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Research Ordered Samples Control Charts
for Ordinal Variables

. .. + ..
Fiorenzo Franceschini®'", Maurizio Galetto and Marco Varetto
Dipartimento di Sistemi di Produzione ed Economia dell’Azienda, Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129 Torino, Italy

The paper presents a new method for statistical process control when ordinal
variables are involved. This is the case of a quality characteristic evaluated by
an ordinal scale. The method allows a statistical analysis without exploiting an
arbitrary numerical conversion of scale levels and without using the traditional
sample synthesis operators (sample mean and variance). It consists of a different
approach based on the use of a new sample scale obtained by ordering the original
variable sample space according to some specific ‘dominance criteria’ fixed on the
basis of the monitored process characteristics. Samples are directly reported on
the chart and no distributional shape is assumed for the population (universe) of
evaluations. Finally, a practical application of the method in the health sector is
provided.

KEY WORDS: ordered samples control charts; ordinal variables; linguistic variables; ordinal scales; quality
monitoring; service quality; dominance criteria

1. INTRODUCTION

any quality characteristics are evaluated on linguistic or ordinal scales. This is the case when

performing visual controls on manufactured products or when evaluating some characteristics of the

quality of a service. The levels of these scales are terms such as ‘good’, ‘bad’, ‘medium’, etc., which
can be ordered according to the specific meaning of the quality characteristic at hand. Ordered linguistic scales
mainly differ from numerical or cardinal scales because the concept of distance is not defined. The ordering is
the main property associated to such scales'-?.

The problem of on-line monitoring of an ordinal quality characteristic requires the development of techniques
able to deal with ordinal data. The assignment of weights, demerits and so on, to reflect the degree of severity of
product non-conformity, has been adopted in many circumstances>*. Different numbers of demerits are assigned
to each class and the total number of demerits is monitored by some control chart for defectives. This is a
subjective approach that requires the ability to uniquely classify each state into one of several mutually exclusive
classes, with well-defined boundaries among them. Although the numerical conversion of verbal information
simplifies the subsequent analysis, it also gives rise to two basic problems. The first is concerned with the validity
of encoding a discrete verbal scale into a numerical form. The numerical codification implies fixing the distances
among scale levels, thus converting the ordinal scale into a cardinal one. The second is related to the absence of
consistent criteria for the selection of the type of numerical conversion. It is obvious that changing the numerical

*Correspondence to: Fiorenzo Franceschini, Dipartimento di Sistemi di Produzione ed Economia dell’Azienda, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
"E-mail: fiorenzo.franceschini @polito.it
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Table 1. Results of the visual control of a sample of 30 corks

Reject Poor quality Medium quality Good quality Excellent quality

2 corks 5 corks 9 corks 7 corks 7 corks

encoding may determine a change in the obtained results. In this way the problem analyst directly influences the
acceptance of results. Therefore, any conclusions drawn from the analysis on ‘equivalent’ numerical data could
be partially or wholly distorted.

Consider, for example, the case concerning a production line of fine liqueurs, reported in Franceschini and
Romano”. The visual control of the corking and closing process is carried out on the basis of the following
assessments (see Table I):

‘reject’ if the cork does not work;

‘poor quality’ if the cork must not be rejected but has some defects;

‘medium quality’ if the cork has relevant aesthetic flaws but no other defects;
‘good quality’ if the cork only has small aesthetic flaws;

‘excellent quality’ if the cork is perfect.

Suppose we decide to introduce the following codification:

‘reject’ = 1;

‘poor quality’ = 2;
‘medium quality’ = 3;
‘good quality’ = 4;
‘excellent quality’ = 5.

Referring to the example in Table I, the resulting arithmetic mean is x = 3.4. Hence, the sample mean seems to
be between ‘medium quality’ and ‘good quality’ (nearer to the former than to the latter).

The adopted numerical conversion is based on the implicit assumption that all scale levels are equispaced.
However, we are not sure that the evaluator perceives the subsequent levels of the scale as equispaced, nor
even if s/he has been preliminarily trained. For example, the evaluator might perceive the upper levels as more
distinguished from the others. The suitable codification of the levels of the scale for this inspector might be the
following':

‘reject’ = 1;

‘poor quality’ = 3;
‘medium quality’ = 9;
‘good quality’ = 27;
‘excellent quality’ = 81.

In this case the arithmetic mean is x = 28.5, that is to say that the sample mean is between ‘good quality’ and
‘excellent quality’ (nearer to ‘good quality’).

We cannot say which is the right value of the sample mean at hand because an ‘exact’ codification does not
exist.

Let us consider another example. Four masses (a, b, ¢ and d) are compared by means of a two-plate balance.
Their values are unknown and only the following relationships have been proven:

a>b>c>d @))
and

a>b+c+d )
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If we try to introduce a linear codification on the basis of Equation (1), for example,
a=4, b=3, c=2, d=1
it is easy to demonstrate that Equation (2) is never verified. In fact, if Ax is the scale unit, we can write

c=d+ Ax
b=c+Ax=d+2- - Ax
a=b+Ax=d+3-Ax

Substituting into Equation (2), we obtain

a>b+c+d

U
d+3 - Ax>d+2-Ax+d+Ax+d

U
d+3-Ax>3-d+3-Ax

which generates an incongruence.

These two examples point out that a simple codification of scale levels could result in a misrepresentation of
the original gathered information. A correct approach should be based on the usage of the only properties of
ordinal scales themselves.

The main aim of the present paper is to propose a new method for on-line process control of a quality
characteristic evaluated on an ordinal scale, without exploiting an artificial conversion of scale levels.
Other approaches, based on the use of the so-called linguistic control charts, have already been presented” .
They emulate traditional Shewart control charts, making use of two-sample synthesis operators: one for a
measure of central tendency and the other for a measure of variability. The new proposal does not consider these
synthesis operators. It allows on-line monitoring based on a new process sample scale obtained by ordering the
original variable sample space according to some specific ‘dominance criteria’. Samples are directly reported
on the chart and no distributional shape is assumed for the population (universe) of evaluations.

First, the paper describes the new methodology; next, it compares the method with other approaches. Finally,
a practical application of the method in the health sector is provided.

2. PRELIMINARY CONSIDERATIONS

The sample space of a generic ordinal quality characteristic is not ordered in nature. However, samples can be
ordered according to some specific dominance criteria. A dominance criterion allows attributing a position in
the ordered sample space to each sample. If sample B dominates sample A, then sample A has a lower position
in the ordering.

For each pair of samples a dominance criterion states a dominance or an equivalence relationship. If the
resolution of the dominance criterion is high, the dimension of equivalence classes is very small (i.e. few
samples have the same position in the ordered sample space). The most resolving criterion is the one assigning
a different position to each ordered sample. This is the same as saying that every equivalence class has only one
element.

Let us consider the following example. An operator evaluates the quality of a surface finishing of a mechanical
part by a visual control. Every hour a sample of four parts is analyzed. Evaluations are given on a three-level
scale: ‘High’, ‘Medium’ and ‘Low’. Table II shows the results of ten subsequent samples.
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Table II. Results of a visual control of the quality of a surface finishing of

10 subsequent samples of a mechanical part. Every hour a sample of four

parts is analyzed. Evaluations are given on a three-level scale: ‘High’ (H),
‘Medium’ (M) and ‘Low’ (L)

Sample number First part Second part Third part Fourth part

1 H H M H
2 H M H H
3 H M M H
4 H H M L
5 H M M H
6 M H M M
7 H M H M
8 L L M L
9 M H H H
10 H H H H

3.5 4

3.0 -

2.0 A

1.5 A

Sample Mean

0.5 -

0.0 T T T T T T T T T T )
0 1 2 3 4 5 6 7 8 9 10 11

Sample Number

UCL =228

CL=1.00

Sample Range
5

LCL =0.00

Sample Number

Figure 1. X—R control charts for the example of visual control of the quality of a surface finishing of a mechanical part.
The levels of the ordinal evaluation scale are numerically coded (‘Low’ = 1; ‘Medium’ = 2; ‘High’ = 3)

Can we use the results of Table II to build a process control chart? The first classical answer to this question is
the assignment of a specific numerical value to each level of the evaluation scale. A possible codification could
be the following:

‘Low’=1; ‘Medium’=2; ‘High’=3
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Figure 2. Linguistic control charts for the OWA emulator of arithmetic mean and the range of ranks of data reported in
Table I1°

The codification allows building traditional X—R control charts. However, as anticipated, this procedure has
three main contraindications. First, each conversion is arbitrary and different codifications can lead to different
results. Second, codification introduces the concept of distance among scale levels, which is not originally
defined. Third, since the original distribution of evaluations is discrete with a very small number of levels, the
central limit theorem hardly applies to this context®. Figure 1 reports X—R control charts for the example at
hand. A classical 30 couple of control limits is provided.

A second analysis of data in Table IT can be executed by the method suggested by Franceschini and Romano’.
This methodology is based on the use of operators that do not require the numerical codification of ordinal scale
levels. The adopted location measure is the ordered weighted average (OWA) emulator of arithmetic mean
(see Appendix A), firstly introduced by Yager and Filev>’. The OWA operator can take values only in the set
of levels of the original ordinal scale. The related control chart is built following a methodology very similar to
the traditional chart for mean values. The adopted dispersion measure is the range of ranks rg, defined as the
total number of levels contained between the maximum and the minimum value of a sample (the rank r(q) is
the sequential integer number of a generic level ¢ on a linguistic scale):

rs = [r(q)max — ¥ () min]

For the range of ranks too, the related control chart is constructed using the traditional approach. Figure 2 shows
the control charts for the OWA and the range of ranks of data reported in Table II.

Although this methodology does not exploit the device of codification, the dynamics of the charts are poor
and little information can be extracted about the process. Moreover, the method is not free from distributional
assumptions. The dispersion measure assumes that the scale ranks do not depend on the position of levels of the
ordinal variable.


Rettangolo

Rettangolo


In this paper we propose a third way of analyzing data reported in Table II. It exploits the only properties of
ordinal scales, avoiding the synthesis of information contained in the sample. No distributional assumptions are
required about the population (universe) of evaluations.

As traditional control charts, this new methodology is based on the use of two different charts: one for ordered
sample values, and the other for ordered sample ranges. These charts provide different performance analysis of
the ordinal quality characteristic at hand. As a consequence, they can be built and used separately. However, for
an exhaustive analysis, a conjoint approach is highly recommended.

3. ORDERED SAMPLES CONTROL CHARTS

The new proposal is based on the ordering of the sample space of an ordinal quality characteristic. We introduce
this concept by a simple example.

Let us consider the following ordered samples, defined on a three-level ordinal scale (‘High’ (H),
‘Medium’ (M) and ‘Low’ (L)):

e sample A: {H, M, M};
e sample B: {H, H, L};
e sample C: {M, M, M}.

To compare and order these samples we introduce a rule called ‘dominance criterion’, defined, case by case, on
the basis of the characteristics of the monitored process. In accordance with this rule, if sample A dominates
sample B, then sample A is preferred to sample B. As a result we can define a new ordinal scale whose levels
are the positions of the samples in the ordered sample space. If there is no dominance relationship between
sample A and sample B, they belong to the same ‘equivalence class’.

The choice of the dominance criterion influences the resolution of the scale (i.e. the number of levels of the
ordered sample space) and also the order of levels. For each process one or more dominance criterion may be
established on the basis of the specific application.

In the following a series of three intuitive dominance criteria will be analyzed.

We begin analyzing the Pareto-dominance criterion. We state that sample X Pareto-dominates sample Y if
all elements in Y do not exceed the corresponding elements in X, and at least one element in X exceeds the
corresponding one in Y. This situation is formally denoted by X > Y.

In case samples X and Y belong to the same equivalence class, i.e. no dominance relationship can be defined
between them, we use the following notation: X &~ Y. Referring to our example, we have

A>C; A=B; B=~xC

Sample A dominates sample C, while samples A and B belong to the same equivalence class, as well as
samples B and C. Figure 3 represents these results; an arrow denotes a Pareto-dominance relationship and
each circle defines an equivalence class.

As we can see from Figure 3, it is not possible to assign a well-defined position to samples A, B and C, because
their intersection is not empty. The problem can be solved by introducing the concept of ‘semi-equivalence
class’. A semi-equivalence class is composed of equivalence classes whose intersections are not empty.
Samples in Figure 3 belong to the same semi-equivalence class.

In general, the Pareto-dominance criterion gives a ‘poor’ ordering for the sample space of an ordinal quality
characteristic. A more discerning criterion is the ‘rank dominance criterion’. Its introduction requires the
definition of the concept of ‘optimal sample’. A sample is said to be optimal if all elements assume the highest
level of an ordinal scale. In our example the optimal sample is HHH.

For each sample we define a rank index which quantifies its positioning with regard to the optimal
sample. The index is built in by adding up the numbers of scale levels contained between each sample
value and the corresponding value of the optimal sample. For example, if we consider HML, its rank index
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Figure 3. An application of the Pareto-dominance criterion. The arrow represents a Pareto-dominace relationship. Each circle
defines an equivalence class

Table III. Ordered samples for a sample space defined by a three-level scale (L = ‘Low’; M = ‘Medium’; H

= ‘High’) and a sample size n = 4. Column 3 reports the positions of each sample after the application of the

rank dominance criterion. Column 4 shows the position of each sample after the sequential application of the
rank and the dispersion dominance criteria

Position in the ordered sample space Position in the ordered sample space
(equivalence class) (equivalence class)
Sample space Rank index [rank dominance criterion] [rank and dispersion dominance criterion]
LLLL 8 Ist 1st
MLLL 7 2nd 2nd
MMLL 6 3rd 4th
MMML 5 4th 6th
MMMM 4 Sth 9th
HLLL 6 3rd 3rd
HMLL 5 4th 5th
HMML 4 5th 8th
HMMM 3 6th 11th
HHLL 4 5th 7th
HHML 3 6th 10th
HHMM 2 Tth 13th
HHHL 2 7th 12th
HHHM 1 8th 14th
HHHH 0 9th 15th

(with regard to HHH) is 3, obtained by adding up 0, 1 and 2 (i.e. zero levels between H and H, one level
between H and M, and two levels between H and L).

A high value of the rank index corresponds to a ‘bad’ sample. All samples that are characterized by the same
index belong to the same equivalence class. Therefore their positioning with respect to the optimal sample can
be equivalently identified by the corresponding equivalence class. The number of elements of the new ordinal
sample scale depends on the sample size and on the number of levels of the evaluation scale.

Denoting by ¢ the number of levels of the evaluation scale and by n the sample size, the rank dominance
criterion gives a number of equivalence classes equal to n(r — 1) 4+ 1. This is also the number of levels of the
resulting ordinal scale of sample positions. Table III (first column) reports all possible ordered samples of size
n =4, on an evaluation scale with + = 3 levels. For each sample, the corresponding position on the resulting
scale is reported (third column). The greater the position number, the higher the sample evaluation.

A greater resolution, i.e. a larger number of levels, on the ordinal sample scale can be obtained by integrating
the rank dominance criterion with the ‘dispersion dominance criterion’. This criterion allows distinguishing
among samples belonging to the same equivalence class by analyzing sample dispersion. A lower position is
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Table IV. Number of equivalence classes

(i.e. number of scale levels of the ordered

sample space) for different sample sizes (1)

and different numbers of scale levels (7).

Results are obtained after the sequential

application of the rank and the dispersion
dominance criteria

=
~

Number of equivalence classes

6
15
28
45

10
35
84
165

15
70
210
495

O 3 W O N W O 3 D W

associated with a sample with a greater dispersion. The fourth column of Table III reports the position of each
sample in the new ordered sample space after the sequential application of the rank and the dispersion dominance
criteria. As we can see, each ordered sample is associated with a different position; this is the greatest possible
resolution.

Table IV shows the number of equivalence classes, for different sample sizes (n), and different numbers of
scale levels (7). The three dominance criteria introduced are consistent. A richer dominance criterion splits the
equivalence or semi-equivalence classes given by the poorer criteria, refining the order of the sample space.

Figure 4 reports the results of the subsequent application of the three dominance criteria to a three-
level evaluation scale with samples of three elements. A vertical arrow represents a dominance relationship.
A continuous ellipse represents an equivalence class, while a dashed ellipse represents a semi-equivalence class.

Figures 4(a)—(c) report respectively the results of the application of the Pareto-dominance, the rank-
dominance and the rank plus dispersion dominance criteria. The transverse arrows describe how each
equivalence or semi-equivalence class is split by the application of a more discerning dominance criterion.
The resolution of the ordered sample space varies with the considered dominance criterion.

In accordance with a specific dominance criterion, sample charts report the positions of samples in the ordered
sample space on the vertical axis. Given the particular meaning of sample charts, only the lower control limit
(UCL) is defined. The central line (CL) represents the median of sample distribution. A set of initial samples is
considered to determine the sample empirical frequency distribution. This empirical distribution is then used to
calculate the lower control limit for a given type I error*. Control limits are determined by empirical estimates
of probabilities based on observed frequencies in a set of initial samples. Therefore, because the probabilities
are estimated, the estimates contain errors, which could become significant for very small probabilities. A large
initial set of samples or an alternative approach based on bootstrap techniques'’ are needed to estimate the
limits with a more reasonable accuracy.

Figure 5 represents the sample control charts and the corresponding sample frequency distributions of data
reported in Table II, after the sequential application of the Pareto (a), the rank (b) and the rank plus dispersion
(c) dominance criteria.

Ordered sample charts are rich in insights from different points of view. The resolution of charts increases
while shifting from case (a) to cases (b) and (c). The information of depicted charts of Figure 5 are strictly
connected; this can be observed on analyzing peaks and valleys in the same positions.
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(a) (b) ©

Figure 4. Orderings of the sample space for a three-level evaluation scale with samples of three elements. The applied
dominance criteria are the Pareto (a), the rank (b) and the rank plus dispersion (c) criteria. A vertical arrow represents
a dominance relation, while an ellipse represents an equivalence or a semi-equivalence class. For the sake of simplicity,
(a) does not represent dominance relationships and equivalence classes involving samples within the semi-equivalence class

Furthermore, comparing these results with those obtained in Figure 1, some differences appear. An example
is the ‘out-of-control’ points occurring in the corresponding eighth sample of the X chart in Figure 1.

It must be noted that the two approaches give, in the example, very similar results because the adopted
ordering criteria (applied to ordinal scales) have the same ‘monotonic’ properties as the mean operator (applied
to interval scales)'!. This is ever more evident because in the example of Figure 1 we (arbitrarily) adopted
a linear codification of levels. With different codifications and criteria the difference between the proposed
approach and the traditional one would be more marked.

For example, referring to data in Table II, suppose that, due to the particular kind of manufacturing, any
sample including a ‘Low’ rating is considered worse than any sample that does not include it. So, for example,
HHHL is worse than HMMM.

Figure 6 represents the sample control charts and the corresponding sample frequency distributions of data
reported in Table II, after the sequential application of the rank plus dispersion dominance criteria and the
‘no-Low’ criterion. We see that the chart behavior is very different from those reported in the previous figures

(Figures 1 and 5).
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Figure 5. Ordered samples control chart and sample value frequency distribution of data reported in Table II, after the

application of (a) the Pareto dominance criterion, (b) the rank dominance criterion and (c) the rank and dispersion dominance

criteria. The 3rd equivalence class (E.C.) contains all the remaining samples in the ordered sample space in (a) some

equivalence classes in the ordered sample space in (b) and no equivalence classes in the ordered sample space in (c)
(see Table III). The type I error is fixed at 0.05
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Figure 6. Ordered sample control chart and sample value frequency distribution of data reported in Table II, after the
sequential application of the rank and dispersion dominance criteria and the ‘no-Low’ criterion. The type I error is fixed
at 0.05. The figure shows one equivalence class including all the samples with at least one ‘Low’ included in them. The 1st
E.C. includes the following sample configurations: HHHL, HHML, HMUML, HHLL, MMML, HMLL, MMLL, HLLL, MLLL
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Figure 7. Example of two different ordered samples control charts for the same process. Chart (A) is better than chart (B).
It is centered on higher values. CL (A) and CL (B) are respectively the central limits of the two charts

This last example clearly shows the effect of the subjective choice of the ordering criterion. According to the
specific process characteristics, different ordering criteria can determine different process control charts.

In the end, it must be highlighted that the interpretation of the proposed chart is a bit different from the
traditional Shewhart charts. The search for out-of-control points, trends and special patterns is integrated with
a process positioning analysis. A good quality process will present a concentration of samples at the highest
positions of the ordered sample space scale (see Figure 7).

4. ORDINAL RANGE CONTROL CHARTS

Location and dispersion measures in an ordinal environment should be defined without the introduction
of the concept of distance among scale levels. In a recent paper, we already introduced a new dispersion
measure, the so-called ‘ordinal range’®. This dispersion measure is proposed to develop control charts for
sample ranges.

Let us briefly recall the concept of ordinal range. Given a 7-point evaluation scale, the ordinal range is a
new ordinal scale with 7(z + 1)/2 levels. These levels are obtained according to a sequential application of
a dispersion and a ‘dangerousness’ criteria. Dispersion is given by the number of scale levels between the
minimum and the maximum sample elements. This number being equal, dispersion is more ‘dangerous’ for
a sample centered at a lower value of the original evaluation scale. For example, HMM and MLL have the
same number of scale levels between their maximum and minimum elements (i.e. 1), nevertheless HMM is less
‘dangerous’ than MLL because it is centered at a lower value of the original evaluation scale.

Table V reports the ordinal ranges for a sample space defined by a three-level scale and a sample size
n=3.

The concept of dangerousness can be seen as a dominance criterion to order a sample space, according to
the sample dispersion. Different dominance criteria could be defined and used by practitioners for specific
applications.

The control chart for sample ranges is built in the same way as the control chart for ordered samples. Given the
particular meaning of ordinal range charts, only the UCL is defined (we are interested in detecting upwards shifts
of ordinal range charts). The CL represents the median of the ordered sample range positions.

A set of initial samples is considered to estimate the ordinal range distribution, which is used to calculate the
UCL with a given type I error.

Figure 8 represents the ordinal range control chart and the corresponding ordinal range frequency distribution
of data reported in Table II. Samples are ordered by the dangerousness dominance criterion. The upper control
limit is calculated with a type I error equal to 0.05.
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Table V. Ordinal ranges for a sample space defined by a three-level
scale (L = Low; M = Medium; H = High) and a sample size n =3

Sample space Position in the ordered range space (equivalence class)
LLL 3rd
MLL 5th
MML 5th
MMM 2nd
HLL 6th
HML 6th
HMM 4th
HHL 6th
HHM 4th
HHH Ist

6™E.C. 1

3 2
Mmoo
o o

LLLL

MMMM -

Sample Ordinal Range

HHHH -

0 1 2 3 4 5 6 7 8 9 10 11
Sample Number

0.8
0.7 4
0.6
0.5 1
0.4 4
0.3 4
0.2 4

w1 . -

Relative Frequencies

*

HHHH MMMM LLLL 3RPE.C. 4THE.C. 5™E.C.
Ordinal Range

Figure 8. Ordinal range control chart and corresponding sample ordinal range frequency distribution of data reported in

Table II. Samples are ordered by the dangerousness dominance criterion. The figure shows some equivalence classes in the

ordered sample space. The 4th E.C. includes the following sample configurations: HMMM, HHMM and HHHM; the 5th
E.C.: MLLL, MMLL and MMML; and the 6th E.C.: HLLL, HMLL, HHLL, HMML, HHML and HHHL

By the adopted criteria, the example presents some significant differences compared with the approach based
on the numeric codification of levels. Using different criteria the difference between the proposed approach and
the traditional one becomes more evident, such as for the ordinal sample charts.

Furthermore, ordinal range charts also allow a process positioning analysis. A good quality process will
present a concentration of samples at the lowest positions of the ordinal range space scale.
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Figure 9. (a) Sample control chart for the perceived quality of the booking service at the Evangelical Waldensian Hospital in

Turin (Italy) 12 The Pareto-dominance criterion has been applied. Charts are based on a preliminary run of 80 samples of four

elements. The figure shows some equivalence classes in the ordered sample space. In this example CL and LCL coincide.

(b) Sample control chart obtained with the same data as (a) after the sequential application of the rank and dispersion

dominance criteria. Charts are based on a preliminary run of 80 samples of four elements. In this case each equivalence class
contains only one element

5. A CASE STUDY

The proposed methodology has been applied to the on-line monitor of the perceived quality of the booking
service at the Evangelical Waldensian Hospital in Turin (Italy)'?.

Figure 9 reports the sample control charts (with = 7, n = 4) obtained respectively by the application of the
Pareto (a) and the rank plus dispersion (b) dominance criteria. Charts are built after a preliminary run of 80
samples of four elements. The lower control limit (LCL) is calculated for a type I error equal to 0.05. The CL
represents the median of sample positions. The figure shows some out-of-control points.

Figure 10 represents the frequency distributions of sample positions for the two dominance criteria.

Figure 11 shows the ordinal range control chart. The UCL is calculated for a type I error equal to 0.05.
The CL represents the median of the ordered sample ranges. The chart highlights four out-of-control points.

Figure 12 reports the frequency distribution of ordinal ranges, which is used to calculate the UCL.

Figure 13 reports the corresponding traditional X—R control charts, if we perform the following (arbitrary)
numerical codification:

level 1 =1, level2=2, level3=3, leveld4d=4,
level 5=5, level6=6, level7=7
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Many differences can be individuated between the results of X—R and ordinal approaches (see Figures 9(b)
and 11). In particular, despite the imposed type I error being higher in the ordinal approach, the traditional
R chart shows more ‘out-of-control’ points than the corresponding ordinal range control chart. This is a direct
consequence of the introduction of the specific criterion adopted for the construction of the ordinal range control
chart.

6. CONCLUSIONS

The paper presents two new control charts for the process control of quality characteristics evaluated on an
ordinal scale, without exploiting an artificial conversion of scale levels. The basic concept of the charts is the
ordering of the sample space of the quality characteristic at hand.

The main novelties of the methodology are the following.

e Charts do not consider sample synthesis operators (sample mean and variance). They give an on-line
monitoring based on a new process sample scale obtained by ordering the ordinal variable sample space.

e Sample space ordering is obtained by some specific dominance criteria. However, the method allows
practitioners to formulate their own ordering criteria, according to quality characteristics at hand.

e Charts do not suffer from the poor resolution shown by other linguistic charts, where the original
evaluation scale is used to evaluate samples™’ .

e No distributional shape is assumed for the population (universe) of evaluations.

e Charts facilitate process positioning analysis: a good quality process will present a concentration of
samples on the highest positions of the ordered sample space scale, and on the lowest positions of the
ordinal range space scale.

The proposed methodology allows one to extract enough information from available data without artificially
adding properties to the scale of evaluations. However, the initial effort for establishing the control limits can
require an abundant amount of preliminary data.

For short run productions or services, where large initial sets of samples are not available, an alternative
approach can be carried out using bootstrap techniques.
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APPENDIX A

The OWA emulator of the arithmetic mean was first introduced by Yager>°. This operator is typically used with
linguistic scales. It is defined as

OWA = Max[Min{Q(6), b1

where:

o O(k)=Sru), k=1,2,...,n is the average linguistic quantifier (the weights of the OWA operator),

with
£ = Int {1 n [kﬂ”
n

Stk is the f(k)th level of the linguistic scale (for example, Srx) = Sy if f(k) =1);

e Int(a) is a function which gives the integer closest to a;

e ¢ is the number of scale levels;

e 1 is the sample size;

e Dy is the kth element of the sample previously ordered in a decreasing order.

This OWA operator is said to be an emulator of the arithmetic mean since it operates, in an ordinal
environment, in the same way as the arithmetic mean works in a cardinal one. It can take values only in the
set of levels of the original ordinal scale, while a numerical codification of these levels could lead to some
intermediate mean values.

As an example, let us assume a scale with r = 5 levels, namely Si, S», S3, S4 and S5, and a sample of size
n = 10, whose elements, previously ordered in a decreasing order, are {Ss, Ss, Ss, S1, S1, S3, S3, S3, S2, S1}.

The ‘weights’ of the OWA operator are:

o) =S
02)=00)="5;

Q@) =0(0)=0(6) = S3;
Q1) =0(8) =54

09) = 0(10) = Ss.

Therefore, we have

OWA = Max[Min{Si, S5}, Min{S, S5}, Min{S>, Ss}, Min{S3, S4}, Min{S3, S4}, Min{S3, S3},
Min{Ss, S3}, Min{S4, S3}, Min{Ss, Sz}, Min{Ss, S1}] = $3
Figure A1 shows a graphical representation of the OWA calculation’. The value of the OWA emulator of the

arithmetic mean is given by the intersection of the ‘ascending stair’ (OWA weights) and the ‘descending stair’
(ordered sample elements).


Rettangolo

Rettangolo


Authors’ biographies

Fiorenzo Franceschini is Professor of Quality Management at the Polytechnic Institute of Turin (Italy)—
Department of Manufacturing Systems and Economics. He is the author or co-author of three books and many
published papers in scientific journals and international conference proceedings. His current research interests
are in the areas of quality engineering, QFD and quality management. He is a member of the editorial board
of Quality Engineering, and the International Journal of Quality and Reliability Management. He is a senior
member of ASQ.

Maurizio Galetto is an Assistant Professor at the Department of Manufacturing Systems and Economics at the
Polytechnic Institute of Turin. He holds a PhD in Metrology from the Polytechnic Institute of Turin. His current
research interests are in the areas of quality management and statistical process control.

Marco Varetto graduated in Engineering Management at the Polytechnic Institute of Turin. His main scientific
interests are in the area of statistical techniques in quality management.


Rettangolo

Rettangolo


	1 INTRODUCTION
	2 PRELIMINARY CONSIDERATIONS
	3 ORDERED SAMPLES CONTROL CHARTS
	4 ORDINAL RANGE CONTROL CHARTS
	5 A CASE STUDY
	6 CONCLUSIONS
	REFERENCES
	APPENDIX A
	Authors' biographies


