ ∈ Adj(G(2) and X ∈ R(G(1))).
This decomposition of the indices is of course the same as the one used in analyzing

the consequences of the constraint (6.34) in section 6.2. In particular, the graviphoton

index Λ = 0 always belongs to the set X since the graviphoton A0 is projected out.

The quaternionic Killing vectors of the N = 2 theory then decompose as

kuΛ ⇒ {ksΛ, ksΛ, ktΛ, ksX , ksX , ktX} . (6.167)

Obviously, we must have that ksX = 0 since the Killing vectors of the reduced submanifold

have to span the adjoint representation of G(1). Viceversa, the Killing vectors with world

index in the orthogonal complement, ktΛ, must obey ktΛ = 0, while ktX are in general

different from zero. Indeed, the isometries generated by ktΛ would not leave invariant the

hypersurface describing the submanifold MKH ⊂ MQ. These properties will be in fact

confirmed in appendix E, by a careful analysis of the reduction of the quaternionic Ward

identities.

Coming back to the implications of the constraints (6.163), (6.164), (6.165), they can

be rewritten, using the results of section 6.2, as follows:

g(Λ)A
Λ
(
P 1Λ − iP 2Λ

)
= 0 (6.168)

g(X)L
XP 3X = 0 (6.169)

g(X)k
s
XL

X
= 0 . (6.170)

Since we have found that ksX = 0, eq. (6.170) is identically satisfied.

Eqs. (6.168) and (6.169) are satisfied by requiring:

P 1Λ = P 2Λ = 0 ; P 3X = 0 . (6.171)
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Then the superpotential of the theory is given by [12]–[22]:

L =
i

2
LX(z, z)

(
P 1X(w,w)− iP 2X(w,w)

)
. (6.172)

We are left with an N = 1 theory coupled to n′V vector multiplets (Λ = 1, . . . , n′V ) and

nC+nH chiral multiplets (X = 0, 1, . . . , nC) with superpotential (6.172). All the isometries

of the scalar manifolds are in principle gauged since the D-term of the reducedN = 1 theory

depends on P 0Λ(z, z) + P 3Λ(w,w).

In the particular case where the gauge group G(1) of the N = 1 reduced theory is the

same as the gauge group G(2) of the N = 2 parent theory, the index X takes only the value

zero and all the scalars are truncated out (LΛ = 0, L0̇ = 1). The vectors AΛ are retained

in the truncation while A0 is projected out. In this case the superpotential reduces to:

L =
i

2
L0
(
P 10 − iP 20

)
. (6.173)

Moreover, from eq. (6.93) we have that in this case the prepotential P 0Λ = 0, and the

D-term depends only on P 3Λ(w,w). We then have an N = 1 theory coupled to nV vector

multiplets and nH chiral multiplets, with gauged isometries and superpotential (6.173).

Note that when P 10 − iP 20 is constant, (6.173) gives a constant F-term. This case can

only be obtained in absence of hypermultiplets. Indeed, from the general quaternionic

formula [54]

nHP
x
Λ = −1

2
Ωx
uv∇ukvΛ (6.174)

we see that if nH 6= 0 a Fayet-Iliopoulos term, as well as a constant F-term, is excluded [54],

since a constant P x
0 is not compatible with the covariance of the r.h.s. under SU(2) and the

gauge group. Even when the theory is ungauged (kuΛ = 0) a constant P x
0 is still excluded

for nH 6= 0, since in this case equation (6.174) reduces to nHP
x
Λ = 0, implying P x

Λ = 0.

If nH = 0, then a constant P x
Λ is possible (N = 2 Fayet-Iliopoulos term) [55],12 provided

the gauge group is abelian (otherwise it breaks the gauge group) and provided it satisfies

the identity

εxyzP y
ΛP

z
Σ = 0 (6.175)

which follows from the general quaternionic Ward identity [5, 11]

1

λ
Ωx
uvk

u
Λk

v
Σ +

1

2
εxyzP y

ΛP
z
Σ −

1

2
f Γ
ΛΣ P x

Γ = 0 (6.176)

in absence of hypermultiplets.

When we reduce the theory to N = 1, a constant value of P iX ≡ ξiX 6= 0 (i = 1, 2)

or P 3Λ ≡ ξ3Λ 6= 0 are both compatible with all the constraints (6.168)–(6.170); in partic-

ular LΛξ3Λ = 0 and AΛξiΛ = 0 implying the presence of a N = 1 Fayet-Iliopoulos term

corresponding to ξ3Λ, or a constant F-term corresponding to ξ iX .

12An N = 2 Fayet-Iliopoulos term coming from P 0Λ is excluded by the Ward identity (6.92).
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6.5 N = 2→ N = 1 scalar potential

Let us now compute explicitely the reduction of the scalar potential of the N = 2 theory

down to N = 1. The N = 2 scalar potential is given by:

VN=2 =
(
gIJ k

I
Λk

J
Σ + 4huvk

u
Λk

v
Σ

)
L
Λ
LΣ +

(
−1

2
(ImN−1)ΛΣ − LΛLΣ

)
P x
ΛP

x
Σ −

−3P x
ΛP

x
ΣL

Λ
LΣ (6.177)

while the N = 1 scalar potential can be written in terms of the covariantly holomorphic

superpotential L as:

VN=1 = 4

(
∇`L∇`Lg

`` − 3|L|2 + 1

16
ImfΛΣD

ΛDΣ
)
, (6.178)

where the holomorphic index ` runs over all the scalars of the theory.

Before performing the reduction it is instructive to work out in detail the supersym-

metry Ward identity involving the scalar potential [56, 57]:

δABVN=2 = −12S
AC
SCB + gIJW

IACWJ
BC + 2NA

α N
α
B . (6.179)

Instead of taking the trace of (6.179) on the SU(2) indices A,B, thus recovering the po-

tential (6.177), one can alternatively write down the stronger relations:

δ11VN=2 = VN=2 = −12S1CSC1 + gIJW
I1CWJ

1C + 2N1
αN

α
1 (6.180)

δ22VN=2 = VN=2 = −12S2CS2C + gIJW
I2CWJ

C2 + 2N2
αN

α
2 (6.181)

and furthermore:

δ21VN=2 = 0 = −12S2CS1C + gIJW
iC2WJ

C1 + 2N2
αN

α
1 . (6.182)

When we pass to the truncated theory, the matrix SAB becomes diagonal (S12 ∼ P 3ΛL
Λ
= 0)

and its eigenvalues are the masses of the 2 gravitini:

SAB =

(
L 0

0 L̃

)
, (6.183)

where:

L =
i

2
LX(P 1X − iP 2X) (6.184)

L̃ =
i

2
LX(−P 1X − iP 2X) (6.185)

so that:

|L|2 = S11S
11 =

1

4
LXL

Y [
P x
XP

x
Y + i

(
P 1XP

2
Y − P 2XP 1Y

)]

|L̃|2 = S22S
22 =

1

4
LXL

Y [
P x
XP

x
Y − i

(
P 1XP

2
Y − P 2XP 1Y

)]
. (6.186)

– 41 –



J
H
E
P
0
3
(
2
0
0
2
)
0
2
5

The difference between the 2 gravitino mass eigenvalues can be written in terms of the

fermionic shifts as:

|L|2 − |L̃|2 =
i

2

(
P 1XP

2
Y − P 2XP 1Y

)
= S

1C
SC1 − S2CSC2

=
1

12

(
giW

i1CW 
1C + 2N1

αN
α
1 − giW i2CW 

2C − 2N 2
αN

α
2

)
. (6.187)

Let us now perform the reduction. Using, e.g., equation (6.180) and recalling that

S12 = 0 and N 1
İ
= 0 (see eq. (6.153)), we find :

VN=2→N=1 = −12S11S11 + gIJ

(
W I11WJ

11 +W I12WJ
12

)
+ 2N1

IN
I
1 . (6.188)

Using equations (6.44), (6.43), the first two terms of equation (6.188) give:

− 12S
11
S11 = −3P iXP iY LXL

Y
+ 3i

(
P 2XP

1
Y − P 1XP 2Y

)
LXL

Y
= −12LL (6.189)

gIJW
I11WJ

11 =
(
P 1X + iP 2X

) (
P 1Y − iP 2Y

)
UXY = 4gkl∇kL∇lL . (6.190)

For the term gIJW
I21WJ

21 we obtain:

gIJW
I21WJ

21 = −2ImNΛΣfΛI fΣJW
I21WJ

21 = −
1

2
ImNΛΣDΛDΣ =

1

4
ImfΛΣD

ΛDΣ ,

(6.191)

where we have reduced the indices according to the results of subsection 6.3 and used

equations (6.98), (6.97), (6.99).

To compute the last term in eq. (6.188) we use eq. (6.147) and (6.159) and we find

2N1
IN

I
1 = gssN

sN
s
= 4gss∇sL∇sL . (6.192)

Collecting all the terms we find that the reduction of the N = 2 scalar potential gives:

VN=2→N=1 = 4

[
−3LL+ gi∇iL∇L+ gss∇sL∇sL+

1

16
ImfΛΣD

ΛDΣ
]

(6.193)

which coincides with the scalar potential (6.178) of the N = 1 theory, where we have

decomposed the indices according to the fact that the σ-model is a product manifold .

We note that our computation of the reduction of the scalar potential has been per-

formed by first reducing the N = 2 fermionic shifts to N = 1 and then computing the

potential. Of course, we could also have performed the computation by directly computing

the reduction of each term of the N = 2 potential. In the latter case, to obtain the desired

results requires some non trivial computations. In particular, there are some subtleties

related to the observation that the N = 2 potential does not contain “interference” contri-

butions of the form P 0ΛP
x
Σ or P x

[ΛP
y
Σ], while such terms are instead present in the N = 1

potential, given the form (6.154) of the D-term and (6.155) of the superpotential. To solve

the puzzle and recover the precise correspondence between the N = 2 and N = 1 theories,

one has to use several times the reduced forms of the Ward identities of quaternionic and

special-Kähler geometries, the definition of the quaternionic Killing vectors [45, 54, 58]

and the expression that the special geometry prepotential gets in the reduction, equation

(6.93). The explicit computation is given in appendix F.
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N = 2 (nV = 0),MQ (dimQ = n) N = 1 (nV = 0),MKH (dimC = n)
U(2,n+1)

U(2)×U(n+1)
SU(1,1)
U(1) ×

U(1,n)
U(1)×U(n)

SO(4,n+1)
SO(4)×SO(n+1) (n ≥ 2) SU(1,1)

U(1) ×
SU(1,1)
U(1) ×

SO(2,n−1)
SO(2)×SO(n−1)

G2(2)
SO(4)

SU(1,1)
U(1) ×

SU(1,1)
U(1)

F4(4)
USp(6)×USp(2)

SU(1,1)
U(1) ×

Sp(6,R)
U(3)

E6(2)
SU(6)×SU(2)

SU(1,1)
U(1) ×

SU(3,3)
SU(3)×SU(3)×U(1)

E7(−8)
SO(12)×SU(2)

SU(1,1)
U(1) ×

SO∗(12)
U(6)

E8(−24)
E7×SU(2)

SU(1,1)
U(1) ×

E7(−26)
E6×SO(2)

Table 5: N = 2 → N = 1.

6.6 Examples of truncation to N = 1 gauged supergravity

As an application of the formalism developed in this section, we can now consider reduction

on N = 8 to N = 1 or in general of N = 2 theories down to N = 1.

The simplest case is to consider N = 2 special-Kähler manifolds which are also N = 1

Hodge-Kähler, or submanifolds of half the dimension of quaternionic manifolds which are

“dual” (under c-map) to special-Kähler.

We first consider “dual quaternionic manifolds” which are symmetric spaces; they were

all given in [39, table 4]. This immediately gives the N = 2→ N = 1 reduction of theories

with only hypermultiplets as follows:

It is interesting to note that ifMQ =
GQ

HQ
,MSK = SU(1,1)×G

U(1)×H then HQ = SU(2)×Gc,

where Gc is the compact form of G!.

From the previous table we can immediately obtain N = 1 truncations of N = 8

supergravity with (nV , nH) replaced by (n
(N=1)
V , nC = nV + nQ).

In all these models (unless nQ = 0) the Kähler-Hodge manifold will be of the form

SK(nV )× SK(nQ − 1)× SU(1, 1)

U(1)
. (6.194)

As a simple example, motivated by string construction [53], for the application of the

results of the previous sections, we consider a N = 4, D = 4 matter coupled supergravity

with gauge group SO(n) (n even). The σ-model of the scalars in presence of gauging is

given by:

SU(1, 1)

U(1)
× SO(6, n(n−1)2 )

SO(6)× SO(n(n−1)2 )
, (6.195)

and the content of the scalar sector can be encoded in the vielbein 1-form PABI where

the antisymmetric couple AB labels the irrep. 6 ∈ SU(4) and I labels the fundamental

representation of SO(n(n−1)2 ).

This N = 4 theory is reduced to N = 2 through the action of a Z2 group and to N = 1

by the action of Z2 × Z′2. The generators of Z2 × Z′2 in the R-symmetry group SU(4) are
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given by:

α =




1 0 0 0

0 1 0 0

0 0 eiπ 0

0 0 0 eiπ


 ; β =




1 0 0 0

0 eiπ 0 0

0 0 1 0

0 0 0 eiπ


 (6.196)

so that two gravitinos are singlets with respect to Z2 and one gravitino is invariant with

respect to Z2 × Z′2.
To obtain charged matter in the N = 4→ N = 2 reduction, we implement the action

of Z2 on the gauge group. Let us make the following decomposition

SO(n)
Z2−→ SO(nA)× SO(nB) (6.197)

so that, under the action of Z2:

nA ⇒ nA

nB ⇒ αnB (6.198)

and then

Adj(SO(nA))
Z2−→ Adj(SO(nA))

Adj(SO(nB))
Z2−→ Adj(SO(nB))

(nA, nB)
Z2−→ α(nA, nB) . (6.199)

Correspondingly, for the group SU(4) we have:

4
Z2−→ α4

21
Z2−→ 21 . (6.200)

The scalars transforming non trivially under Z2 are projected out and we are left with the

coset manifold:

SU(1, 1)

U(1)
×

SO
(
2, nA(nA−1)2 + nB(nB−1)

2

)

SO(2)× SO
(
nA(nA−1)

2 + nB(nB−1)
2

) × SO(4, nAnB)

SO(4) × SO(nAnB)
, (6.201)

where the first two factors define an N = 2 special-Kähler manifold and the last factor is

a quaternionic manifold.

In order to obtain an N = 1 supergravity theory, the gauge groups SO(nA) and SO(nB)

are further decomposed as follows:

SO(nA) → SO(n1)× SO(n2)

SO(nB) → SO(n3)× SO(n4) (6.202)

and we define the action of Z′2 as:

n1 ⇒ n1 , n2 ⇒ βn2

n3 ⇒ n3 , n4 ⇒ βn4 . (6.203)
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This induces an action of Z2 × Z′2 on the decomposition of the gauge group:

Adj(SO(n))
Z2−→ Adj(SO(nA)) +Adj(SO(nB)) + (nA, nB)α

Z2×Z′2−→ Adj(SO(n1))1 +Adj(SO(n2))1 +Adj(SO(n3))1 +Adj(SO(n4))1 +

+(n1, n2, 1, 1)β + (1, 1, n3, n4)β + (n1, 1, n3, 1)α +

+(n1, 1, 1, n4)αβ + (1, n2, n3, 1)αβ + (1, n2, 1, n4)α . (6.204)

In equation (6.204) we have labelled each representation with indices 1, α, β, αβ whose

meaning is that the corresponding representation is invariant or transforms under α, β

or αβ respectively. That is the representations Adj(SO(nI)) are invariant under Z2 × Z′2,
while the remaining bifundamental representations (nI , nJ) transform as follows:

(n1, n3); (n2, n4) transform under α

(n1, n2); (n3, n4) transform under β

(n2, n3); (n1, n4) transform under αβ . (6.205)

With the same notation, let us now consider the Z2 × Z′2 action on the 6 of SU(4):

6
Z2−→ 4α + 21

Z2×Z′2−→ (2α + 2αβ) + 2β . (6.206)

Joining the information coming from the the decomposition of SU(4) and SO(n(n− 1)/2)

we see that the scalars which remain invariant under the action of Z2 × Z′2 are given

by the vielbein in the following representations: P2α(n1,n3);P2α(n2,n4); P2β (n1,n2);P2β(n3,n4);

P2αβ (n1,n4);P2αβ (n2,n3). This means that the special-Kähler manifold reduces to:

SU(1, 1)

U(1)
×

SO
(
2, nA(nA−1)2 + nB(nB−1)

2

)

SO(2) × SO
(
nA(nA−1)

2 + nB(nB−1)
2

) → SU(1, 1)

U(1)
× SO(2, n1n2 + n3n4)

SO(2)× SO(n1n2 + n3n4)

(6.207)

while the quaternionic manifold splits as follows:

SO(4, nAnB)

SO(4)× SO(nAnB)
→ SO(2, n1n3 + n2n4)

SO(2)× SO(n1n3 + n2n4)
× SO(2, n1n4 + n2n3)

SO(2) × SO(n1n4 + n2n3)
. (6.208)

Let us now comment this result.

From the analysis in section 6.2 we have learnt that when we reduce a gauged N = 2

theory to N = 1 (with G(2) → G(1)) the surviving scalars from the vector multiplets sector

are those which are in the representation R(G(1)) according to eq. (6.166), while all the

scalars in the adjoint representation of G(1) are truncated out. Precisely this happens in

our case. Indeed, from equation (6.207) the irreps (n1, n2) and (n3, n4) belong to the left

over representations in eq. (6.204). Furthermore, all the other bifundamental rep. belong

to the scalars coming from the quaternionic sector, according to equation (6.208). Note

that the total dimensional of the product manifold of equation (6.208) is exactly half
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the dimension of the parent quaternionic manifold, according to the general result found

in section 6.1. It is interesting to observe that the same kind of result appears in the

decomposition N = 4 → N = 2 described by eq. (6.201). In fact, the reduced product

manifold in eq. (6.201) has a σ-model whose scalars belong again to the representation

R = (nA, nB) left over in the reduction of the adjoint representation of the N = 4 gauge

group.

Other examples can be obtained [41] from heterotic strings compactified on ZN orb-

ifolds with reduced non abelian gauge group E6.

We finally observe that the N = 2 special-Kähler manifold in the l.h.s. of (6.207) can

be parametrized with the symplectic section (LΛ,MΛ = ηΛΣSL
Σ) (with LΛLΣηΛΣ = 0

and ηΛΣ = (1, 1,−1, . . . ,−1)) where a prepotential F does not exist [59]. In this case the

N = 2 vector kinetic matrix has the form:

NΛΣ = (S − S)
(
ΦΛΦΣ +ΦΛΦΣ

)
+ SηΛΣ ; ΦΛ ≡

LΛ√
LΛLΛ

. (6.209)

When we perform the truncation to N = 1, the sections LΛ become zero, and the N = 1

vector kinetic matrix takes the form:

NΛΣ = SηΛΣ , (6.210)

that is it becomes antiholomorphic in the complex scalar S parametrizing the manifold

SU(1, 1)/U(1).
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A. Supersymmetry reduction from superspace Bianchi identities

We want now to show that the constraints found at the level of supersymmetry transfor-

mation laws are actually sufficient to guarantee the closure of the supersymmetry algebra

of the reduced theory.

We prove this statement by considering the reduction of the superspace Bianchi iden-

tities of the N = 8 theory (which, as is well known, is equivalent to the “on-shell” closure

of the supersymmetry algebra). The N = 8 Bianchi identities are [60, 43] (we omit the
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wedge product symbols among the products of forms):

Rpq ∧ Vq + iψAγ
pρA − iρAγ

pψA = 0

∇ρA +
1

4
RpqγpqψA −R B

A ψB = 0

∇FΛΣ − 2fΛΣABρ
AψB − 2f

ΛΣAB
ρAψB −

1

2
f
ΛΣCD

PABCDψ
A
ψB − 1

2
fΛΣCDP

ABCD
ψAψB = 0

∇ (∇χABC)− 3R
L

[A χBC]L +
1

4
RpqγpqχABC = 0

∇PABCD = 0

in terms of the supercovariant field-strengths:

T p ≡ DV p − i

2
ψAγ

pψA = 0

Rpq ≡ dωpq − ωprωrq

FΛΣ ≡ dAΛΣ + fΛΣABψ
A
ψB + f

ΛΣ|AB
ψAψB

ρA ≡ DψA + ω B
A ψB

∇χABC ≡ DχABC + 3ω
L

[A χBC]L

R B
A ≡ dω B

A + ω C
A ω B

C .

Note that all the fields are actually superfield 1-forms whose restriction at θ = dθ = 0 gives

the ordinary space-time fields.

To show how the Bianchi identities of the N = 8 theory reduce to the Bianchi identities

of the N = N ′ theory, we just work out the example of the N = 8 → N = 6 reduction.

The other cases can be analyzed in analogous way.

First of all we see that, by decomposing the R-symmetry indices as in section 2 and

setting ψi = 0 (i = 7, 8), the supercovariant field-strengths get reduced as follows: the

superspace bosonic vielbein V p and the spin connection ωpq (p, q denote space-time flat

indices) remain untouched by the reduction, and the same happens of course for the Lorentz

curvature Rpq and supertorsion T p.

As far as the gravitinos are concerned, we find:

ρa ≡ Dψa + ω b
a ψb

0 = ρi = ω a
i ψa (A.1)

which implies ω a
i = 0, consistently with what we found in section 4. As a consequenc, the

gravitinos Bianchi identities reduce to:

∇ρa +
1

4
Rpqγpqρa +R b

a ψb = 0 (A.2)

which is the correct Bianchi identity for an N = 6 gravitino, while consistency of the

truncation implies:

∇ρi = R a
i ψa = 0 → R a

i = 0 (A.3)

again in agreement with the σ-model results.
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Let us analyze the spin one-half sector. It gives

∇χabc = Dχabc + 3ω
d

[a χbc]d + ω
i

[a χbc]i

∇χabi = Dχabi − 2ω
d

[a χb]di + 2ω
j

[a χb]ij + ω d
i χdab + ω j

i χjab

∇χaij = Dχaij − ω d
a χdij + 2ω d

[i χj]ad + ω dj
i χjab . (A.4)

Since ω
i

a = 0, we see that the last equation is satisfied only setting χiab = 0, (as already

known from section 2, since they belong to the gravitino multiplets truncated out). What

is left is the spin one-half sector of the N = 6 theory. It is now straightforward to see

that the Bianchi identities for χabc and χaij reduce, after imposing again the constraint

ω i
a = 0, to the corresponding N = 6 Bianchi identities, while the Bianchi identity for χabi

is, consistently, identically satisfied.

The analysis of the scalar sector PABCD and its Bianchi identity is identical to what

has been already discussed in section 4, and does not deserve further analysis.

Finally, the Bianchi identity for the vector field strengths, with ψi = ρi = 0, reduces to:

∇FΛΣ = −2fΛΣab ρaψb −
1

2
f
ΛΣ|cd

Pabcdψ
a
ψb − 1

2
f
ΛΣ|ij

Pabijψ
a
ψb − 1

2
f
ΛΣ|ci

Pabciψ
a
ψb . (A.5)

Here, the scalar vielbein Pabci = 0 according to the discussion of section 2 and 4. Further-

more, the reduction of the couple of indices ΛΣ goes according to what we have discussed

in section 5. Since the duality group acts now on the electric and magnetic field-strengths

in the representation 32 of SO∗(12), we simply substitute the couple ΛΣ with an index

r running from 1 to 16. Note that the corresponding quantities f rab, f
r
ij are 16 × 16 sub-

blocks of the 32 × 32 matrix U , which has exactly the same form of eq. (5.2), but valued

in Sp(32,R), which gives the embedded coset representative.

B. Consistency of the Bianchi identities for N = 2→ N = 1 gauged theory

in D = 4

In the same spirit of the analysis of section 5.1, it is easy to show that the closure of Bianchi

identities of the N = 2 theory implies the consistent closure of the reduced N = 1 theory.

The definition of the supercurvatures and superspace Bianchi identities for the N = 2

theory have been given in ref [5] (appendix A).

We have to reduce these objects to their N = 1 expressions, and to show that they

coincide with the definitions of the supercurvatures and superspace Bianchi identities for

the N = 1 theory. We quote in the following their standard expression.

Curvatures of N = 1 gauged theory.

T a ≡ DV a − iψ
•
γaψ• ≡ 0

Rab = dωab − ωacωcb

ρ• = ∇ψ• = Dψ• +
i

2
Q̂ψ•

– 48 –



J
H
E
P
0
3
(
2
0
0
2
)
0
2
5

R
(
χi
)
= ∇̂χi = Dχi + Γ̂ijχ

j − i

2
Q̂χi

FΛ = dAΛ +
1

2
CΛΣΓA

ΣAΓ

∇λΛ = DλΛ +
i

2
Q̂λΛ + CΛΣΓA

ΣλΓ

∇zi = dzi + g(Λ)k
i
ΛA

Λ , (B.1)

where the gauged connections are defined as:

Γ̂ij = Γij + g(Λ)∇jk
i
ΛA

Λ

Q̂ = Q+ g(Λ)PΛA
Λ . (B.2)

The ungauged connection Q is given by

Q = Qi∇zi +Qı∇zı . (B.3)

Bianchi identities of N = 1 gauged theory.

RabVb − iψ
•
γaρ• + iψ•γ

aρ• = 0

DRab = 0

∇2ψ• +
1

4
γabR

abψ• −
i

2
K̂ψ• = 0

∇2χi + 1

4
γabR

abχi + R̂i
jχ

j +
i

2
K̂χi = 0

∇FΛ = 0

∇2λΛ +
1

4
γabR

abλΛ − i

2
K̂λΛ − CΛΣΓAΣλΓ = 0

∇2zi − g(Λ)kiΛFΛ = 0 . (B.4)

In the ungauged case, it is straightforward to see that the conditions found in the text from

the analysis of the reduction of the quaternionic sector and of supersymmetry transforma-

tion laws are indeed necessary and sufficient, after setting ψ2 = ρ2 = 0, for reducing the

N = 2 supercurvatures and Bianchi identities to the corresponding N = 1 expressions.

We only observe that in the covariant differential of ζα and its Bianchi identity, after

decomposition of the index α = (I, İ), we get, as integrability condition:

∇2ζI +
1

4
RabγabζI +

i

2
KζI + R J

I ζJ = 0 , (since R J̇
I = 0). (B.5)

This equation can be converted in world indices onMKH using equation (6.146). Using

further the reduction of eq. (6.140) one then recovers the correct N = 1 result, in terms of

the Riemann curvature of theMKH manifold, with

K(N=1) = K(N=2) +Ω3 . (B.6)

Note that Ω3 is one half of the Kähler form of the Kähler-Hodge manifoldMKH .
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As far as the gauged theory is concerned, we observe that the ungauged conditions

Γαi = Rα
i = ω1 = ω2 = Ω1 = Ω2 = ∆ J̇

I = R J̇
I = 0 (B.7)

become the corresponding ones for the gauged quantities

Γ̂αi = R̂α
i = ω̂1 = ω̂2 = Ω̂1 = Ω̂2 = ∆̂ J̇

I = R̂ J̇
I = 0 . (B.8)

Recalling the definition of the hatted quantities, we find that the following objects must

be zero:

g(Λ)A
ΛDjkαΛ = g(Λ)F

ΛDJ kαΛ = 0

g(Λ)A
Λ(P 1Λ − iP 2Λ) = g(Λ)F

Λ(P 1Λ − iP 2Λ) = 0

g(Λ)A
Λ∂uk

v
ΛUu|AIUv|AJ̇ = 0 . (B.9)

The previous conditions can be analyzed in the light of the results obtained in section 6,

and it is straightforward to see that they are actually satisfied. Thus the reduced theory

has the correct integrability conditions.

C. A useful formula for the N = 2 gaugino transformation law

In this appendix we show how to retrieve equation (6.80) from (6.3). To avoid a too heavy

notation, we write in this appendix the world indices and gauge indices without hat and

tilde, since we are not going to perform any reduction. We are interested in trading the

world index i of the gauginos λiA with a gauge index Λ, through the definition:

λΛA ≡ −2fΛi λiA . (C.1)

However, the gauge index of the N = 2 theory runs over nV + 1 values (because of the

presence of the graviphoton) while the index i takes only nV values. The extra gaugino,

say λ0, is actually spurious, since, as discussed in section 6.2, λΛA satisfies:

TΛλ
ΛA = 0 , (C.2)

where TΛ is the projector on the graviphoton field-strength, according to equation (6.15)

[48]. In order to show that the nV gauginos λΛ do appropriately transform into the nV
matter-vector field strengths, let us now calculate the susy transformation law of the new

fermions λΛA, which, up to 3-fermions terms, is:

δλΛA = −2fΛi δλiA = −2fΛi
[
−gifΣ ImNΓΣF−Γµν γ

µνεAB +W iAB
]
εB . (C.3)

Now we use the following relations of special geometry [48]:

gij = −2fΛi ImNΛΣfΣj (C.4)

δi` = gijg`j = −2gijfΛ` ImNΛΣfΣj (C.5)

UΛΣ ≡ fΛi g
ijfΣ

j
= −1

2

[
(ImN )−1

]ΛΣ
− LΛLΣ (C.6)

ImNΛΣLΛLΣi = −1

2
. (C.7)
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Eq. (C.3) can then be rewritten as:

δλΛA =
[
2UΛΣImNΣΓF−Γµν ε

AB − 2fΛ` k
`
∆L

∆
εAB − 2iUΛΣP x

Σ(σ
x)AB

]
εB . (C.8)

Now, using the definition of the special geometry Killing vectors

kiΛ = igi∂P
0
Λ (C.9)

we have:

2fΛ` k
`
∆L

∆
= 2ifΛ` g

``∂`P
0
∆L

∆
= −2ifΛ` g``f∆` P

0
∆ = −2iUΛΣP 0Σ , (C.10)

where we have used the special geometry formulae [5]:

P 0ΛL
Λ = P 0ΛL

Λ
= 0 , fΛi ≡ ∇iL

Λ . (C.11)

Therefore eq. (C.8) becomes:

δλΛA = −2UΛΣ
[
ImNΣΓF−Γµν γ

µνεAB + i
(
−P 0ΣεAB + P x

Σ(σ
x)AB

)]
εB . (C.12)

Let us now set

PΛΓ ≡ −2UΛΣImNΣΓ = δΛΓ + 2ImNΓΣLΛLΣ = δΛΓ − iTΓL
Λ

(C.13)

P
Λ
Σ = δΛΣ + iTΣL

Λ = (P t)ΛΣ , (C.14)

where TΛ is defined by equation (6.78) and satisfies [48] :

TΛL
Λ
= −i ; TΛf

Λ
i = 0 . (C.15)

Then we have:

PΛΣP
Σ
Γ = PΛΓ ; TΛP

Λ
Γ = 0 . (C.16)

Therefore PΛΓ is the projector orthogonal to the graviphoton, that is it projects the nv+1

vector field-strengths onto the nv field-strengths of the vector multiplets.

We can then rewrite equation (C.12) as:

δλΛA = PΛΣF
−Σ
µν γ

µνεAB + iUΛΓ
(
−P 0ΓεAB + P x

Γ (σ
x)AB

)
εB (C.17)

which is the equation given in the text. Note that

λΛA = PΛΣλ
ΣA ; fΛi = PΛΣf

Σ
i . (C.18)

It is useful to write down the explicit decomposition of the field strength F Λ into the

graviphoton and matter vectors part, that is:

F−Λµν = iL
Λ
TΣF

−Σ
µν + PΛΣF

−Σ
µν . (C.19)

Eq. (C.17) becomes:

δλΛ• = PΛΣ

[
F−Γµν γ

µνεAB + i (ImN )−1ΣΓ
(
−P 0ΓεAB + P x

Γ (σ
x)AB

)]
εB , (C.20)

where we see, as expected, that the gauginos λΛA do transform only into the matter-vector

field strengths P ΛΣF
−Σ
µν . Hence, equation (C.20) intrinsically defines only nV independent

gauginos transforming into the N = 2 field strengths (P ΛΣF
−Σ
µν ).
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D. Reduction of special geometry in special coordinates

If we choose special coordinates for special geometry [3, 9, 48, 59], then the indices Λ =

(Λ, Y ) and I = (i, α) are identified by the fact that

tI =
XΛ

X0
, (Λ = α , Y = i) (D.1)

and a prepotential F (X) exists such that f(t) = 1
(X0)2

F (X), with:

X0F0 = 2f − tIfI ,
(
fI =

∂f

∂tI

)

X0FI = ∂If . (D.2)

Furthermore,

e−K = i
[
2f − 2f + (t

I − tI)(fI + fI)
]
. (D.3)

The constraints that define the submanifoldMR become:

Wijα = ∂i∂j∂αf = 0 , Wα1α2α3 = ∂α1∂α2∂α3f = 0

XΛ =
∂F

∂XΛ
= ∂iX

Λ = ∂αX
X = ∂ifΛ = ∂αfX = 0 , (D.4)

where we used the fact that Kα|MR
= 0.

In this basis NΛΣ = ∂Λ∂Σf and the Kähler potential onMR is:

e−KR = i
[
2f − 2f + (t

i − ti)(fi + f i)
]
. (D.5)

Note that FΛ|MR
= 0 implies ∂αf |MR

= 0 which in turn implies ∂α∂if |MR
= 0, Wαij =

∂α∂i∂jf |MR
= 0. Therefore the most general form for f is (tI ⇒ (ti, zα)):

f(ti, zα) = f(t) +
∑

n≥2

zα1 · · · zαnfα1···αn(t) , fα1α2α3(t) = 0 . (D.6)

For the manifold SU(1, 1)/U(1) × SO(2, n)/[SO(2) × SO(n)] used in section 6.6, with

coordinates (t0, t1, . . . , tn
′
, z1, . . . , zn−n

′
), the reduced manifold (z1, . . . , zn−n

′
) = 0 is para-

metrized with coordinates (t0, t1, . . . , tn
′
) and the holomorphic prepotential is [55, 48]:

f(ti, zα) = it0

(
n′∑

i=1

ηijt
itj −

n−n′∑

i=1

δαβz
αzβ

)
, [ηij = (1,−1, . . . ,−1)] (D.7)

in accordance to equation (D.6).

E. Reduction of the quaternionic Ward identity

We derive here the conditions on the quaternionic prepotentials and Killing vectors, dis-

cussed in section 6.5, from the reduction of the quaternionic Ward identity (6.176), which
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is essential for the validity of the N = 2 supersymmetric Ward identity involving the scalar

potential, that is the relation [5]:

1

λ
Ωx
uvk

u
Λk

v
Σ +

1

2
εxyzP y

ΛP
z
Σ −

1

2
f Γ
ΛΣ P x

Γ = 0 . (E.1)

After projection, and using the just found results P iΛ = 0; P 3X = 0, it decomposes in a set

of equations

• Λ = Λ; Σ = Σ

1

λ
Ωiuvk

u
Λk

v
Σ +

1

2
εijP jΛP

3
Σ −

1

2
f Γ
ΛΣ P iΓ = 0 (E.2)

1

λ
Ω3uvk

u
Λk

v
Σ +

1

2
εijP iΛP

j
Σ −

1

2
f Γ
ΛΣ P 3Γ = 0 . (E.3)

Since P jΛ = 0, and since f Z
ΛΣ = 0 (because G(1) ⊂ G(2)), then eq. (E.2) gives

ktΛ = 0 , (E.4)

as indeed was expected from geometrical considerations.

Then, equation (E.3) becomes

1

λ
Ω3ssk

s
Λk

s
Σ −

1

2
f Γ
ΛΣ P 3Γ = 0 . (E.5)

Setting λ = −1 and recalling that −Ωss is half of the Kähler form of the reduced

submanifold, we recognize that eq. (E.5) expresses the poissonian realization of the

Lie algebra of the prepotentials P 3Λ on the Kähler-Hodge submanifoldMKH , namely:

{P 3Λ, P 3Σ}P = f Γ
ΛΣ P 3Γ . (E.6)

• Λ = Λ; Σ = Y

1

λ
Ωistk

s
Λk

t
Y −

1

2
εijP 3ΛP

j
Y −

1

2
f Z
ΛY P iZ = 0 (E.7)

1

λ
Ω3uvk

u
Λk

v
Y +

1

2
εijP iΛP

j
Y −

1

2
f Γ
ΛY P 3Γ = 0 . (E.8)

Eq. (E.7) gives a relation which has to be valid everywhere on the submanifold.

Since Ω3st = 0, P 3X = P iΛ = 0, and considering (E.4), then eq. (E.8) is identically

satisfied.

• Λ = X; Σ = Y

1

λ
Ωistk

s
Xk

t
Y −

1

2
εijP 3XP

j
Y −

1

2
f Z
XY P iZ = 0 (E.9)

1

λ
Ω3tt′k

t
Xk

t′
Y +

1

2
εijP iXP

j
Y −

1

2
f Γ
XY P 3Γ = 0 . (E.10)

Eq. (E.9) is identically satisfied for f Z
XY , while eq. (E.10) is a relation to be satisfied

all over the submanifold.
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F. Computation of the N = 2 → N = 1 scalar potential

We want to solve here a puzzle raised in the text about the scalar potential. In the N = 2

theory, the scalar potential has the form [5]:

VN=2 = −12S11S11 + gIJ

(
W I11W

J
11 +W I21W

J
21

)
+ 2N1

IN
I
1

=
(
gIJ k

I
Λk

J
Σ + 4huvk

u
Λk

v
Σ

)
L
Λ
LΣ + UΛΣP x

ΛP
x
Σ − 3P x

ΛP
x
ΣL

Λ
LΣ . (F.1)

which manifestly does not contain contributions antisymmetric in the quaternionic prepo-

tentials or Killing vectors, nor it has interference terms P 0ΛP
x
Σ between quaternionic and

special-Kähler isometries.

On the other hand, the N = 1 scalar potential:

VN=1 = 4

(
∇`L∇`Lg

`` − 3|L|2 + 1

16
ImfΛΣD

ΛDΣ
)
, (F.2)

does instead contain both kinds of interference contributions, given the form of the super-

potential L = i
2L

X(P 1X − iP 2X) and of the D-term DΛ = −2(Imf)−1ΛΣ(P 0Σ + P 3Σ) which

appear quadratically in (F.2).

The interference contributions in (F.2) have therefore to cancel each other. As we

are going to show, this does indeed happen, in a way which involves non trivially the

properties obeyed by the special-Kähler and quaternionic Killing vectors. Let us analyze

and reduce separately the various contributions to the N = 2 potential, using all the

constraint relations found in section 6.

−12S11S11 ⇒ −12|L|2

= −3P iXP iY L
X
LY − 6iP 1[XP

2
Y ]L

XL
Y

(F.3)

gIJW
I11W

J
11U

ΛΣ ⇒ 4gi∇iL∇L

= gi∇iL
X∇L

Y
P iXP

i
Y − 2iP 1[XP

2
Y ]U

XY

= gi∇iL
X∇L

Y
P iXP

i
Y + 2iP 1[XP

2
Y ]L

XL
Y

(F.4)

gIJW
I21W

J
21 ⇒ (Imf)−1ΛΣ

(
P 0ΛP

0
Σ + P 3ΛP

3
Σ

)
+ 2UΛΣP 0ΛP

3
Σ , (F.5)

where we have used equation (C.10) of appendix C, the identity of special geometry (6.100)

and the definition of the prepotential P 0Γ , equation (6.93).

2N1
IN

I
1 ⇒ 4gss∇sL∇sL

= gss∇sP
i
X∇sP

i
Y + 2igss∇sP

i
[X∇sP

i
Y ] . (F.6)

The last term in equation (F.6) is transformed using the definition of quaternionic Killing

vectors:

2kvΛΩ
x
uv = ∇uP

x
Λ (F.7)

the realization of the SU(2) algebra on the curvatures Ωx:

hstΩx
usΩ

y
tw = −λ2δxyhuw + λεxyzΩz

uw (F.8)
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and the normalization chosen for the metric onMKH :

hss =
1

2
gss . (F.9)

After some calculations we get:

2igss∇sP
i
[X∇sP

i
Y ] = 4iΩ3ttk

t
[Xh

t
Y ]L

XL
Y

=

(
4iP 1[XP

2
Y ] −

i

2
fΓ

XΣ̇
P 3Γ

)
LΛ̇L

Y

= 4iP 1[XP
2
Y ]L

XL
Y − 2P 3ΛP

0
Σ(Imf)

−1ΛΣ , (F.10)

where we have applied the quaternionic Ward identity (6.176) discussed in appendix D to

the present case and the definition of the prepotential P 0Λ, eq. (6.93). Collecting together

all the terms in eqs. (F.3), (F.4), (F.5) and (F.10), we find that the antisymmetric parts

in Λ,Σ and the two terms in P 0ΛP
3
Σ cancel against each other identically.

G. The N = 2 and N = 1 lagrangians in D = 4

For reference of the reader we give here the lagrangian of the N = 2 theory and of the

N = 1 theory as given in reference [45].13

The N = 1 lagrangian is, up to four-fermions terms:

(detV)−1LN=1 = −1

2
R+ i

(
fΛΣF−Λµν F−Σµν − fΛΣF+Λµν F+Σµν

)
+ gi∇µz

i∇µz +

+
εµνλσ√−g

(
ψ
•
µγσDνψ•λ − ψ•µγσDνψ

•
λ

)
+

+
1

8

(
fΛΣλ

•Λ
γµ∇µλ

Σ
• − fΛΣλ

Λ
• γ

µ∇µλ
•Σ
)
−

−i1
2
gi
(
χiγµ∇µχ

 + χγµ∇µχ
i
)
−

−gi
(
ψ•νγ

µγνχi∇µzj + ψ
•
νγ

µγνχj∇µz
i
)
−

− i ImfΛΣ

(
F+Λµν λ

Σ
• γ

µψ•ν + F−Λµν λ
•Σ
γµψν•

)
−

− i

8

(
∂ifΛΣF−Λµν χ

iγµνλΣ• − ∂ıfΛΣF+Λµν χ
ıγµνλ•Σ

)
+

+2Lψ
•
µγ

µνψ•ν + 2Lψµ•γ
µνψν• +

+igi

(
N

j
χiγµψ•µ +N iχγµψ•µ

)
+

1

2
PΛ

(
λ
•Λ
γµψ•µ − λΛ• γµψ•|µ

)
+

+Mijχ
iχj +Mıχ

ıχ +MΛΣλ
Λ
• λ

Σ
• +MΛΣλ

Λ•
λΣ• +

+MΛiλ
Λ
• χ

i +MΛıλ
Λ•
χı − V(z, z, q) ,

where the kinetic matrix fΛΣ is a holomorphic function of zi, and the mass matrices

Mij ,MΛΣ,MΛi are given by:

Mij = ∇i∇jL (G.1)

13Some misprints of ref. [45] have been corrected
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MΛΣ =
i

8
N i∂iNΛΣ (G.2)

MΛi = −i
1

4
ImNΛΣ∂iDΣ −

1

2
kΛgi , (G.3)

where we have set F±Λµν = 1
2(FΛµν ± i

2 ε
µνρσFΛρσ), FΛµν being the field-strengths of the vec-

tors AΛµ .

Note that, since the scalar manifold is a Kähler-Hodge manifold, all the fields and the

bosonic sections have a definite U(1) weight p under U(1). We have

p(V a
µ ) = p(AΛ) = p(zi) = p(gi) = p(NΛΣ) = p(DΛ) = p(PΛ) = p(V) = 0

p(ψ•) = p(χı) = p(λΛ• ) = p(ε•) =
1

2

p(ψ•) = p(χi) = p(λΛ•) = p(ε•) = −1

2
p(L) = p(Mij) = p(MΛΣ) = 1

p(L) = p(Mı) = p(MΛΣ) = −1 . (G.4)

Accordingly, when a covariant derivative acts on a field Φ of weight p it is also U(1) covariant

(besides possibly Lorentz, gauge and scalar manifold coordinate symmetries) according to

the following definitions:

∇iΦ =

(
∂i +

1

2
p∂iK

)
Φ;∇i∗Φ =

(
∂i∗ −

1

2
p∂i∗K

)
Φ , (G.5)

where K(z, z) is the Kähler potential.

On the other hand, the N = 2 lagrangian, up to four-fermions terms, is:

(detV )−1 LN=2 = −1

2
R+ gi∇µzi∇µz

 + huv∇µq
u∇µqv +

+
εµνλσ√−g

(
ψ
A
µ γσρAνλ − ψAµγσρAνλ

)
−

− i

2
gi

(
λ
iA
γµ∇µλ


A + λ


Aγ

µ∇µλ
iA
)
− i
(
ζ
α
γµ∇µζα + ζαγ

µ∇µζ
α
)
+

+2i
(
NΛΣF−Λµν F−Σµν −NΛΣF+Λµν F+Σµν

)
+

+
{
− gi∇µz

ψ
µ
Aλ

iA − 2UAαu ∇µq
uψ

µ
Aζα + gi∇µz

λ
iA
γµνψAν +

+ 2UαAu ∇µq
uζαγ

µνψAν + h.c.
}
+

+

{
F−Λµν ImNΛΣ

[
4LΣψ

Aµ
ψBνεAB − 4if

Σ
ı λ

ı
Aγ

νψµBε
AB +

+
1

2
∇if

Σ
j λ

iA
γµνλjBεAB−LΣζαγµνζβCαβ

]
+h.c.

}
+

+igiW
iABλ


Aγµψ

µ
B + 2iNA

α ζ
α
γµψ

µ
A +

+
[
Mαβζαζβ +Mα

iBζαλ
iB +Mij ABλ

iA
λjB + h.c.

]
− V(z, z, q) . (G.6)
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Furthermore LΛ(z, z) are the covariantly holomorphic sections of the special geometry,

fΛi ≡ ∇iL
Λ and the kinetic matrix NΛΣ is constructed in terms of LΛ and its magnetic

dual according to reference [5]. The normalization of the kinetic term for the quaternions

depends on the scale λ of the quaternionic manifold for which we have chosen the value

λ = −1. Finally, the mass matrices of the spin 1
2 fermionsMαβ,MAB ij,Mα

iA (and their

hermitian conjugates) and the scalar potential V are given by:

Mαβ = −UαAu UβBv εAB ∇[ukv]Λ LΛ (G.7)

Mα
iB = −4UαBu kuΛ fΛi (G.8)

MAB ik = εAB gl?[if
Λ
k]k

l?
Λ +

1

2
iPΛAB ∇if

Λ
k (G.9)

V(z, z, q) = g2
[(
gik

i
Λk


Σ + 4huvk

u
Λk

v
Σ

)
L
Λ
LΣ + gifΛi f

Σ
 PxΛPxΣ − 3L

Λ
LΣPxΛPxΣ

]
. (G.10)

The U(1)-Kähler weight of the Fermi fields is

P (ψA) = P (λıA) = P (ζα) =
1

2
. (G.11)
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