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Abstract

Learning behaviors related to quality improvement in
manufacturing systems (i.e. reduction of defectiveness over
production cycles) are widely investigated. Many different
approaches have been introduced to describe the link between
the learmning mechanism and quality performance of a plant.

In a previous study by the same authors, a set of learning
“composition laws” for two basic structures were defined to
provide a tool to forecast the behavior of complex manufacturing
systemns composed by a network of elementary processes. This
paper presents an empirical investigation about these learing
composition laws on a real case in the field of automotive
exhaust-systems manufacturing.

1. Introduction

Learning curves describe the evolution of
manufacturing systems over time. They can be
used to represent the behavior of defectiveness or
labor hours as experience is gained.

It has been proved that as the experience
increases with the production of a particular
product - either by a single worker or by an
industry as a whole — the production process
becomes more efficient (Cherrington ez al. s 1987;
Franceschini, 2002; Franceschini and Galetto,
2002; Schneiderman, 1988). As manufacturing
cycles or production output go on, the “system”
increases its degree of knowledge, so as to ensure
shorter production cycles, a smaller defectiveness
or a larger production output.

Analyzing the relationship between the process
efficiency and the cumulative number of
production cycles, management can accurately
predict the real capacity of existing facilities and
the unit cost of production. Today, we recognize
that many other factors, besides the improving skill
of individual workers, contribute to this fact.
Some of these include an improvement of
production methods, the reliability and efficiency
of the equipments and machines used, a better
product design, an improved production
scheduling and inventory control, and finally
a better organization of the workplace.

The first attempt to scientifically analyze the
learning phenomenon was focused on human
subjects behavior and dates to the end of the
19th century (Thorndike, 1898; Thurstone,
1919). These researchers showed that the time
required for executing a specific operation
decreased as the experience gathered increased.
The authors defined “experience curve” to be the
behavior of this labor tme. Afterwards, an
analogous experience was observed in industrial
organizations — especially in manufacnuiring
systems. The term “learning curve” was then
defined (Yelle, 1979),

The first written document dealing with a
manufacturing process was published by Wright
(1936), who observed that in aircraft production
the labor-time units in input was decreasing as
a function of cumulative output. Later on, many
other researchers dedicated their studies to the
application of learning curves in different
industrial sectors. In this paper, we refer to

The authors wish to thank Magneti Marelli
(Powertrain Systems, Sistemi di Scarico, Italy) for the
useful and continuous support given during the
research development. '
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“learning” as the ability of reducing defectiveness
over production cycles, adopting the logic of
Process Quality Improvement.

Theories attempting to describe the learning
curve for a manufacturing process were developed
by Crossman (1959), Levy (1965), Muth (1986),
Roberts (1983), Sahal (1979), Venezia (1985) and
Zangwill and Kantor (1998). Experimental
analyses were proposed by Bailey and McIntyre
(1997), Cherrington et al. (1987), Lapreé ez al.
(2000) and Schneiderman (1988). Many different
learning models were proposed. The most
common ones are the exponential and the power
models, which are applied in a wide variety of
applicative fields (Muth, 1986).

Nowadays, the study and the analysis of
learning curves are still ongoing. Many important
reasons lead researchers to focus their attention on
this subject. A specific interest is devoted to the
time factor, which is a more competitive aspect in
the study and development of new products or
manufacturing systems.

The knowledge of learning curves can be helpful
in many cases: to predict the full working time of
a process, to fix factory incentives or production
objectives or to define the asymptotic defectiveness
of a plant.

The predictive element is very important,
especially in the early phases of setting up a new
plant. This element must be supported by good
predictive algorithms which consider all the factors
affecting a complex manufacturing system
(Naim, 1993).

With regard to the last issue, once the
elementary sub-process learning curves are
known, a set of learning “composition laws” can be
defined to provide a forecasting tool to foresee the
behavior of complex manufacturing systems
(Franceschini and Galetto, 2003).

In order to empirically investigate these
composition laws, this paper describes the results
obtained from an in-depth study conducted on
a complex manufacturing plant of automotive
exhaust systems. In the first part, the basic
approach of the composition laws is recalled.
Then, a schematic description of the production
process, the methodology used for the
experimental investigation and the data collection
are also reported. Finally, a statistical analysis and
some experimental considerations are discussed.

2. Composition laws of elementary
process learning curve

Consider a generic manufacturing process.
We define the production cycle (cumulative input)
of the entire process after the start-up as g, and

the cumulative number of rejected components
as D(g). We also define the fraction of
cumulative rejected components over cumulative
input as F(q):

D
Flg) = % W

The theoretical quality improvement (QI) learning
curve (defectiveness curve over time) of the whole
system can be expressed as follows (Franceschini
and Galetto, 2003):

(2a)

Furthermore, the QI learning curve for a discrete
manufacturing process can be expressed as:

AD(9) _ D{g+N) — D(g)

L =
@ Agq (@g+N)-¢

(2b) I

where N is a well defined number of production
cycles (for example, a daily production),
Defining D(g) as a positive non-decreasing
quantity, L(g) is a positive decreasing function.
Interpreting a complex manufacturing system |
as a network of elementary processes :
(elementary blocks) connected to each other by
series or parallel structures, and referring to the :
rate of non-conforming units, we can obtain ;
the whole system QI learning curve by applying
the basic composition laws.
Considering two elementary blocks (A and B)
connected in a series configuration (AiB)
(Figure 1(a)), it can be shown that the
series-system learning curve (Leg(q)) is given by
(Franceschini and Galetto, 2003):

Figure 1 Example of a “learning block diagram”

oUTPUT

(a) Series structure (b) Parallel structure
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Leq(q) = La(g) + Ly {g[1 — Fa(q)l}

— La(g)L {g[1 — Fa(g)]} 3

where ¢ is the production cycle (cumulative inpu)
of the entire process after the start-up;

Fa(g) = (Da(g))/q is the fraction of rejected
components at the gth cycle by process A;

La(g) = (dDa(g))/dq is the process A learning
curve at the gth cycle and Lg(g) = (dDg(g))/dgq is
the process B learning curve at the gth cycle.

For two elementary blocks (A and B) connected
in a parallel configuration (A[|B) (Figure 1(b)), it
can be shown that the parallel-system learning
curve is given by (Franceschini and Galetto,
2003):

_f S 1 1
Leq(Q)—1+fLA(ql+f>+l+fLB(ql+f> 4)

where f = ga/gg is the “capacity parameter”,

ga is the number of components worked by process
A and gp is the number of components worked by
process B.

It must be noted that only similar processes can
give rise to a parallel structure. We define two
processes which produce a “similar™ part or
component, If the two processes are not similar,
the situation becomes more complex. For example,
consider two processes which produce two
different components, that are assembled
together in a successive step. The defectiveness
of the whole equivalent system is obtained by
combining the defectiveness of the successive
phase with that of the maximum of the two parallel
branches. In this case, the two parallel processes
should be considered as a unique equivalent
process with a learning curve equal to the
maximum of the two.

An experimental validation of these
composition laws was performed by analyzing the
initial production phases of a new automotive
exhaust-systems manufacturing plant.

3. Process description

The study was conducted on an automotive
exhaust-systems production plant of a well-known
international company (Magneti Marelli,
Powertrain Systems, Sistemi di Scarico, Italy).
The analysis involved the launching phase of a
manufacturing line of a complete exhaust-system
of a new automobile model.

The process monitoring period was two
working months. We considered two motorizations
that — according to the learning curve theory — can
be considered as two equivalent manufacturing
systems: “motorization a” and “motorization B”.

A complete exhaust-system is constituted by

a front, a central and a rear pipe (Figure 2).

*  The front pipe is connected to the engine by
a collector, which is followed by a box
containing a monolith and on which a lambda
probe is connected; the lambda probe is
positioned on the output pipe,

*  The central pipe is composed of a flexible

pipe, a central tube and a central body.

The rear pipe is made up of an input pipe,

a rear body (also called exhaust box) and an

exhaust pipe,

The three components of the whole exhaust-

system are welded together.,

The production flow, which was similar for the
two motorizations, can be represented using the
following functional macro-phases. Figure 3 shows
their connections. Each phase may include one or
more working stations identified by a progressive
numeration from 1 to 14,

* Phase A - flange welding to the exhaust pipe
(station 3);

* Phase B — monolith assembling (station 5),
lambda probe welding (station 4), monolith
and output system assembling (station 6);

*  Phase C - collector and heat protections
welding (station 7), airtight test (station 8);

* Phase D — central bodies preparation
(station 1), input pipe assembling and welding
to the central body (station 9), flexible pipe
welding to the input tube (station 10);

* Phase E — rear bodies preparation (station 2),
output pipe and stirrup welding to the rear
body (station 11), final little pipe welding
(station 12);

*  PhaseF — front pipe and rear pipe assembling
(station 13), airtight test and retouches
(station 14).

After each phase a quality control was performed
in order to individuate and reject the defective
units.

Figure 4 shows the process diagram from the
learning point of view. Interpreting each phase as
an elementary block, the whole process can be
thought of as composed of two parallel branches.
The left branch consists of the series structure
of phases A, B and C; and the right branch of
phases D and E.

Figure 2 Scheme of a complete automotive exhaust-system

front pipe

— 0}
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Figure 3 Scheme of the production flow of a complete automotive exhaust-system manufacturing line
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Note: Each macro-phase includes one or more working stations identified by a progressive numeration from
1 to 14. Motorizations o and B adopted the same production flow
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Figure 4 Schematic diagram of the manufacturing system for the production of a complete automotive exhaust-systern
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Note: The learning curve of the whole equivalent system is obtained by considering the maximum learning curve of the
two branches (A, B and C phase series) and (D and E phase series)

Note that the two parallel branches do not
represent similar processes. Therefore, the
learning curve of the equivalent system cannot be
obtained using the parallel composition law.

As discussed in the previous section, it is given by
the “maximum learning curve” of the two parallel
branches.

4. Data collection

Motorizations « and 8 were developed on twin
plants that had the same kind of equipment,
procedures and quality control methods.

The nominal daily productions were 360 and
240 units for the motorizations « and {3,
respectively.

Beginning from the launch of production, the
two lines were monitored daily for two working
months. At the end of each month, to summarize
the daily collected data, a technical report was
produced.

The number of defective units was recorded and
analyzed for each macro-phase of both lines. The
cumulative number of rejected components D(g),
the fraction of cumulative rejected components
F(g) and of the QI learning curve L(g) were
calculated as follows:

D(g:)

F(g) = ——-’— (5)
qi
and
. _ AD(g) _ D(g) — D(gi-1)
Ha) = Ag; B gi — gi-1
_ Dgi-1 + N) ~ D(gi-1) ©

(gi-1 + N) ~ gi—1

_ Dlgi- +N) = D(g:-1)
N

where 7 is the day index ( = 1 for the first day,
i =2 for the second and so on); N is the daily
production (N = 360 and 240 for motorizations
o and B, respectively).

Tables I and II and Figures 5 and 6 show the
synthesis of the overall gathered data for the two
motorizations. Figure 7 gives a detailed
manufacturing diagram of the motorization a for
the first production day.

L(g) of the mototization & demonsirates
a regular behavior, while motorization B suffers
some perturbations in the initial learning period.
However, it is important to stress the fact that from
a plant designer’s point of view, the crucial factor is
the learning average asymptotic behavior rather
than the early punctual oscillations.
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Tahle | Experimental gathered data for the motorization o during a period of two working months

Motorization a

Day (i) gi ADqq(q) ADx(g) ADg(q) ADc(q) ADo(q)) ADg{q) AD(q)
1 September 360 184 1" 14 12 47 51 86
2 September 720 95 8 10 6 20 24 51
3 September 1,080 116 9 4 0 13 3 72
6 September 1,440 87 1 9 9 1 21 55
7 September 1,800 60 0 7 0 7 15 38
8 September 2,160 31 0 0 0 6 7 18
9 September 2,520 32 0 0 0 4 7 2
10 September 2,880 26 0 0 0 5 13 8
13 September 3,240 26 0 0 0 3 12 11
14 September 3,600 17 0 0 0 3 7 7
15 September 3,960 17 0 0 0 2 7 8
16 September 4,320 11 0 0 0 3 3 5
17 September 4,680 16 0 0 0 1 6 9
20 September 5,040 24 0 0 0 7 6 1|
21 September 5,400 12 0 0 0 2 4 6
22 September 5,760 9 0 0 0 1 4 4
23 September 6,120 7 0 0 0 2 3 2
24 September 6,480 12 0 0 ] 1 5 6
27 September 6,840 17 0 0 0 3 3 1
28 September 7,200 18 0 0 0 3 8 7
29 September 7,560 11 0 0 0 1 4 6
30 September 7,920 6 0 0 0 2 1 3
4 October 8,280 4 0 0 0 1 1 2
5 October 8,640 13 0 0 0 1 2 10
6 October 9,000 5 0 0 0 0 1 4
7 October 9,360 12 0 0 0 2 4 6
8 October 9,720 8 0 0 0 1 2 5
11 October 10,080 3 0 0 0 0 1 2
12 Octoher 10,440 8 0 0 0 1 2 5
13 October 10,800 4 0 0 0 0 1 3
14 October 11,160 4 0 0 0 1 1 2
15 October 11,520 10 0 0 0 1 5 4
18 October 11,880 6 0 0 0 2 1 3
19 October 12,240 2 0 0 0 0 0 2
20 October 12,600 5 0 0 0 1 1 3
21 October 12,960 2 0 0 0 0 0 2
22 October 13,320 3 0 0 0 0 1 2

Note: The daily production was 360 units/day. ADXg) represents the daily rejected components by each working phase

5. Data analysis

As a first step, each macro-phase (elementary
block) of the motorization & was analyzed.
Assuming a normal distribution for the statistical
errors of each level L(g,), the corresponding
learning curve with the related confidence bands
was estimated by a non-linear regression of the
experimental data (Seber and Wild, 1989). The
selected model for the analysis is the following;:

Lig=Ly+Ljet (7

where Ly, L, and 7 are specific constants of each
single block,

This is a simplified model which works well
enough for the validation of the problem at hand

(Bevis ez al., 1970). See Naim (1993) for a deeper
analysis.

Table III shows the parameter values, and the
corresponding standard deviations, obtained for
each macro-phase, Afterwards, by applying the
described compositions laws (Section 2), the
global learning curve of the motorization e was
calculated,

As previously noted, it must be pointed out
that the two parallel branches do not represent
similar processes. The learning curve of the
equivalent system is given by the maximum
of the two. According to the experimental results,
the upper curve represents the right branch of
Figure 4 (D and E macro-phases), as clearly shown
in Figure 8. Therefore, the equivalent learning
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Table 11 Experimental gathered data for the motorization B during a period of two working months

Motorization 8

Day (/) qi ADeq(q) ADy(q) ADg(q) AD(q)  ADyg) ADg(q) ADe(q)
1 September 240 110 4 7 0 9 101 0
2 September 480 40 2 12 3 0 0 40
3 September 720 99 0 0 0 0 51 48
6 September 960 63 0 0 0 2 3 10
7 September 1,200 50 0 0 0 28 22 0
8 September 1,440 44 0 0 19 0 44 0
9 September 1,680 17 0 0 0 12 5 0
10 September 1,920 31 0 0 0 0 31 0
13 September 2,160 6 0 12 0 0 6 0
14 September 2,400 3 0 0 3 0 0 3
15 September 2,640 12 0 0 0 0 6 6
16 September 2,880 7 0 0 0 0 0 7
17 September 3,120 11 0 0 0 11 0 0
20 September 3,360 4 0 0 0 0 0 4
21 September 3,600 12 0 0 2 0 12 0
22 September 3,840 5 0 0 0 0 5 0
23 September 4,080 5 0 0 0 0 5 0
24 September 4,320 4 0 0 0 0 4 0
27 September 4,560 3 0 0 0 0 0 3
28 September 4,800 10 0 0 0 0 8 2
29 September 5,040 3 0 0 0 3 0 0
30 September 5,280 4 0 0 0 0 4 0
4 October 5,520 2 0 0 0 2 0 0
5 Octaber 5,760 11 0 0 0 0 0 11
6 October 6,000 4 0 0 0 4 0 0
7 October 6,240 8 0 0 0 0 8 0
8 October 6,480 4 0 0 0 0 0 4
11 October 6,720 7 0 0 0 0 0 7
12 October 6,960 2 0 0 0 0 2 0
13 October 7,200 6 0 0 0 6 0 0
14 October 7,440 0 0 0 0 0 0 0
15 October 7,680 4 0 0 0 0 4 0
18 October 7,920 10 0 0 0 0 0 10
19 October 8,160 2 0 0 0 0 0 2
20 October 8,400 3 0 0 0 0 0 3
21 October 8,640 0 0 0 0 0 0 0
22 October 8,880 2 0 0 0 2 0 0

Note: The daily production was 240 units/day. AD{g) represents the daily rejected components by each warking phase

curve of the entire production system is given by
the series structure of macro-phases D, E and .

Assuming that there is no correlation between
each single block, the corresponding confidence
interval can be obtained by the following variance
composition equation (Box et al., 1978;
Montgomery, 2000):

Gy

where L., is the equivalent learning curve; oz, is
the equivalent learning curve standard deviation;
L;is the jth block learning curve and oy js the jth
block learning curve standard deviation.

Figure 9 shows the collected experimental data,
and the composed learning curve for the whole
motorization a production system, with the
corresponding 95 per cent confidence interval on
a single observation (Seber and Wild, 1989).
Except for the second point in the eatly
monitoring, all data are included in the confidence
interval.

The main characteristic of the composition
method is related to its capability to provide a
preliminary forecast of non-conforming units of
a complex plant, This information is very helpful
during the early design phases, allowing for
rationalization of the “process architecture”.

This “prediction capability” can be
experimentally verified by using the data collected
for the motorizations a and B.
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Figure 5 Experimental behavior of D(q), Fg) and L(g} for the motorization o

Motorization ¢ production
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q
Note: The daily production was 360 units
Figure 6 Experimental behavior of D{g), Ag) and L(g) for the motorization 4]
Motorization 3 production
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Note: The daily production was 240 units

Since the two motorizations can be considered as
two similar plants, it is possible to predict
motorization B’s behavior on the basis of
motorization a’s estimated parameters. Therefore,
the expected learning curve for the whole
production system of the motorization B can be
predicted by applying the learning composition
laws and the estimated parameters for each single
macro-phase of the motorization .

The first step of the procedure attributes the
correspending learning curves of motorization « to
each macro-phase of motorization 8 (Table III).
Once the average daily production is defined
(i.e. 240 units), we are able to estimate the

expected rejected quantities (AD(g,)) by each
production phase over time (number of
production cycles). Table IV shows the forecasts of
the model after 5, 15, 25 and 35 working days.

In the second step, by applying the learning
composition laws (Figure 10), the expected
learning curve for the whole production system of
the motorization {8 is obtained. Furthermore, such
as for every single macro-phase, it is possible to
estimate the expected rejected quantity (AD(g,))
by the whole production plant (Table IV).

At this point, we can compare the asymptotical
values of the obtained learning curve for the
motorization B with the corresponding
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Figure 7 Manufacturing diagram of the first production day for the motorization « (see also Table )

EQUIVALENT
SCHEME

lm (360 units)
Dafas)
(11units) [ pyage o (360 units)
- - Dnlan)
qo (348 units)| . PHASE | (47 units)
Do{qs) D »
(1 u:ﬂ PHASE qe (313 units)
B (S?E(qf) )
qc (335 units))  PHASE units
Dc(qslz) ) E —>
12 units
MRuL pase
A A
qr (262 units)
3 De{q)

(86 units
PH;\SE ' )

lqomm {476 units)

qa (360 units) dqo (360 units)
Dea,(qa) ‘ T————t ],

(37 units)|  EQUIVALENT " EQUIVALENT | (gé‘:;(,ﬂ;),)‘
«—  PROCESS "PROCESS ~ j—pr
adade | | pSHe
Gr (262 units}
e asos(?d

i units
j?H:éE ,‘ { )
lCIourrur {176 units)

Table IIl Parameter values and standard deviations obtained by a nan-linear regression of the experimental data for each macro-phase

Motorization a

Macro-phase Ly L, Standard deviation Ly L, Standard deviation 7 (cycle™') = Standard deviation (cyde™")
A 0.0x10™* 3.2x1074 0.070 0.008 466 52
B 00x10"* 6.6 x107* 0.057 0.006 998 135
C 0.0%1074 7.2%1074 0.058 0.011 620 132
D 50.1 % 1074 9.1%1071 0229 0.018 559 45
E 81x 1073 2.0% 1073 0.186 0.016 1,013 118
F 1M.2x103 3.8%x107°? 0378 0.025 1,095 108

experimental data (Table II). Except the early
production periods, the experimental observations
match the predicted ones,

The set of points falling out of the confidence
interval is probably due to the production system
settlements that heavily influence the early
learning process. As soon as the production goes
on, the asymptotical behavior of experimental
points follows the prediction values. Figure 10
shows the collected experimental data and the
expected learning curve for the motorization 8
with the corresponding 95 per cent confidence
interval on a single observation.

A practical comparison between the expected
learning curve for the whole production system of
the motorization B (obtained by applying the
composition laws and the estimated parameters of
the motorization o) and the curve obtained by the
overall experimental data, can be executed by
means of a hypothesis test, Introduce a new

variable A(g), which represents the local difference
between the predicted learning curve value and
the corresponding experimental observation

(at ¢g-th production cycle):

A(Q) = Leg(9) — Lexo(@), V4 9

where Leq(g) is the predicted learning curve value
at gth production cycle and Lexp(g) is the
experimental observation at gth production cycle.

Under the hypothesis that the values of Leg(¢)
and L, (g) assume, Jocaily, a normal distribution
for each level L(gy), the 95 per cent confidence
interval of A(g) at gth production cycle can be
obtained as follows:

£20,(g) = £2, [0} (@ +0F @  (10)

where a3 (g) is the variance of A(g) at gth
production cycle; o7, (¢) is the variance of Leq(9) at
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Figure 8 Comparison between compaosed learning curve of macro-phase series A, B and C (triangles),

macro-phase series D and E (thombuses)

and composed learning curve of

Motorization o partial learning curves

L(q)

0.20 + X / Leq.0®E)(Q)

Leq.(A'%B's')C)(Q)

)

ot fabd A MEA B s 6 At
YTTTTV) *
had "

Kb bbb A b
0004

120 1,320 2,520 3,720 4,920 6,120 7,320 8,520 9,720 10,920 12,120 13,320

q

Figure 9 Experimental data (thombuses) and composed learning curve for the whole motorization « production system (continuous line)

Motorization o. learning curve
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q

Note: The corresponding 95% confidence interval on a single observation is also indicated [dotted lines]

the gth production cycle (for single values of
Leo(g)) and cr,ixp (g) is the variance of Leg,(g) at the
gth production cycle (as a first approximation, this
can be assumed equal to aiq ().

According to the hypothesis test, the
experimental and predicted values at each
production cycle cannot be considered different if
the 95 per cent confidence interval (equation (10))
includes the zero value (i.e. the null hypothesis Hy:
Leg(q) — Lexp(ﬂ) =0, Vg.

Figure 11 shows A(g) and its corresponding
95 per cent confidence interval. Beginning from a
certain cycle, the confidence interval includes the
zero value. Therefore, the experimental and

predicted values cannot be considered locally
different (with a 95 per cent confidence level).

In the early phases of learning, the difference
between the experimental and predicted values is
rather high (>25 per cent of defectiveness).

We could suppose that the motorization B, which
shows a lower initial average defectiveness, has
gained an indirect advantage from adjustments
carried out on the motorization «. This fact is due
to a knowledge exchange between the two
motorization working teams (Franceschini and
Galetto, 2003).

On the other hand, the test has shown that from
the asymptotic point of view, the predicted and
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Table IV Comparison between experimental and predicted numbers of rejected units (AD{gj))

5 days

Motorization g

' . 15 days 25 days 35 days
Macro-phase Experimental  Predicted  Experimental  Predicted Experimental  Predicted  Experimental Predicted
A 0 141 0 01 0 0=t 0 0 %1
B 0 41 0 0=+ 0 0 =1 0 0 =1
C 0 2=x2 2 0=*2 0 02 0 0=x2
D 28 8§:+3 0 1=x2 4 1£2 0 12
E 22 16+5 12 3x5 0 25 0 2=*5
F 0 B+9 0 79 0 3+9 3 3+9
Whole plant 50 61 =10 12 1210 4 61 3 6§ =N

Note: The corresponding 95 per cent confidence interval, after 5, 15, 25 and 35 workin

the motorization B on the basis of motorization « analysis

g days is obtained for each macro-phase and for the whole plant of

Figure 10 Experimental data (thombuses) and expected learning curve for the whole production system of the motarization g

(continuous line)

Motorization f learning curve

0.70
0.60 7.
050 4\ Expected learning curve
0.40 - = = = 95% confidence interval
j': —&— Expetimental data
0.30
0.20 -
0.10 N et Y
0.00 : Se o :
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
q

Note: The corresponding 95% confidence interval on a single observation is also indicated [dotted lines].
The expected leaming curve for the whole production system of the motorization B was obtained by
applying the composition laws and the estimated parameters for each single macro-phase of the motorization o

experimental values show a very similar behavior,
This highlights the composition method ability
to provide a planning tool to forecast the learning
of new complex manufacturing systems.
This information is very helpful during the early
design phases. For example, if we consider two
different design solutions to satisfy a given
production, the method helps to evaluate which
solution has to be preferred from the asymptotic
defectiveness (learning) point of view.
Furthermore, the proposed method is better
than the trivial practitioner “approach”.
We have shown that the new learning curve
cannot be obtained by a mere summation of the
learning curves of each single block.
The suggested approach can be used as a
planning tool to make an a prior: comparison of
different plant configurations without building
them.

6. Conclusions

The paper presents a method for an experimental
investigation of learning composition laws in the
automotive exhaust-systems field, Two similar
lines for exhaust-systems production
(motorizations a and p) were analyzed.
The comparison between the “theoretical”
learning curve (obtained by an empirical
parameters estimation of the motorization o)
and the experimental results collected for the
motorization §, has shown a good agreement for
the prediction of asymptotical process
defectiveness.
The main steps of the investigation procedure
are as follows:
+  defectiveness data collection during the early
production phases of two similar production
systems;
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Figure 11 Difference between the predicted learning curve value
production cycle, for the whole manufacturing system of the mot

s and the corresponding experimental ohservations, at each
orization (3 (rhombuses)

Motorization B learning curves analysis

040
0.35 4
0.30
0.25 4
0.20 +

L(q)

2,000 4,000

Note: The corresponding 95% confidence interval

highlighted [segments]

8,000 8,000 10,000

q

» at each production cycle, is also

identification of elementary blocks;

analysis of the empirical results and evaluation
of the process parameters;

application of the composition laws to the
elementary blocks network; and

comparison between expected theoretical
values and experimental results.

The main characteristic of the composition law
method is related to its ability to provide a forecast
of non-conforming units of a complex
manufacturing plant over time. This information
is very helpful during the early design phases,
allowing a rationalization of the industrial
process. The analysis can be conducted both

on the design of a new and on already existing
plants,

Future developments will involve the means to
individuate possible learning bottlenecks, as well
as the mechanism that generates process learning
mutual influence. Further analysis will be
dedicated to the relationship between learning and
plant design methodologies, focusing particular
attention to the factors which may accelerate or
slow down process learning.
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