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Adaptive disretization of stationary andinompressible Navier{Stokes equations bystabilized Finite Element MethodsStefano BerroneDipartimento di Ingegneria Aeronautia e Spaziale, Politenio di Torino,Corso Dua degli Abruzzi 24, 10129, Torino, Italy,e{mail: sberrone�alvino.polito.ithome page: http://alvino.polito.it/~sberroneAbstratWe have derived a residual-based a posteriori error estimator for a stabilized �niteelement disretization of the stationary inompressible Navier Stokes equations withgeneral boundary onditions. An adaptive algorithm based on this error estimatoris disussed and tested on some analytial and physial problems. When possiblewe study preisely the behaviour of the e�etivity index.Key words: A posteriori error estimators, adaptive mesh-re�nement tehniques,Navier Stokes equations, bounds on the e�etivity index.1991 MSC: 65N30, 65N15, 65N50, 76D05, 76M10.1 IntrodutionIn the numerial simulation of real ows many questions are still open. Oneof them is how to ontrol the auray of a numerial approximation for thesolution of equations modeling these phenomena and how to use the availableomputational failities to reah the needed auray with the lowest possibleomputational and man time as well as memory requests. Very often engineersand physiists need to solve problems in omputational uid dynamis in whihthe overall auray is deteriorated by the presene of interior or boundarylayers, shok fronts and omplex geometries with orners. So, diÆulties in avery little part of the omputational domain may ause a onsiderable redu-tion of the overall auray of the solution. A natural remedy is to inreasethe number of grid-points in these ritial regions and simultaneously plaevery few points where the solution is smooth, in order to balane aurayPreprint submitted to Elsevier Preprint 20th Otober 2000



and eÆieny. To reah this target, we need an easily omputable a posteriorierror estimator that gives us information on how to distribute the points inan eÆient manner.One of the most important goals in the analysis of an a posteriori error estima-tor is to establish an equivalene relation between it and the true error of thenumerial solution, measured in a suitable norm. From the pioneering workof Babu�ska and Rheinboldt [3℄ many interesting results have been ahieved(see, for instane, [1,9,19,21,26℄ and the referenes therein), but many aspetsof this problem are still unlear. In the present work we fous our attentionon some of them, in the frame of the residual-based error estimators for thestationary inompressible Navier-Stokes equations. Following Verf�urth's work,we have derived in [4℄ an error estimator for a stabilized disretization [10℄ ofthe linear problem. Here, we arefully analyse the inuene of the Reynoldsnumber in the relation whih expresses the equivalene between the error esti-mator and the true error. We perform this analysis by numerial experimentson a problem with an analyti solution. Next we present an adaptive algorithmbased on this error estimator and disuss several aspets about its behaviourand, in partiular, its e�etivity index.At last, in Setion 7 we apply our algorithm to a lassial CFD problem.Although in [4℄ we derived the error estimator and we studied its e�etivityindex for a linear model, when we apply these results to the non-linear Navier-Stokes equations we get good results mathing with previous analysis.
2 Linear inompressible Navier-Stokes model2.1 The ontinuous problemWith the aim of introduing the error estimator and desribing its use, weprefer to avoid the diÆulties of the non-linearity of the true Navier-Stokesequations and we proeed onsidering a linear, steady-state, inompressiblemodel:� 1Re4 u+ �a � r�u+rp = f in 
; (1)r� u = 0 in 
; (2)u = 0 on �D; (3)1Re � u�n̂ � pn̂= gN on �N ; (4)2



where: Re is the Reynolds number; 
 is a bounded domain in R2 with aregular boundary �
 that belongs to the lass C0;1 (�
 an be loally desribedby Lipshitz ontinuous funtions [13,18℄); the boundary �
 is split into twosubsets �D and �N , where �D is losed and the following onditions holds true:�
 = �D [ �N , �D \ �N = ; and j�D j 6= 0; a2 [H1(
)℄2 \ [L1(
)℄2; r � a =0 in 
; n̂ � a � 0 on �N , where n̂ is the usual unit outward normal vetor to�
; f 2 [L2(
)℄2; gN 2 [H 12 (�N)℄2.Let us �rst derive a weak formulation of problem (1-4). The funtional spaeswe deal with are the usual Sobolev spae H10;D(
) def= fv 2H1(
) : vj�D = 0gand Lebesgue spae L20(
) def= fq2L2(
) : R
 q d
 = 0g. Moreover we set V def=[H10;D(
)℄2 and Q def= L20(
) if j�N j = 0 or Q def= L2(
) if j�N j > 0. If j�N j = 0,the pressure p in (1) an be determined only up to an additive onstant thatwe �x by seeking a pressure with a zero mean value. A weak formulationof the problem an be written as: Find [u; p℄ 2 V�Q suh that 8[v; q℄ 2V�Q one has :1Re �ru;r v�+ ��a � r�u; v�� �p;r� v�= �f; v�+(gN ; v)�N ; (5)�q;r� u�=0; (6)where (:; :) denotes the usual inner produt in L2(
) or in [L2(
)℄2 and (:; :)�Ndenotes the inner produt in [L2(�N )℄2. Existene and uniqueness of the solu-tion for all positive Re follows from the usual oerivity inequality and inf-supondition (see, e.g., [13℄).2.2 The disrete problemIn order to disretize problem (1-4), we assume 
 to be a polygonal domainand we introdue a regular family of partitions fThgh of 
 into triangles whihsatisfy the usual onformity and minimal-angle onditions [8℄. It is useful tointrodue the diameter hT of the element T 2 Th. The parameter h of thefamily fThgh represents h = maxT2Th hT . Let Vh � V and Qh � Q be twoonforming �nite element spaes based on the partition Th. If we onsiderthe pure Galerkin approximation of the ontinuous problem (5,6), we have tosatisfy the disrete version of the inf-sup ondition [6,13,18℄.In what follows, we are going to use ontinuous �nite elements for the ve-loity: Vh def= �vh2V \ hC0(
)i2 : vjT 2 [Pk(T )℄2; 8T 2Th� and the pressure:Qh def= nqh 2 Q \ C0(
) : qhjT 2 Pl(T ); 8T 2 Tho. Here Pi(T ) is the spae ofpolynomials of degree i � 1 on the element T 2 Th. In the disretization of3



the problem, we also onsider approximations of the data a, f , gN by someinterpolations �T a, �T f , �E gN whose de�nition will be given later on. Withan arbitrary hoie of k and l these spaes may not satisfy the disrete inf-sup ondition [6℄. However, this diÆulty may be avoided by resorting to aonsistent modi�ed approximation of the problem known as the StreamlineUpwind/Petrov Galerkin (SUPG) method [10,11,15℄: Find [uh; ph℄ 2 Vh�Qhsuh that 8[vh; qh℄ 2 Vh�Qh let be :1Re �r uh;r vh�+ ���T a � r�uh; vh�� �ph;r � vh�+ XT2Th �T �� 1Re 4 uh+ ��T a � r�uh+rph; ��T a � r� vh�T+ XT2Th ÆT �r �uh;r � vh�T= ��T f; vh�+(�E gN ; vh)�N + XT2Th �T ��T f; ��T a � r� vh�T ; (7)�qh;r�uh�+ XT2Th �T �� 1Re 4 uh+ ��T a � r�uh+rph;rqh�T= XT2Th �T ��T f;rqh�T : (8)Here �T and ÆT depend on the loal onditions of the ow in eah elementexpressed by ReT def= mk k�T a k1;T hT4 1Re and mk def= minn13 ; 2C�o, C� being theonstant of the inverse inequality [14℄: h2T k4vh k20;T � C� krvh k20;T ; 8vh 2Vh : For linear elements, obviously, mk = 13 . Pratially, following [10℄ weset �T def= mk h2T8 Re, ÆT def= � mk k�T a k1;T h2TRe4 if 0 � ReT < 1 and �T def=hT2 k�T a k1;T , ÆT def= � k�T a k1;T hT if ReT � 1. We take � to be either 1or 0, depending whether we want or we do not want to onsider the termsmultiplied by the parameter ÆT . By using the SUPG method, not only weirumvent the inf-sup ondition [5,6,15℄, but also we stabilize the advetiveoperator preventing the osillations in the veloity �eld that appear for highReynolds numbers [7,10,11℄.3 A residual-based error estimatorIn [4℄ we have derived a residual-based error estimator for our model problemfollowing Verf�urth's works [23,24,26,27,28℄. Partiularly, we have derived aglobal upper bound and a loal lower bound for the error measured in anenergy-like norm. Here, for spae reasons, we only reall those results, butwe invite the interested reader to look at [4℄ for a detailed desription of the4



hypotheses and methods used in the proofs. Let us reall some useful notationsand de�nitions. For eah edge E of the triangulation we onsider a unit vetorn̂E suh that n̂E is orthogonal to E and equals the unit outward vetor normalto �
 if E � �
. For any triangle T 2Th let be E(T ) the set of its edges,!T def= [fT 0: E(T )\E(T 0) 6=;gT 0 and !E def= [fT 0: E2E(T 0)gT 0:Given any internal edge E and any '2L2(!E ) with 'jT 0 2C0(T 0 ) 8T 02!E, wedenote by ['℄E the jump of ' aross E along the orientation of n̂E. Moreover:� def= uh� u and 	 def= ph � p;RT ([uh; ph℄) def= � 1Re 4 uh+ ��T a � r�uh+rph��T f;RE ([uh; ph℄) def= �n̂E �� 1Re r uh�ph I��E;RE;N ([uh; ph℄ ;�E gN) def= n̂ �� 1Re ruh�ph I���E gN ;At last, we give the de�nition of our residual-based a posteriori error estimatoron the triangle T 2 Th:�2R;T def= h2T RT ([uh; ph℄) 20;T +12 XE2E(T ) hE RE ([uh; ph℄) 20;E ++ XE2 E(T )\Eh;N hE RE;N ([uh; ph℄ ;�E gN) 20;E + r� uh 20;T : (9)We report the upper and lower bounds derived for the ase Re � 1 andassuming that the problem is well a-dimensionalized, in the sense that j
 j � 1,k�T a k1;!T � 1 and k a k1;!T � 1 for all T 2Th.Proposition 1 There exist two onstants C" and C#, independent of anymesh-size and Reynolds number, but depending on the smallest angle of thetriangulation, suh that the global upper bound���� ���1+ k	 k0 � C"Re8<:sXT2Th �2R;T ++ k�T a� a k1 juh j1+ �T f � f 0+ k�E gN � gN k0;�No (10)and the loal lower bound 5



�R;T � C# ����� ���1;!T + k	 k0;!T +hT �k�T a� a k1;!T juh j1;!T+ �T f � f 0;!T� + XE2 E(T )\Eh;N qhE k�E gN � gN k0;E9=; (11)hold true.Remark 2 We notie that the onstants C" and C# depend only on the on-stants in Cauhy-Shwarz's, Poinar�e-Friedrihs', Young's and trae inequal-ities, as well as the onstants of interpolation in Sobolev spaes and the inf �sup onstant. All these onstants are O(1), so we dedue that C" and C# arealso O(1).Remark 3 Inequalities (10,11) agree with results presented in [25,26℄ for thenon-linear Navier-Stokes equations. Inequality (10) shows expliitly the depen-dene upon the Reynolds number of the onstant appearing in the analogousestimates of [25,26℄. Moreover in [4℄ we have onsidered the analogous esti-mates for the Stokes problem obtaining the same results of [23℄.Remark 4 Comparing inequalities (10,11) with analogous estimates given in[23,24,25℄ or [2℄, we observe that the part of our approximation error onern-ing f and gN is multiplied by a power of h that is di�erent from those in theited papers. This is due to the fat that we introdue the approximation of thedata in the disretization of the problem as well, not only in the omputationof the error estimator like in those works.Remark 5 The results of Proposition 1 look to be non-optimal, sine thethe upper and lower bounds di�er by the fator Re. In [28℄ the presene ofthe zero-order term in a salar reation-onvetion-di�usion equation allowsthe use of a more suitable energy-like norm for measuring the error, namely1pRe juh � u j
;1+ kuh � u k
;0. The resulting upper and lower bounds di�eronly by the fator +pRe k a k1;
min fhpRe; 1g, whih is of the order of theloal ReT or pRe depending upon the ow onditions. Unfortunately, for thesteady Navier-Stokes equations here onsidered, one annot take advantage ofany zero order term in the equations.4 Equivalene between the true error and the error estimatorLooking forward to the use of the error estimator in the onstrution of asequene of adapted Delaunay triangulations, we need some more onsidera-tions. At �rst we deal with some interpolations �T f , �T a and �E gN of thedata f , a and gN with polynomials of degree n1; n2; n3 � 1 respetively. Let6



us suppose that for any triangulation Th under onsideration and for suitableintegers n1; n2; n3 the following hypotheses hold:8T 2 Th; f j!T 2 [Hn1+1(!T )℄2;8T 2 Th; a j!T 2 [Wn2+1;1(!T )℄2;8T 2 Th : 9E � �T \ �N 6= ;; gN jE 2 [Hn3+1(T )℄2;whereWn+1;1(!T ) def= fv 2 L1(!T ) : ��v 2 L1(!T ); 8� 2 R2 : j�j � n+ 1g;moreover, we assume that the hosen interpolations satisfy following estimates:�T f � f 0;!T - hn1+1T ��� f ���n1+1;!T ; (12)k�T a� a k0;1;!T - hn2+1T j a jn2+1;1;!T ; (13)k�E gN � gN k0;E - hn3+1E j gN jn3+1;E : (14)Furthermore we suppose that, using �nite elements of the same order k forthe veloity and the pressure, the true errort:e: def= ���� ���1+ k	 k0 (15)deays, at most, proportionally to hk+ 12 . This agrees with the onvergeneresults of the used stabilized method [10,18,22℄ (in the last two referenes wean see that a mesh-dependent norm of the true error for equal order �niteelements behaves like hk when 0 � ReT � 1 and like hk+ 12 when ReT > 1).At last, using (10) and (12-14) we onlude that it is possible to hoose thedegrees n1, n2, n3 of interpolation for the data in suh a way that, for anymesh-size h less than a ertain ~h, the errors due to the approximation of thedata appearing in inequalities (10,11) are negligible with respet to the globalerror estimator [2,17℄ �
 def= sXT2Th �2R;T : (16)After these additional remarks we an use inequalities (10) and (11) to statethe equivalene between the true error and the global error estimator, i.e., �
 � ���� ���1+ k	 k0 � C Re �
 ; (17)where  and C depend upon C" and C#.7



5 Sensitiveness to the Reynolds numberThe theoretial analysis developed in [4℄ whose results are briey realledabove, suggests an equivalene relation between our error estimator and thetrue error of the form C �
 � ���� ���1+ k	 k0 � C �
 ; (18)where C and C are two onstants with respet to any mesh-size, but they maydepend on the Reynolds number. Estimates (17) tell us that C is boundedfrom below independently of Re, whereas C is bounded from above by a linearfuntion of Re. We now perform a numerial investigation of the behaviour ofthese onstants. To this end, the e�etivity index plays a fundamental role inthe study of the equivalene relation between the error estimator and the trueerror; indeed, it is de�ned as the ratio between our global error estimator andthe true error [2℄: e:i: def= �
���� ���1+ k	 k0 : (19)From inequalities (18) it follows thatC � 1e:i: = ���� ���1+ k	 k0�
 � C : (20)In the sequel we will perform a numerial study of the behaviour of the e�e-tivity index and its inverse to get some indiations on the values of C and C.Taking into aount Remark 2 we expet that, at least for moderate Re, thisonstants be O(1).5.1 A test problemIn order to test our error estimator we have onsidered the following linearNavier-Stokes problem in the unit box 
 def= (0; 1)2:� 1Re 4 u+ �a � r�u+rp= f in 
;r� u= 0 in 
;u= 0 on �D = �
:8
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Figure 2. R1 = 4:2985; R2 = 0:1We de�ne the vetor �eld a = [a1; a2℄ as follows:a1(x; y) def= 0�1� os0�2 � �eR1 x � 1�eR1 � 1 1A1A�� sin0�2 � �eR2 y � 1�eR2 � 1 1A R22� eR2 y(eR2 � 1) ; (21)a2(x; y) def= � sin0�2 � �eR1 x � 1�eR1 � 1 1A��0�1� os0�2 � �eR2 y � 1�eR2 � 1 1A1A R12� eR1 x(eR1 � 1) (22)where R1, R2 are two stritly positive real parameters. With a suitable hoieof f = [f1; f2℄, the solution [u; p℄ of the problem isu1(x; y)= a1(x; y); (23)u2(x; y)= a2(x; y); (24)p(x; y)=R1R2 sin0�2 � �eR1 x � 1�eR1 � 1 1A sin0�2 � �eR2 y � 1�eR2 � 1 1A�� eR1 x eR2 y(eR1 � 1) (eR2 � 1) : (25)Obviously, [u; p℄ is also the solution of the standard (non-linear) Navier-Stokesproblem with the same f . The veloity �eld of this solution is similar toa ounterlokwise vortex in a unit-box (see Figures 1,2). Playing with theparameters R1 and R2 we an move the entre of this vortex that has oordi-nates x0 = 1R1 log � eR1+12 � and y0 = 1R2 log � eR2+12 �. Inreasing R1, the entregoes rapidly towards the right-hand vertial side, whereas inreasing R2 it9



Re R1 h ��� ��1 k	 k0 t:e: e:i:17 0.060177 8.8388E-02 2.1475E-01 9.9644E-03 2.2462E-01 0.642624.4194E-02 1.0662E-01 2.4963E-03 1.0896E-01 0.586142.2097E-02 5.3273E-02 6.3073E-04 5.3833E-02 0.572711.1048E-02 2.6631E-02 1.6118E-04 2.6759E-02 0.5705034 0.700903 8.8388E-02 2.3392E-01 1.2997E-02 2.6763E-01 0.599594.4194E-02 1.1054E-01 3.3034E-03 1.2367E-01 0.514692.2097E-02 5.4573E-02 8.3373E-04 6.0504E-02 0.489441.1048E-02 2.7202E-02 2.1025E-04 2.9989E-02 0.4835968 1.295759 8.8388E-02 3.7340E-01 2.2786E-02 4.5952E-01 0.647994.4194E-02 1.3368E-01 5.8645E-03 1.7231E-01 0.517742.2097E-02 5.9664E-02 1.4835E-03 7.9991E-02 0.460341.1048E-02 2.8909E-02 3.7302E-04 3.9085E-02 0.44271136 1.883831 8.8388E-02 1.2138E+00 4.9425E-02 1.3045E+00 0.696164.4194E-02 2.8285E-01 1.2812E-02 3.3278E-01 0.557932.2097E-02 8.6756E-02 3.2432E-03 1.2549E-01 0.468811.1048E-02 3.4549E-02 8.1441E-04 5.7136E-02 0.42379Table 1Convergene results on uniform triangulationsapproahes the top edge.Every numerial result that we shall present is obtained using ontinuouslinear �nite elements for both veloity and pressure. Moreover, every integralneeded to set up the linear system is omputed assuming n1 = n2 = 3 in(12,13); this is ahieved by omputing the integrals with suitable quadratureformulas on eah triangle. A quadrature formula of order 5 on eah element isused for omputing the norms in the true error. The parameter � appearingin the stabilizing parameter ÆT in (7) is set to 0.5.2 Numerial results on uniform triangulationsAt �rst, we want to study how the e�etivity index e:i: (19), the true errort:e: (15) and eah one of its omponents vary with the mesh-size h and theReynolds number on a uniform grid. As a test problem we onsider thease in whih the entre of the vortex moves with Re on the horizontal line10
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Figure 7. Uniform Grid: 1=e:i: Figure 8. Example ofquasi-uniform Grid: Nnode = 284y0 = 0:5125 (R2 = 0:1) and its distane from the right-hand vertial wall is14pRe . This is obtained by hoosing the parameterR1 suh that 1R1 log � eR1+12 � =1� 14pRe . From Table 1 and Figure 5 we an see that the true error ���� ���1+ k	 k0deays, at most, like hk+ 12 as we have assumed. Moreover, for the largestonsidered Reynolds numbers, a super-linear behaviour of ���� ���1+ k	 k0 isobserved when in some parts of the domain the loal Reynolds number is in11



the order of unity or larger. Figure 6 shows that the e�etivity index presentslittle hanges with h. Figure 7 shows that the dependene on the Reynoldsnumber of the upper bound in (17) is too pessimisti. Indeed, estimate (20)with C =  and C = C Re says that 1=e:i: may inrease linearly with Re,but our experiments indiate that the inverse of the e�etivity index tendsto present a low variation for high values of this parameter. In Figure 7, wean observe a strange behaviour of the e�etivity index for low Re due to thefat that the hypothesis Re � 1 introdued in (10,11) to simplify the errorestimator is not ompletely ful�lled.5.3 Super-onvergene behaviour of the pressureAs a by-produt of our analysis we have observed a somehow unexpeted be-haviour of the pressure error. Indeed, from Table 1 and Figures 3-4 we notethat the error in the veloity ���� ���1 deays linearly with h, for h less than aertain ~h, whereas the error in the pressure k	 k0 is quadrati in h for all uni-form grids we used. We have onsidered the same problem on quasi-uniformgrids like the one shown in Figure 8. These tests aimed at exluding any super-onvergene e�et for the pressure due to the use of some partiular grid. There�ning riterion used on these grids is not, as for the previous ases, to spliteah triangle in four nested similar triangles by adding mid-points of any edge.Instead, we generate a possibly di�erent grid in whih the area of the new tri-angles is about one fourth of the area of the old triangles that overed thesame part of the domain. We observed that the quadrati onvergene of thepressure persists on these distorted grids. For the sake of ompleteness, wehave also onsidered the pure Stokes problem. With the same exat solution,we observed an h 32 -deay of the pressure error; moreover, the errors of pressureand veloity divergene are onentrated near the boundaries. With a di�er-ent exat solution whose veloity is at near all boundaries, one reovers thequadrati deay of the pressure error for the Stokes problem also. In this aser �uh as well as the pressure error near the boundaries are negligible withrespet to the orresponding errors inside the domain.6 The adaptive algorithmNow we show how the double inequality (18) an be used to generate a �nitesequene of adapted Delaunay triangulations suh that the solution on the lasttriangulation is reliable and eÆiently omputable. To this end we follow thestrategy of equidistribution of the error indiator presented in [3,16,17℄ withthe appropriate hanges needed for the problem under onsideration. Firstly,12



we start by requiring that the true relative errort:r:e: def= ���� ���1+ k	 k0j uh j1+ k ph k0 (26)is bounded from above and from below in terms of a given tolerane TOL, asfollows: C (1� �)TOL � ���� ���1+ k	 k0j uh j1+ k ph k0 � C (1 + �)TOL; (27)where � is a given parameter in the range (0; 1℄. To reah the goal of equidis-tributing the error, we seek to equidistribute the estimated error and to imposefor eah triangle the two inequalities(1� �)2TOL2(juh j1+ k ph k0)2NT � �2R;T ; (28)�2R;T � (1 + �)2TOL2(juh j1+ k ph k0)2NT : (29)where NT is the number of elements in the triangulation. Combining the pre-vious relations (27,28,29), for our adaptive algorithm, we get the followingbounds for the e�etivity index(1� �)(1 + �) 1C � e:i: � (1 + �)(1� �) 1C ; (30)after equidistribution of the loal error estimator �2R;T between the triangles.It is lear that the lower and upper bounds for the e�etivity index are inde-pendent of the imposed tolerane and, of ourse, of the mesh-size, but theydepend on the parameter �, i.e., on the adaptation strategy. We note thatthe two bounds of the e�etivity index depend on the Reynolds number bymeans of the two \onstants" C and C. The numerial results of Subsetion 5.2suggest us that C seems to be a sub-linear funtion of the Reynolds number.6.1 Re�ning and oarseningNow we explain how we use the target-relations (28,29) to adapt the mesh.At �rst, on any given mesh we alulate the solution with �nite elements oforder k, then for any triangle T we ompute �R;T . If �2R;T is greater than the13



upper bound in (29), we deide to re�ne this triangle, whereas if �2R;T is lessthan the lower bound in (28) then we state that T ould be oarsened.The re�ning strategy is as follows. Let T be a triangle that has to be re�ned.We add the mid-point of eah edge that is shared with another triangle thathas to be re�ned. If none of the triangles having an edge in ommon with Thas to be re�ned, we add only the baryentre of T . If T is a boundary elementwe add the mid-point of the edges shared with triangles to be re�ned and wealways add the middle point of the boundary edges. The oarsening strategyonsists of suppressing a node only if all the elements that share this node asa vertex have to be oarsened.After this adding and suppression of points we give the list of points to thetriangulator Triangle [20℄, with the optional request that the minimal angle ofthe new triangulations is not less than a ertain value. On the new mesh wesolve the problem and repeat the adaptive algorithm until the elements to bere�ned are less than, say, 2% of all elements and�
j uh j1+ k ph k0 � (1 + �) TOL: (31)This trik is useful to avoid last adaptive iterations in whih we introdue verylittle hanges in the mesh, but we have to solve the full problem; usually thisturns out to be very expensive with respet to the little inrease of aurayobtained.6.2 Numerial results on adapted triangulationsOur test problem for adaptivity is de�ned like the previous one, but now wesolve it on adapted triangulations. We onsider di�erent Reynolds numbersand we apply the adaptive algorithm based on the target inequalities (28,29).In Table 2 we report some meaningful quantities onerning the adaptive algo-rithm: the number iter of adapted grids built to reah the imposed tolerane,the number of nodes Nnode, the true relative error t:r:e: (26) and the estimatedrelative error e:r:e: = �
j uh j1+ k ph k0all on the last adapted grid. Figures 9-11 exhibit the trend of these quantitiesduring the onvergene towards the target tolerane. Figures 9,10 show anevident parallel deay for the true error t:e: and the global error indiator �
14
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Figure 12. Adaptive ase: 1=e:i:Re iter Nnode t:r:e: e:r:e: e:i:17 1 289 1.183956E-01 7.608372E-02 0.642634 5 416 1.178450E-01 7.322344E-02 0.621368 7 781 2.237083E-01 7.452908E-03 0.5931136 9 1832 1.044399E-01 6.030074E-02 0.5774272 9 4719 1.094436E-01 6.134174E-02 0.5605544 11 13865 1.213537E-01 6.548881E-02 0.5397600 11 16238 1.234726E-01 6.564014E-02 0.5316650 11 18793 1.230715E-01 6.570488E-02 0.5339800 13 26584 1.243112E-01 6.569474E-02 0.52851088 13 45826 1.247278E-01 6.475542E-02 0.5192Table 2Errors analysis of the adaptive algorithm: TOL = 0:1, � = 0:515



(16). In Figure 11 we report the standard deviation of �2R;T��2R;T = vuuuut XT2Th ��2R;T � �2R�2NT ; (32)where �2R denotes the mean value of the quantity �2R;T . Its deay indiatesthat the adaptive algorithm really equidistributes the error around the meanvalue. Figure 12 and Table 2 on�rm the theoretial predition that the ef-fetivity index is O(1). Furthermore, the results strengthen our opinion thatthe dependene on Re of the upper bound in (17) seems to be too pessimisti;indeed, 1=e:i: presents a very slow inrease for high Reynolds numbers. Whenwe vary Re by three orders of magnitude, we �nd a little variation for 1=e:i:;the e�etivity index always grows less for high Reynolds numbers than for lowones.6.3 Nodes to get a presribed toleraneSo far, we have disussed how our adaptive algorithm works on a test problemwhen we require a ertain value of tolerane. It is also interesting to inves-tigate the relationship between the presribed tolerane and the number ofgrid-points needed to math this requirement (i.e., at the onvergene of theadapted algorithm on the last adapted grid). Obviously, this number dependson the features of the solution. Our main target is to build an algorithm thatplaes the grid-points in a quasi-optimal manner, i.e., that identi�es the fea-tures of the solution and ats onsequently. To see if our algorithm reahes thisgoal, we onsider the previous test problem with Re = 544, whih presentsonly a boundary layer at the right-hand wall. Table 3 and Figure 13 showus the relationship between the tolerane and the number of nodes; Figure
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14 shows the behaviour of the true error, the estimed error and the e�etiv-ity index as funtions of the tolerane. We observe that both the true errorand the inverse of number of nodes depend approximately in a linear wayon the tolerane, in the interval of TOL we have onsidered. This behaviouran be explained: indeed, when the presribed tolerane is relatively large,the adaptive algorithm detets only the most relevant strutures of the so-lution, re�ning only near the right-hand vertial wall; this is an \essentially1D uniform re�nement", whih yields 1Nnode / TOL. As soon as the requestedtolerane is small enough so that all the strutures of the solution are orretlyresolved on the urrent grid, and if there are no singularities, then the trueerror should reah the asymptoti behaviour of the linear dependene on themesh-size h: thus, in term of number of nodes, for a 2D problem, we shouldobserve 1Nnode / TOL2. However, for this problem, we ould not reah thisasymptoti behaviour due to omputer limitations. The present experimentgives a quantitative expression to the superior performane of adaptive al-gorithms when the harateristi features of the solution are not ompletelyresolved yet, as far as memory requirement is onerned. More investigationsare needed to onsider timing performanes as well.7 Numerial results for the non-linear inompressible Navier-Stokesmodel: Lid Driven CavityAlthough our previous analysis was performed for the linear Navier-Stokesmodel, we now apply its results to the non-linear stationary inompressibleNavier-Stokes equations. We onsider the lassial Lid Driven Cavity problem.This problem onsists of the ow in a unit square with the following veloityboundary onditions: u1 = 1, u2 = 0 on the top edge and u1 = 0, u2 = 0 onthe other walls. We are interested in this problem beause it is a lassial testase and it allows us to onsider the e�et of the disontinuity in the boundaryonditions on the adaptive algorithm. We ompare our results for the veloitywith those given in [12℄, that we an onsider almost exat. They have been� = 0:5 � = 0:75 � = 1:0TOL = 0:2 6709 5809 5234TOL = 0:1 13865 12061 10771TOL = 0:075 18752 16129 14425TOL = 0:05 28131 25790 22335TOL = 0:025 57902 51858 46372Table 3Number of nodes at onvergene varying TOL, Re = 54417



Figure 15. Nnode = 545 Figure 16. Nnode = 1883,Re = 3200 Figure 17. Nnode = 2156,Re = 5000obtained with a  �! formulation of the Navier-Stokes problem, no result forthe pressure is given therein.We onsider two ases at di�erent Reynolds number: Re = 3200 and Re =5000. To get a solution at these high Reynolds numbers we need to apply theontinuation method, so we have ombined ontinuation in Re and adaptationof the mesh. At eah Re-step we solve the problem, then we perform onegrid adaptation based on this solution and we use this new grid to solve theproblem at the next higher Re. We set TOL = 0:06 and � = 0:5. Starting witha very oarse grid with 545 nodes at Re = 200, we arrive at Re = 3200 with1883 nodes and at Re = 5000 with 2156 nodes. Then, we apply our adaptivealgorithm, without ontinuation, for the two onsidered Reynolds numbers,starting from the two previous partially-adapted grids. Figures 18-26 reportsome plots of the obtained results. Figures 18,19,20,21,24,25 display veloitypro�les: u1 along a vertial setion and u2 along an horizontal setion passingthrough the geometri enter of the avity. The ontinuous line is our resultand irles indiate the values reported in [12℄. These referene-results areobtained with a multi-grid method on uniform meshes of 129� 129 = 16641points for Re = 3200 and of 257�257 = 66049 points for Re = 5000. We wantto draw the attention on the very good agreement of our veloity results withthe referene ones, also with a very small number of points, and on the gooddesription of the two pressure singularities in the two top orners (Figures22,23,26). Moreover, by observing the thikness of the re�ned region aroundthe primary vortex in the last adapted grids (Figures 28,29) we an learly seethe dereasing of the thikness of the boundary/inner layers while inreasingRe.7.1 Adaptation at Re = 3200Starting from the grid with 1883 nodes we apply the adaptive algorithm withTOL = 0:05 and � = 0:5. Table 4 reports meaningful quantities of the adap-tive proess up to the re�nement of less than 5% of the elements. We note18



iter Nnode e:r:e: �2R;T;MAX �2R;T;min ��2R;T1 1883 0.147747 3.211605E-01 3.653846E-16 6.448319E-032 2436 0.122983 1.319548E-01 1.770035E-11 2.888396E-033 3225 0.0883892 1.030873E-01 1.253682E-11 1.489866E-034 4039 0.0749348 9.820470E-02 3.601742E-11 1.214295E-035 4847 0.0733932 1.234252E-01 1.633134E-11 1.370128E-036 5658 0.0733819 1.281187E-01 8.087796E-12 1.315174E-037 6361 0.0708713 1.308443E-01 1.783953E-11 1.263084E-038 6998 0.0686216 1.321826E-01 1.199139E-11 1.214703E-03Table 4Re = 3200, adaptive iterationsthat the adaptive algorithm produes good grids and solutions, but - due tothe disontinuities of the boundary onditions - it fails to equidistribute theerror in the two orners, as we an see from the very low dereasing of ��2R;T(ompare with Figure 11). We an easily explain this behaviour, sine thedisontinuities in the boundary onditions imply that the solution has strongsingularities and is not in [H10(
)℄2�L20(
), as required in deriving the errorestimator.
7.2 Adaptation at Re = 5000Starting from the grid with 2156 nodes we apply the adaptive algorithm withTOL = 0:075 and � = 0:75 and we arrive at onvergene on 98% of thetriangles, with 3434 nodes. Then we apply four more adaptive steps withTOL = 0:05 and � = 0:75 to arrive at onvergene with these new param-eters on more than 95% of the triangles. To understand how the adaptivealgorithm works, let us observe Figures 24-27: although the number of pointsis very small, the veloity pro�les are surprisingly good and the desription ofthe seondary vorties is quite good as well. Yet the algorithm does not feelthe onset of the little tertiary vortex in the bottom-right orner. Indeed theveloities here are too small ( min = �1:43226E� 06) to have some relevaneand the error indiator gives importane prevalently to that phenomena thatause numerially relevant errors like singularities (exatly as we wanted whenwe designed it). 19
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Figure 18. x = 0:5, omponent u1 −0.5 0 0.5 1
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Figure 19. x = 0:5, omponent u1
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Figure 21. y = 0:5, omponent u2
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Figure 22. y = 1:0, pressure p −0.2 0 0.2 0.4 0.6 0.8 1 1.2
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Figure 23. y = 1:0, pressure p8 ConlusionsConsidering all the results of our test ases, we onlude that the adaptivealgorithm desribed in Setion 6 works well. Indeed, in all our numerial ex-periments, it leads to re�ne the grid exatly where it is needed and, whenpossible, the equidistribution of the error between the elements is eÆient, as20



iter Nnode e:r:e: �2R;T;MAX �2R;T;min ��2R;T1 2156 0.142289 3.294456E-01 6.032250E-29 6.143309E-032 2296 0.123102 1.295425E-01 3.001397E-12 3.115246E-033 2612 0.0937899 8.172397E-02 1.283356E-10 1.482653E-034 2926 0.0875836 1.333580E-01 3.205355E-12 2.226585E-035 3214 0.0893035 1.579566E-01 5.796903E-11 2.482492E-036 3434 0.0849747 1.253354E-01 3.222002E-12 2.191617E-03Table 5Re = 5000, adaptive iterations: TOL = 0:075, � = 0:75
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Figure 25. y = 0:5, omponent u2
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Figure 26. y = 1:0, pressure p Figure 27. Re = 5000, Nnode = 3434we dedue from the dereasing behaviour of the standard deviation ��2R;T (Fig-ure 11). We also notie that the omputation of suh low-ost error estimator,ombined with the numerial estimates of the onstants involved (whih, fromour experiments, turn out to be in the order of the unity), is useful to get ameasure of the quality of the solution, independently of the adaptive strategyused. 21



Figure 28. Re = 3200, Nnode = 6998 Figure 29. Re = 5000, Nnode = 6247Finally we observe that the maximal performane of adaptivity versus uniformre�nement and versus \by hand" mesh adaptation is ahieved in problemsthat present harateristi strutures in a limited part of the domain. Whenthe harateristi features of the solution are distributed in a wide part ofthe domain, the superiority of adaptive algorithms is redued [4℄, but theadvantage of building automatially a quasi-optimal grid in terms of number ofdegrees of freedom persists. Moreover, on this grid we are sure that the relativeerror in the omputed solution ould be ontrolled by a target tolerane, thatwe an hoose suitably in relation to the neessities of eah problem.AknowledgementThe author would like to thank the Department of Mathematis of the Po-litenio di Torino for allowing him the use of all its failities. Speial thanksare due to Giuseppe Ghib�o, system administrator at the Department, for hisessential support in arrying out the numerial omputations. The author isgreatly obliged to his advisor Prof. Claudio Canuto for introduing him tothese subjets, for his patient and preious help and for his areful reading ofthe manusript.Referenes[1℄ M. Ainsworth, J.T. Oden A posteriori error estimation in �nite elementanalysis, Comput. Methods Appl. Meh. Engrg. 142 (1997), 1-88.[2℄ I. Babu�ska, R. Dur�an, R. Rodr��guez, Analysis of the eÆieny of an a posteriori22
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