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Abstract

This paper focuses on (incomplete) rate-independent damage in elastic bodies. Since the driving

energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known

that the classical concept of energetic solutions for rate-independent systems may fail to accurately

describe the behavior of the system at jumps.

Therefore we resort to the (by now well-established) vanishing-viscosity approach to rate-in-

dependent processes, and approximate the model by its viscous regularization. In fact, the analysis

of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We

tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equa-

tions, with careful regularity estimates tailored to this specific system, relying on a q-Laplacian type

gradient regularization of the damage variable. Hence for the viscous problem we conclude the exis-

tence of weak solutions, satisfying a suitable energy-dissipation inequality that is the starting point

for the vanishing-viscosity analysis. The latter leads to the notion of (weak) parameterized solution

to our rate-independent system, which encompasses the influence of viscosity in the description of

the jump regime.
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1 Introduction

We analyze the following PDE system for damage evolution

− div(g(z)Cε(u+ uD)) = ` in Ω× (0, T ), (1.1a)

∂R1(zt)− div
(

(1 + |∇z|2)
q−2

2 ∇z
)

+ f ′(z) +
1

2
g′(z)Cε(u+ uD) : ε(u+ uD) 3 0 in Ω× (0, T ). (1.1b)

Here, Ω ⊂ Rd, with d ≥ 2, is a bounded Lipschitz domain, occupied by a body subject to damage,

u : Ω × [0, T ] → Rd the displacement vector, ε(u) denoting the symmetrized strain tensor, and z :

Ω × [0, T ] → [0, 1] the damage parameter. Within the approach of Generalized Standard Materials (see

also [20] and [14] for stress softening), we model the degradation of the elastic behavior of the body

through the internal variable z, which assesses the soundness of the material: for z(x, t) = 1 (z(x, t) = 0,

respectively) the material is in the undamaged state (in the maximum damaged state), “locally” around

x ∈ Ω and at time t ∈ [0, T ]; the intermediate case 0 < z(x, t) < 1 describes partial damage. We

consider a gradient regularization for z, which leads to the q-Laplacian operator in (1.1), with q > d ≥ 2.

Rate-independence and unidirectionality of damage evolution stem from the 1-positively homogeneous

dissipation potential

R1 : R→ [0,∞], R1(η) =

κ|η| if η ≤ 0,

∞ otherwise,

with κ > 0 a given material dependent parameter. R1 enforces the constraint that zt(x, t) ≤ 0 on

Ω× (0, T ); the operator ∂R1 : R⇒ R is its subdifferential in the sense of convex analysis. Furthermore,

f : R → R and g : R → (0,∞) are given constitutive functions, C = C(x) is the (positive definite,

symmetric) x-dependent elasticity tensor, uD a Dirichlet datum, and ` is the external loading. System

(1.1) is supplemented with zero Neumann conditions for z on ∂Ω and with mixed boundary conditions

for u on ∂Ω = ΓD ∪ ΓN , where ΓD is a closed subset of ∂Ω on which Dirichlet boundary conditions are

prescribed. For shortness, in this introduction we assume uD = 0. We suppose that g(z) ≥ c > 0 for all

z ∈ R: joint with the positive-definiteness of the tensor C, this excludes elliptic degeneracy of equation

(1.1a) even in the case of maximal damage, i.e. for z(x, t) = 0. Namely, here we rule out complete damage.

Observe that (1.1a) is the Euler-Lagrange equation for the minimization, with respect to the variable

u, of the stored energy functional E : [0, T ]× U × Z → R

E(t, u, z) :=
1

q

∫
Ω

(1 + |∇z|2)
q
2 dx+

∫
Ω

f(z) dx+
1

2

∫
Ω

g(z)Cε(u) : ε(u) dx− 〈`(t), u〉U , (1.2)

with the state spaces U = { v ∈ W 1,2(Ω,Rd) ; v|ΓD = 0 } for u, and Z = W 1,q(Ω) for z. In fact, in what

follows we are going to treat (1.1) as an abstract evolution equation set in the dual space Z∗, viz.

∂R1(z′(t)) +Aqz(t) + f ′(z(t)) +
1

2
g′(z(t))Cε(u(t)) : ε(u(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ),

u(t) ∈ Argmin{ E(t, v, z(t)) ; v ∈ U } for a.a. t ∈ (0, T ),
(1.3)

with R1 : L1(Ω)→ [0,∞] defined by

R1(η) =

∫
Ω

R1(η(x)) dx, (1.4)

∂R1 : Z ⇒ Z∗ its (convex analysis) subdifferential, and Aq denoting the q-Laplacian operator Aqz =

−div(1 + |∇z|2)
q−2

2 ∇z with zero Neumann boundary conditions. Introducing the reduced energy I :

[0, T ]×Z → R by I(t, z) = infv∈U E(t, v, z), we can further reformulate (1.3) as

∂R1(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (1.5)
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where DzI is the Gâteaux derivative of I w.r.t. z.

Since R1 has only linear growth and the reduced energy I(t, ·) has no uniform convexity properties,

solutions to (1.5) are, in general, only BV-functions of time. This calls for weak, derivative-free solvability

concepts for (1.5): first and foremost, the notion of energetic solution by Mielke & Theil [44, 39]. For

incomplete damage, the existence of energetic solutions to a version of (1.3) was established for q > d

in [43], and extended to q > 1 in [54]; in [53] the case of a BV-regularization (i.e. q = 1) was analyzed,

whereas in [17] a model without gradient terms for z was investigated by means of an energetic-type

solution concept relaxed via Young measures. We also refer to [3] for the study of a model undergoing

damage and fracture, while in [21] the evolution of damage in a material that can be in two configurations

at the microscale is examined via the concept of threshold solution.

Over the last years, it has been realized that the description of rate-independent evolution resulting from

the global stability condition of the energetic solution concept does not seem to be mechanically feasible in

the case of a nonconvex driving energy. Indeed, in order to satisfy the global stability, energetic solutions

may change instantaneously in a very drastic way, jumping into very far-apart energetic configurations

(see, for instance, [32, Ex. 6.3], [40, Ex. 1], as well as the characterization of energetic solutions to one-

dimensional rate-independent systems provided in [49]). This observation has motivated the introduction

of alternative weak solution notions. A well-established approach for deriving a concept which accurately

describes the behavior of the solution at jumps is taking the vanishing-viscosity limit in the viscous

approximation of a given rate-independent system. Starting from the seminal paper [16], this technique

has by now been thoroughly developed both for abstract rate-independent systems [40, 41, 45], and in

the applications to fracture [55, 32, 34, 36], and to plasticity [4, 12, 13, 19].

Following on the analysis initiated in [33], in this paper we develop this approach for the damage system

(1.3), and accordingly consider its viscous regularization

∂R1(z′(t)) + εz′(t) +Aqz(t) + f ′(z(t)) +
1

2
g′(z(t))Cε(u(t)) : ε(u(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (1.6)

with u(t) ∈ Argmin{ E(t, v, z(t)) ; v ∈ U } for almost all t ∈ (0, T ). Observe that (1.6) rewrites as

∂Rε(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (1.7)

with Rε(η) := R1(η)+ ε
2‖η‖

2
L2(Ω). In fact, the analysis of (1.6) is itself fraught with analytical difficulties.

In what follows, we briefly hint at them, and illustrate our approach and existence result, Theorem 3.5,

for the Cauchy problem associated with (1.6). We then describe the vanishing-viscosity analysis of (1.6).

The viscous problem: mathematical difficulties and existing results The most evident difficulty

attached to the analysis of (1.6) is the presence of the quadratic term g′(z(t))Cε(u(t)):ε(u(t)). The basic

energy estimate for (1.6) provides a (uniform w.r.t. time) W 1,2(Ω;Rd)-bound for u which, even assuming

|g′(z)| ≤ C, only gives an L1(Ω)-estimate for g′(z)Cε(u) : ε(u). Therefore, it is necessary to enhance

the spatial regularity of u, which requires performing enhanced regularity estimates on (1.6). The latter

issue poses further difficulties due to the doubly nonlinear character of (1.6), because of the simultaneous

presence of the nonlinear q-Laplacian operator Aq, and of the multivalued operator ∂R1 : Z ⇒ Z∗.
Last but not least, since the domain of R1 is not the whole space Z, ∂R1 is an unbounded operator.

This rules out the possibility of deriving bounds for DzI by comparison arguments in (1.7). Since the term

f ′(z) contributing to DzI may be considered of lower order under suitable assumptions on f , the problem

boils down to deriving further estimates for Aqz and, again, for the quadratic term g′(z)Cε(u) : ε(u).

All of these difficulties are reflected in the results available in the literature on damage problems,

starting from the first, pioneering paper on the viscous system (1.6), viz. [7]. There, the Laplace operator
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(i.e., q = 2) was considered but a gradient regularizing term A2zt was also added, enabling the authors to

derive enhanced estimates on z by resorting to elliptic regularity results, valid under suitable smoothness

assumptions on the domain Ω. The latter are also at the core of the analysis developed in the paper [8],

where the flow rule for z (with q = 2) is coupled with a parabolic equation for u, in the context of linear

viscoelasticity. The authors of [8] exploit the available estimates on the viscous term ε(ut), and elliptic

regularity arguments on u, in order to test (1.6) by ∂t(A2z + f ′(z)). This allows them to estimate the

term A2z and to gain enhanced spatial regularity for z, again by elliptic regularity. Refined estimates

combined with regularity assumptions on the domain Ω are crucial also in [6], extending the analysis to

a temperature-dependent model.

In the recent [27], different techniques have been adopted to analyze models coupling damage with

phase separation processes in elastic bodies (see also [28]). Also in [27], a q-Laplacian regularization with

q > d (d being the space dimension) is used in order to ensure C0(Ω)-regularity for z. Because of the

complexity of the overall system for damage and phase separation, and because of the triply nonlinear

character of the equation for the damage parameter (featuring the q-Laplacian and the multivalued

operators ∂R1 and ∂I[0,1]), the authors are able to prove existence only for a weak solution notion.

The viscous problem: our results Our aim is to analyze (1.3) and its viscous approximation (1.6)

under minimal regularity assumptions on Ω. This is meaningful in view of the applications to engineering

problems, where the spatial domain occupied by the elastic body is usually far from being of class C2.

Therefore, we have to apply refined elliptic regularity results to enhance the spatial regularity of u.

Let us motivate the choice of q > d for the q-Laplacian operator Aq. Since the damage variable

z enters into the coefficients of the operator of linear elasticity −div(g(z)Cε(u)), there is an intimate

relation between the regularity of z and the regularity of the displacements u. In our analysis we rely on

the fact that u ∈ W 1,p(Ω) with p > d. Such a regularity property can be achieved for the solutions of

linear elliptic systems on nonsmooth domains with mixed boundary conditions (under certain geometric

conditions), assuming that the coefficients are at least uniformly continuous on Ω. This is in particular

guaranteed, if z ∈ W 1,q(Ω) with q > d, see Section 2.2 for details. However, if q = 2, i.e. Aq coincides

with the standard Laplacian, then the coefficient g(z)C belongs to L∞(Ω) ∩ H1(Ω). In contrast to the

case of scalar elliptic equations, for linear elliptic systems this regularity of the coefficients in general

does not imply that solutions are continuous. This is highlighted in the three-dimensional example in

[46], with coefficients from L∞(Ω)∩H1(Ω) leading to weak solutions u that do not belong to C0(Ω) and

hence also not to W 1,p(Ω) with p > d. For this reason in the present paper we assume that q > d.

In the same spirit, in [33] we chose the fractional s-Laplacian operator As, on the Sobolev-Slobodeckij

spaceW s,2(Ω), with s ≥ d
2 , in place of the q-Laplacian. Note that for the case d = 2 the analysis performed

in [33] deals with the standard Laplacian for z, so the choice of a “pure” s-Laplacian operator was made

for space dimension d ≥ 3. The q-Laplacian is, however, a more physically justifiable regularization than

the nonlocal operator As, which fact has motivated the present study.

Relying on the spatial continuity of z, we obtain the regularity result which lies at the core of

our analysis, viz. Lemma 2.3 asserting that, under suitable conditions on the data uD and `, ∃ p∗ >
d such that ‖u‖W 1,p∗ (Ω;Rd) ≤ C. Its proof is based on regularity results for elliptic systems with constant

(or smooth) coefficients, combined with an iteration argument drawn from [5]. Let us stress that the

regularity results which we invoke allow for elliptic operators with changing boundary conditions and,

more importantly, for nonconvex, nonsmooth polyhedral domains, see Example 2.4 later on.

The higher integrability estimate for u enables us to improve the regularity of z which results from the

sole basic energy estimate. In particular, (formally) differentiating (1.7) and testing it by z′, we enhance
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the spatial regularity of z′ by deducing the mixed estimate∫ T

0

∫
Ω

(1 + |∇z(t)|2)
q−2

2 |∇z′(t)|2 dx dr <∞. (1.8)

All these calculations are made rigorous on the time-discretization scheme with which we approximate

(1.7): discrete solutions (zτk )Nk=0, with τ > 0 a constant time-step, are constructed via the time-incremental

minimization scheme

zτk+1 ∈ Argmin{ I(tτk+1, z) + τRε
(
z − zτk
τ

)
; z ∈ Z }. (1.9)

A crucial ingredient for passing to the limit as τ → 0 is to obtain suitable estimates for the family (Aqzτ )τ

(zτ denoting the piecewise constant interpolant of the values (zkτ )). Indeed, its weak convergence cannot

be solely deduced from estimates for (zτ )τ in the space Z = W 1,q(Ω), due to the nonlinear character of

Aq. This is in its own right a challenging feature of the problem investigated here: the linear operator As

considerably simplified the existence proof for (3.2), in [33]. In fact, after Lemma 2.3, the second milestone

of our analysis is Theorem 4.4: based on a careful difference quotient argument, for the discrete solutions

to (1.9) it ensures

∀ 0 < β < 1
q

(
1− d

q

)
∃Cβ > 0 ∀ τ > 0 ∀t ∈ (0, T ] : ‖zτ (t)‖q

W 1+β,q(Ω)
≤ Cβ(1 + ε ‖ẑ′τ (t)‖L2(Ω)). (1.10)

Estimate (1.10) yields W 1,q(Ω)-compactness for (zτ )τ and thus allows us to take the limit of the term

Aqzτ . Indeed, for the limit passage as τ → 0 we adopt a variational approach: instead of passing to the

limit directly in the discrete version of (1.5), we take the limit of the associated discrete energy inequality,

cf. (6.4) ahead. With suitable compactness and lower semicontinuity arguments, we deduce that there

exists a limit curve z ∈ L2q(0, T ;W 1+β,q(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)), with z ∈ [0, 1] a.e. in Ω× (0, T ), for

which the mixed estimate (1.8) holds and fulfilling the energy inequality associated with (1.7), viz.∫ t

s

Rε(z′(r)) dr +

∫ t

s

R∗ε (−DzI(r, z(r))) dr + I(t, z(t)) ≤ I(s, z(s)) +

∫ t

s

∂tI(r, z(r)) dr. (1.11)

for all 0 ≤ s ≤ t ≤ T , with R∗ε the Fenchel-Moreau conjugate of Rε with respect to the Z-Z∗-duality.

We also prove in Theorem 3.2 that, along the limit curve z a chain-rule formula is valid, viz.

d

dt
I(t, z(t))− ∂tI(t, z(t)) =

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx

+

∫
Ω

(f ′(z(t)) +
1

2
g′(z(t))Cε(u(t)) : ε(u(t)))z′(t) dx for a.a. t ∈ (0, T ).

(1.12)

A key ingredient for (1.12) is (1.8) guaranteeing

that the first integral on the right-hand side of (1.12) is well defined. With (1.12), in Proposition 3.3

we show that the energy inequality (1.11) is equivalent to

Rε(w)−Rε(z′(t)) ≥ 〈−Aqz(t), w〉Z +

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx

−
∫

Ω

(f ′(z(t)) +
1

2
g′(z(t))Cε(u(t)) : ε(u(t)))(w − z′(t)) for all w ∈ Z

(1.13)

for almost all t ∈ (0, T ). This variational inequality defines our notion of weak solution for the viscous

doubly nonlinear equation (1.6), cf. Definition 3.1; the existence Theorem 3.5, follows by the above

arguments.

5



Observe that, as soon as we can interpret the terms on the r.h.s. of (1.13) as the duality product

〈−Aqz − f ′(z)−
1

2
g′(z)Cε(u) : ε(u), w − z′〉

Z
, then (1.13) is in fact equivalent to the subdifferential in-

clusion (1.6). In Sec. 3.1 the relation of our weak solution concept for (1.6) to the usual subdifferential

formulation (1.7) is discussed at length, also in connection with the chain rule (1.12), and with the failure

of the energy inequality (1.11) to hold as an equality.

The vanishing-viscosity analysis As in [33], for passing to the limit in (1.7) as ε→ 0 we adopt the

reparameterization technique from [16], which leads to a notion of solution for the rate-independent system

(1.5), encompassing a finer description of the energetic behavior of the system jumps. The underlying

philosophy is that, at jumps the vanishing-viscosity solutions to (1.5) follow a path which is reminiscent

of the viscous approximation. To reveal this, one has to go over to an extended state space and study

the limiting behavior of the sequence (t̃ε, z̃ε)ε as ε ↓ 0, with z̃ε = zε ◦ t̃ε a suitable reparameterization of

a family (zε)ε of weak solutions (in the sense of (1.13)) to (1.7). The choice of this reparameterization is

related to the key BV-estimate supε>0

∫ T
0
‖z′ε(t)‖L2(Ω) dt ≤ C for viscous solutions to (1.7).

In Theorem 7.4 we prove that, up to a subsequence, the curves (t̃ε, z̃ε) converge to a pair (t̃, z̃) : [0, S]→
[0, T ]×Z, termed weak parameterized solution, which fulfills the parameterized energy inequality∫ s2

s1

M̃0(t̃′(r), z̃′(r),−DzI(t̃(r), z̃(r))) dr + I(t̃(s2), z̃(s2)) ≤ I(t̃(s1), z̃(s1)) +

∫ s2

s1

∂tI(t̃(r), z̃(r))t̃′(r)dr

(1.14)

for all 0 ≤ s1 ≤ s2 ≤ S. In (1.14), the term

M̃0(t̃′, z̃′,−DzI(t̃, z̃)) =

R1(z̃′) + I∂R1(0)(−DzI(t̃, z̃)) if t̃′ > 0,

R1(z̃′) + ‖z̃′‖L2(Ω) d2(−DzI(t̃, z̃), ∂R1(0)) if t̃′ = 0,

(d2(−DzI(t̃, z̃), ∂R1(0)) denoting the L2(Ω)-distance of −DzI(t̃, z̃) from ∂R1(0)) enforces the local sta-

bility condition −DzI(t̃, z̃) ∈ ∂R1(0) in the case of purely rate-independent evolution, i.e. when t̃′ > 0.

When the (slow) external time, encoded by the function t̃, is frozen, the system jumps. Then, the system

may switch to a viscous regime. We refer to Sec. 7.2 for further details on this.

Concluding remarks Let us finally comment on the structure of the q-Laplace operator Aq. Our

analysis relies on the fact that Aq is non-degenerate, meaning that Aq(z) = −div(δ + |∇z|2)
q−2

2 ∇z with

δ > 0. With δ > 0 it is possible to derive the spatial regularity estimate (1.10), which in turn is at the

core of our proof of existence of a family of viscous solutions (zε)ε>0 to (1.7). Furthermore, (1.10) turns

out to hold, in a suitable form, for (zε)ε>0, uniformly w.r. to ε. This crucial bound allows us to conclude

that for almost all s ∈ (0, S) z̃ε(s)→ z̃(s) strongly in Z, which is exploited when passing to the limit in

the expression DzI(t̃ε, z̃ε).

The chain of arguments does not work if one considers the degenerate q-Laplacian with δ = 0 and it is

not clear whether standard monotonicity tricks for monotone operators would do the job. Clearly, instead

of the particular Aq, one could consider general monotone potential operators for which the associated

energy densities satisfy the monotonicity and convexity estimates (2.3)–(2.4).

Plan of the paper In Section 2 we specify all assumptions, prove the regularity Lemma 2.3, and

collect all properties of the reduced energy I. In Section 3, we introduce and motivate our notion of

weak solution for the Cauchy problem associated with the viscous equation (1.6), state Theorem 3.5

(=existence of weak solutions and a priori estimates uniform w.r. to the viscosity parameter ε), and prove
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Theorem 3.2, providing the chain rule (1.12). In Section 4 we set up the time-discretization scheme for

(1.7) and prove the higher differentiability result yielding (1.10). Section 5 is devoted to the proof of

a series of a priori estimates on the discrete solutions, most of which uniform both w.r.t. τ and ε. In

particular, the discrete version of the BV-estimate supε>0

∫ T
0
‖z′ε(t)‖L2(Ω) dt ≤ C is derived. We prove

Theorem 3.5 by passing to the limit as τ → 0 in the time discrete scheme, also exploiting Young measure

techniques which are recapped in the Appendix. Finally, in Section 7 we develop the vanishing-viscosity

analysis of (1.7).

2 Preliminaries

2.1 Set-up

Notation For a given Banach space X, we shall denote by 〈·, ·〉X the duality pairing between X∗ and

X, and, if X is a Hilbert space, we shall use the symbol (·, ·)X for its scalar product. For matrices

A,B ∈ Rm×d the inner product is defined by A : B = tr(B>A) =
∑m
i=1

∑d
j=1 aijbij .

Let d ≥ 3 and let Ω ⊂ Rd be a bounded domain with a closed Dirichlet boundary ΓD ⊂ ∂Ω and

Neumann boundary ΓN = ∂Ω\ΓD. Further assumptions on the regularity of Ω and on ΓD will be

specified in Sections 2.2 and 3.1 (cf. (AΩ1) and (AΩ2)). The letter Q shall stand for the space-time

cylinder Ω× (0, T ). The following function spaces and notation shall be used for σ ≥ 0, p ∈ [1,∞]:

• Wσ,p(Ω) Sobolev-Slobodeckij spaces,

• W 1,p
ΓD

(Ω) := {u ∈W 1,p(Ω) ; u
∣∣
ΓD

= 0 } and W−1,p
ΓD

(Ω) :=
(
W 1,p′

ΓD
(Ω)
)∗

the dual space, 1
p + 1

p′ = 1.

We shall denote by u : Ω→ Rd the displacement, and by z : Ω→ R the (scalar) damage variable. The

corresponding state spaces are

U := { v ∈W 1,2(Ω,Rd) ; v
∣∣
ΓD

= 0 } = W 1,2
ΓD

(Ω,Rd), Z := W 1,q(Ω), (2.1)

with q > d. On the space Z the q-Laplacian operator is defined as follows

Aq : Z → Z∗, 〈Aq(z), v〉Z :=

∫
Ω

(1 + |∇z|2)
q−2

2 ∇z · ∇v dx for z, v ∈ Z.

Useful inequalities We collect here some inequalities which shall be extensively used in the following.

First of all, for p∗ > d

∀ ρ > 0 ∃ Cρ > 0 ∀ z ∈W 1,2(Ω) : ‖z‖L2p∗/(p∗−2)(Ω) ≤ ρ‖z‖W 1,2(Ω) + Cρ‖z‖L2(Ω). (2.2)

This follows from the the compact and continuous embeddings W 1,2(Ω) b L2p∗/(p∗−2)(Ω) ⊂ L2(Ω) (due

to p∗ > d), on account of [51, Lemma 8].

Secondly, let us recall that with Gq(A) = 1
q (1+ |A|2)

q
2 for A ∈ Rd, as a consequence of [23, Lemma 8.3]

the following monotonicity and convexity estimates are valid for q ≥ 2 and A, B ∈ Rd,

(DGq(A)−DGq(B)) · (A−B) ≥ cq(1 + |A|2 + |B|2)
q−2

2 |A−B|2 (2.3)

Gq(B)−Gq(A)−DGq(A) · (B −A) ≥ cq(1 + |A|2 + |B|2)
q−2

2 |A−B|2

≥ c̃q(|A−B|2 + |A−B|q).
(2.4)
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Observe that (2.3) implies for all z1, z2 ∈ Z:

〈Aqz1 −Aqz2, z1 − z2〉Z ≥ cq
∫

Ω

(1 + |∇z1|2 + |∇z2|2)
q−2

2 |∇(z1 − z2)|2 dx. (2.5)

Moreover, for all z1, z2 and w ∈ Z∣∣ 〈Aqz1 −Aqz2, w〉Z
∣∣ ≤ c∫

Ω

(1 + |∇z1|2 + |∇z2|2)
q−2

2 |∇(z1 − z2)| |∇w| dx. (2.6)

The energy functional The energy E = E(t, u, z) consists of two contributions. The first one, I1,

only depends on the damage variable. The second one, E2 = E2(t, u, z), is given by the sum of an elastic

energy of the type
∫

Ω
g(z)W (ε(x, u+ uD(t))) dx with uD a Dirichlet datum, and of the external loading

term.

Assumption 2.1. We consider

I1 : Z → R defined by I1(z) := Iq(z) +

∫
Ω

f(z) dx with Iq(z) :=
1

q

∫
Ω

(1 + |∇z|2)
q
2 dx, q > d, (2.7)

and f fulfilling

f ∈ C2(R), such that ∃K1, K2 > 0 ∀x ∈ R : f(x) ≥ K1 |x| −K2. (2.8)

A typical choice for f is f(z) = z2, see [22]. As for E2, linearly elastic materials are considered with an

elastic energy density W (x, η) = 1
2C(x)η : η, for η ∈ Rd×dsym and almost every x ∈ Ω. Hereafter, we shall

suppose for the elasticity tensor that

C ∈ C0
lip(Ω,Lin(Rd×dsym ,Rd×dsym)) with C(x)ξ1 : ξ2 = C(x)ξ2 : ξ1 for all x ∈ Ω, ξi ∈ Rd×dsym , (2.9a)

∃ γ0 > 0 for all ξ ∈ Rd×dsym and almost all x ∈ Ω : C(x)ξ : ξ ≥ γ0 |ξ|2 . (2.9b)

Let g : R→ R be a further constitutive function such that

g ∈ C2(R), with g′ ∈ L∞(R), and ∃ γ1, γ2 > 0 : ∀ z ∈ R : γ1 ≤ g(z) ≤ γ2. (2.10)

Then, we take the elastic energy

E2 : [0, T ]× U × Z → R defined by E2(t, u, z) :=

∫
Ω

g(z)W (x, ε(u+ uD(t))) dx− 〈`(t), u〉U (2.11)

where ε(u) = 1
2 (∇u +∇uT ) is the symmetrized strain tensor and ` ∈ C0([0, T ],U∗) an external loading

(cf. (2.22) later on for further requirements).

For u ∈ U and z ∈ Z the stored energy is then defined as

E(t, u, z) = I1(z) + E2(t, u, z). (2.12)

Reduced energy Minimizing the E with respect to the displacements we obtain the reduced energy

I : [0, T ]×Z → R given by I(t, z) = I1(z) + I2(t, z) with I2(t, z) = inf{ E2(t, v, z) ; v ∈ U }. (2.13)

Remark 2.2. As already mentioned in the introduction, our model does not allow for complete damage:

this is reflected in the coercivity (2.9b), and in the strict positivity (2.10) of the constitutive function g.

8



The Lipschitz continuity (2.9a) of the coefficient matrix C, as well as the smoothness of g, shall be

exploited in the forthcoming Lemma 2.3, providing higher integrability for ε(u). For proving this result,

which will be at the core of all the subsequent analysis, we have to stay with a quadratic elastic energy.

Relying on these regularity properties for C and g, we are also going to prove higher differentiability

for z, cf. the crucial Theorem 4.4 later on.

Nonetheless, let us stress that significant damage models fall within the scope of the above conditions:

for example, the Ambrosio-Tortorelli model, whose quasistatic evolution was discussed in [22], as an

approximation of the Francfort-Marigo model [18] for crack propagation. Observe that, in the energy

functional considered for the rate-independent model of [22], the index in (2.7) is q = 2. Instead, in the

more recent [5], which deals with the (metric) gradient flow of the Ambrosio-Tortorelli functional, it is

assumed that q > d like in the present setting.

2.2 Geometric assumptions and regularity of the displacement field

For the analysis of the time-dependent damage model higher integrability properties of the gradients of

the displacement field are needed, and hence the domain Ω and the data should be more regular than

stated above.

With C as in (2.9a)–(2.9b), g from (2.10) and z ∈ W 1,q(Ω) let L,Lg(z) : W 1,2
ΓD

(Ω;Rd)→ W−1,2
ΓD

(Ω;Rd)
be the operators associated with the bilinear forms describing linear elasticity, i.e.

∀u, v ∈W 1,2
ΓD

(Ω;Rd) : 〈Lu, v〉 :=

∫
Ω

Cε(u) : ε(v) dx, 〈Lg(z)u, v〉 :=

∫
Ω

g(z)Cε(u) : ε(v) dx. (2.14)

A good compromise between the smoothness needed for our analysis and nevertheless allowing for poly-

hedral domains and changing boundary conditions is formulated in the following

Assumption on the domain

(AΩ1) Ω ⊂ Rd is a bounded domain, and Ω and ΓD ⊂ ∂Ω (ΓD is closed and with positive measure) are

chosen in such a way that the following two conditions are satisfied:

(i) The spaces W 1,p
ΓD

(Ω;Rd), p ∈ (1,∞), form an interpolation scale.

(ii) There exists p∗ > d such that for all p ∈ [2, p∗] the operator L : W 1,p
ΓD

(Ω;Rd)→ W−1,p
ΓD

(Ω;Rd)
is an isomorphism.

For an abstract definition of interpolation scales we refer to [56], while in Example 2.4 here below we

present nonsmooth, nonconvex domains with mixed boundary conditions satisfying (AΩ1).

Observe that the isomorphism property stated in (AΩ1) is also valid for all p ∈ [p′∗, 2], and that the

operator norms are uniformly bounded, i.e. with Xp := W 1,p
ΓD

(Ω;Rd) and Yp := W−1,p
ΓD

(Ω;Rd) it holds

(denoting by ‖L‖X→Y the norm of an operator L : X → Y)

sup
p∈[p′∗,p∗]

‖L‖Xp→Yp +
∥∥L−1

∥∥
Yp→Xp

=: cp∗ <∞. (2.15)

Lemma 2.3 plays a key role in the subsequent analysis and relies on an iteration argument from [5].

Lemma 2.3. Let (AΩ1) be satisfied, g as in (2.10) and q > d. Let furthermore p∗ > d be chosen

according to (AΩ1) and let k∗ ∈ N be the smallest number with k∗ >
dq

2(q−d) . Then for all p ∈ [p′∗, p∗] and
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all z ∈ W 1,q(Ω) the operator Lg(z) : W 1,p
ΓD

(Ω;Rd) → W−1,p
ΓD

(Ω;Rd) is an isomorphism. Moreover, there

exists a constant cq,p∗ > 0 such that for all z ∈W 1,q(Ω) and all p ∈ [p′∗, p∗] it holds∥∥∥L−1
g(z)

∥∥∥
Yp→Xp

≤ cq,p∗(1 + ‖∇z‖Lq(Ω))
k∗

p∗|p−2|
p(p∗−2) . (2.16)

Observe that

sup
p∈[p′∗,p∗]

p∗ |p− 2|
p(p∗ − 2)

≤ 1 . (2.17)

Proof. It is sufficient to prove the lemma for p = p∗. The other assertions follow with interpolation and

duality arguments. The proof extends the recursion argument from [5], where it is carried out for smooth

domains and W 2,2(Ω;Rd), to the W 1,p(Ω;Rd)-setting and to domains satisfying (AΩ1).

Let p∗ > 2, q > d and k∗ be chosen as stated in Lemma 2.3. Define q∗ via the relation

p∗ =
2dq∗

dq∗ + 2k∗(d− q∗)
, i.e. q∗ =

2k∗p∗d

p∗(2k∗ − d) + 2d
.

Observe that q∗ ∈ (d, q]. Clearly, Yp ⊂ W−1,2
ΓD

(Ω;Rd) if p ≥ 2. Moreover, for all z ∈ W 1,q(Ω) the

functions g(z), g(z)−1 are multiplicators for the spaces W−1,p
ΓD

(Ω;Rd) and the following estimate is valid:

there exists a constant c > 0 such that for all p ∈ [2, p∗], all z ∈W 1,q(Ω) and all b ∈ Yp it holds∥∥g(z)−1b
∥∥
Yp
≤ c(1 + ‖∇z‖Lq(Ω)) ‖b‖Yp . (2.18)

For b ∈ Yp∗ , let u ∈W 1,2
ΓD

(Ω;Rd) be the unique function satisfying for all v ∈W 1,2
ΓD

(Ω;Rd)

〈Lg(z)u, v〉 =

∫
Ω

g(z)Cε(u) : ε(v) dx = 〈b, v〉W 1,2(Ω;Rd) . (2.19)

Due to the multiplier property of g(z), using the product rule and choosing v = 1
g(z) ṽ in (2.19), it follows

that for all ṽ ∈W 1,2
ΓD

(Ω;Rd) we have∫
Ω

Cε(u) : ε(ṽ) dx =

〈
1

g(z)
b, ṽ

〉
W 1,2(Ω;Rd)

+

∫
Ω

g′(z)

g(z)
Cε(u)∇z · ṽ dx

=:

〈
1

g(z)
b, ṽ

〉
W 1,2(Ω;Rd)

+

∫
Ω

h(u, z) · ṽ dx.

(2.20)

Since 1
g(z)b ∈ Yp∗ with estimate (2.18) (for p = p∗), in the following we only have to concentrate on

the term h(u, z), which belongs to Lα0(Ω) with α0 = 2q∗
2+q∗

∈ (1, 2). Hence, by embedding it follows that

h(z, u) ∈ Lα0(Ω) ⊂ Yp1
with p1 = 2q∗d

dq∗−2(q∗−d) . Observe that 2 < p1 ≤ p∗. Thanks to assumption (AΩ1)

and estimate (2.15) it follows from (2.20) that u ∈W 1,p1

ΓD
(Ω;Rd) with

‖u‖W 1,p1 (Ω) ≤ c̃
(

1 + ‖∇z‖Lq(Ω)

)(
‖u‖W 1,2(Ω) + ‖b‖Yp1

)
≤ c

(
1 + ‖∇z‖Lq(Ω)

)
‖b‖Yp1

,

where the last inequality ensues from the estimate due to the Lax-Milgram lemma, applied to the solution

u of (2.19). The constants c̃, c are independent of z and p1.

We now iterate this argument. Assume that u ∈ W 1,pk
ΓD

(Ω;Rd) for some pk ∈ [2, p∗). Then, again by

embedding, we have h(z, u) ∈ Lαk(Ω) with αk = pkq∗
pk+q∗

, and Lαk(Ω) ⊂ Ypk+1
with

pk+1 =
dpkq∗

dq∗ + pk(d− q∗)
≡ 2dq∗
dq∗ + 2(k + 1)(d− q∗)

. (2.21)
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The last identity follows by induction starting with p0 = 2. This argument can be repeated as long as

k < k∗, since for these values of k it holds pk < pk+1 ≤ p∗. Observe that pk∗ = p∗. This implies that

Lαk∗−1(Ω) ⊂ Yp∗ and hence, again by (AΩ1), we have u ∈ W 1,p∗
ΓD

(Ω;Rd). The estimate for u follows

recursively, namely

‖u‖W 1,p∗ (Ω;Rd) ≤ c
(

(1 + ‖∇z‖Lq(Ω)) ‖b‖Yp∗ + ‖u‖W 1,pk∗−1 (Ω) ‖∇z‖Lq∗ (Ω)

)
≤ ck∗(1 + ‖∇z‖Lq(Ω))

k∗ ‖b‖Yp∗ .

The remaining norm estimates in Lemma 2.3 follow from interpolation theory.

Example 2.4. A sufficient condition such that the interpolation scale property (AΩ1)(i) is satisfied is to

assume that Ω ⊂ Rd is a bounded domain with Lipschitz boundary and that the boundary sets ΓD and

ΓN are regular in the sense of Gröger viz., loosely speaking, that the hypersurface separating ΓD and ΓN

is Lipschitz, see [25, 24] for more details. A more general geometric setting is characterized in [26].

In order to obtain also the isomorphism property (AΩ1)(ii), one can apply the regularity theory for

linear elliptic systems in polyhedral domains. Sufficient conditions on the geometry of Ω, the Dirichlet

and the Neumann boundaries can be identified for instance with the help of [38, Theorem 7.1] (applied

for ~β = 0, ~δ = 0, l = 1 in the notation of [38, Section 7]).

For example, for the Lamé-operator (i.e. linear isotropic elasticity) sufficient conditions for (AΩ1) to

hold are the following: d = 3, Ω ⊂ R3 is a bounded domain of polyhedral type (see [38, Section 7.1]),

and on each face either Dirichlet boundary conditions or Neumann boundary conditions are prescribed.

Furthermore, the interior opening angles along Dirichlet-Dirichlet and along Neumann-Neumann edges

are less than 2π (i.e. no cracks), and the interior opening angle along Dirichlet-Neumann edges is less

than or equal to π (more general situations are possible). Then the singular exponents along the edges

of the polyhedron Ω satisfy the conditions required in [38, Theorem 7.1] in order to allow for p∗ > 3

in (AΩ1). We refer for example to [47] for estimates of the singular exponents along edges in different

geometric settings. Concerning the singular exponents associated with the vertices of the polyhedron, one

has to guarantee that the strip {λ ∈ C ; − 1
2 < Re λ ≤ 0 } contains at most the singular exponent λ = 0.

In the case of pure Dirichlet conditions in the vicinity of a given vertex there is no further geometric

restriction in order to guarantee this property, [37]. In case of pure Neumann conditions in the vicinity

of a given vertex one has to assume that the boundary locally is the graph of a function that is positively

homogeneous of degree one, [35]. In case of mixed boundary conditions in the vicinity of a vertex, a

sufficient condition is to assume that the domain is convex in the vicinity of the vertex and that at most

one face belongs to the Dirichlet boundary or that at most one face belongs to the Neumann boundary

(see [47] for a more general condition, an example is illustrated in Figure 1(ii)). We refer to [29] for an

overview on the literature on estimates for the corner and edge singularities associated with the Laplace-

and Lamé-operator on three-dimensional polyhedral domains. Clearly, (AΩ1) as well as Lemma 2.3 can

be extended to coefficient matrices C with piecewise constant entries if certain geometric conditions are

satisfied. The Fichera corner plotted in Figure 1 is an example for a nonconvex, nonsmooth domain with

mixed boundary conditions that is admissible with respect to assumption (AΩ1), in connection with the

Lamé-operator.

2.3 Properties of the energy functional

In what follows, we prove the continuity and differentiability properties of I needed for our analysis. The

following results shall also provide fine estimates for |∂tI| and for suitable norms of DzI, in terms of
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Γ1

Figure 1: Admissible domain if for example: (i) Dirichlet-conditions on the bottom plane and Neumann

conditions on the remaining part of ∂Ω or (ii) ΓD = Γ1 and Neumann conditions on the rest.

quantities which continuously depend on ‖z‖Z , and which are therefore bounded on sublevels of I.

Hereafter, we shall work under these additional conditions on the data ` and uD:

Assumption 2.5. We require that

` ∈ C1,1([0, T ];W−1,p∗
ΓD

(Ω;Rd)), uD ∈ C1,1([0, T ];W 1,p∗(Ω;Rd)) with p∗ > d from (AΩ1). (2.22)

From now on, to shorten the notation we introduce for z1, z2 ∈ Z and k∗ as in Lemma 2.3 the quantity

P (z1, z2) := (1 + ‖∇z1‖Lq(Ω) + ‖∇z2‖Lq(Ω))
k∗ . (2.23)

Our first result is based on Lemma 2.3.

Lemma 2.6 (Existence of minimizers and their regularity).

Under Assumptions 2.1, 2.5, and (AΩ1), for every (t, z) ∈ [0, T ]×Z there exists a unique umin(t, z) ∈ U ,

which minimizes E(t, z, ·).
Moreover, there exist c0 > 0 such that for all p ∈ [p′∗, p∗] and (t, z) ∈ [0, T ]×Z it holds that umin(t, z) ∈

W 1,p
ΓD

(Ω;Rd), and

‖umin(t, z)‖W 1,p(Ω;Rd) ≤ c0P (z, 0)
p∗|p−2|
p(p∗−2)

(
‖`(t)‖W−1,p

ΓD
(Ω;Rd) + ‖uD(t)‖W 1,p(Ω;Rd)

)
, (2.24)

with P as in (2.23), and p∗ the exponent from (AΩ1)(ii). Furthermore, the following coercivity inequality

for I is valid: There exist constants c1, c2 > 0 such that for all (t, z) ∈ [0, T ]×Z it holds

I(t, z) ≥ c1
(
‖∇z‖qLq(Ω) + ‖z‖L1(Ω) + ‖umin(t, z)‖2W 1,2(Ω;Rd)

)
− c2. (2.25)

Observe that, on the right-hand side of (2.24) the dependence on ‖z‖Z of the quantity which bounds

‖umin(t, z)‖W 1,p(Ω;Rd) is very explicitly displayed. In particular, observe that for p = 2 we have no

dependence on ‖z‖Z as P (z, 0)0 = 1, while for the extreme case p = p∗ we have P (z, 0), cf. (2.17).

Lemma 2.7 (Continuous dependence on the data).

Under Assumptions 2.1, 2.5, and (AΩ1), there exists a constant c3 > 0 such that for all ` and uD as in

(2.22), all t1, t2 ∈ [0, T ] and all p̃ ∈ [p′∗, p∗) it holds with r = p∗p̃(p∗ − p̃)−1 and all z1, z2 ∈ Z

‖umin(t1, z1)− umin(t2, z2)‖
W 1,p̃(Ω;Rd)

≤ c3
(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)
P (z1, z2)2

(
‖`‖C1([0,T ];W−1,p∗

ΓD
(Ω;Rd)) + ‖uD‖C1([0,T ];W 1,p∗ (Ω;Rd))

)
. (2.26)

Remark 2.8. Observe that for p̃ ∈ [p′∗, p∗) we have r = p∗p̃(p∗ − p̃)−1 ∈ [ p∗
p∗−2 ,∞), and r is strictly

increasing with respect to p̃. In particular, for p̃ = 3p∗(3+p∗)
−1 we have r = 3 and for p̃ := 6p∗(6+p∗)

−1

we have r = 6.
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Proof. For i = 1, 2, let ui := umin(ti, zi) ∈ W 1,p∗(Ω;Rd), with p∗ from (AΩ1). From the corresponding

Euler-Lagrange equations written for ui, i = 1, 2, with algebraic manipulations we obtain that u1 − u2

satisfies for all v ∈W 1,p∗
ΓD

(Ω;Rd)∫
Ω

g(z1)Cε(u1 − u2) : ε(v) dx =

∫
Ω

(
g(z2)− g(z1)

)
Cε(u2) : ε(v) dx

−
∫

Ω

(
g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))

)
: ε(v) dx+ 〈`(t1)− `(t2), v〉U .

(2.27)

Hence, by density and Lemma 2.3, the function u1−u2 fulfills for all p̃ ∈ [p′∗, p∗] and all v ∈W 1,p̃′

ΓD
(Ω;Rd)

the relation ∫
Ω

g(z1)Cε(u1 − u2) : ε(v) dx = 〈˜̀1,2, v〉W 1,p̃′
ΓD

(Ω;Rd)
,

where ˜̀
1,2 ∈ W−1,p̃

ΓD
(Ω;Rd) subsumes the terms on the right-hand side of (2.27). Therefore, (2.16) gives

‖u1 − u2‖W 1,p̃(Ω;Rd)
≤ c0P (z1, 0)

∥∥∥˜̀
1,2

∥∥∥
W−1,p̃

ΓD
(Ω;Rd)

, whence we deduce the estimate

‖u1 − u2‖W 1,p̃(Ω;Rd)
≤ c0P (z1, 0)

(
‖`(t1)− `(t2)‖

W−1,p̃
ΓD

(Ω;Rd)
+ ‖(g(z1)− g(z2))Cε(u2)‖

Lp̃(Ω;Rd)

+ ‖g(z1)Cε(uD(t1))− g(z2)Cε(uD(t2))‖
Lp̃(Ω;Rd)

)
. (2.28)

Now, the Lipschitz continuity of g and Hölder’s inequality imply that

‖(g(z1)− g(z2))Cε(u2)‖
Lp̃(Ω;Rd)

≤ C ‖z1 − z2‖Lr(Ω) ‖ε(u2)‖Lp∗ (Ω;Rd)

≤ C ′P (z2, 0) ‖z1 − z2‖Lr(Ω)

(2.29)

with r = p∗p̃(p∗−p̃)−1, where the second inequality follows from condition (2.22) and from estimate (2.24).

We use (2.29) to estimate the second term on the right-hand side of (2.28). In a similar way the third

summand is treated, where we use again (2.22).

For the proof of Lemma 2.9 on the differentiability in t, the calculations are similar to those in [33,

Lemma 2.3], taking into account estimates (2.24) and (2.26). Therefore we choose not to detail them.

Lemma 2.9 (Differentiability and growth w.r. to time).

Under Assumptions 2.1, 2.5, and (AΩ1), for every z ∈ Z the map t 7→ I(t, z) is in C1([0, T ];R) with

∂tI(t, z) =

∫
Ω

g(z)Cε(umin(t, z) + uD(t)) : ε(u̇D(t)) dx− 〈 ˙̀(t), umin(t, z)〉W 1,2
ΓD

(Ω;Rd). (2.30)

Moreover, there exists a constant c4 > 0 such that for all t ∈ [0, T ], z ∈ Z and uD, ` with (2.22) we have

|∂tI(t, z)| ≤ c4
(
‖uD‖2C1([0,T ];W 1,2(Ω;Rd)) + ‖`‖2C1([0,T ];W−1,2

ΓD
(Ω;Rd))

)
. (2.31)

Finally, there exists a constant c5 > 0 depending on ‖`‖C1,1([0,T ];W−1,p∗
ΓD

(Ω;Rd)) and ‖uD‖C1,1([0,T ];W 1,p∗ (Ω))

such that for all r ∈ [ p∗
p∗−2 ,∞), for all ti ∈ [0, T ] and zi ∈ Z we have

|∂tI(t1, z1)− ∂tI(t2, z2)| ≤ c5P (z1, z2)2
(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)
. (2.32)

The differentiability of I with respect to z will be studied in the Z − Z∗ duality. In particular,

DzI(t, ·) : Z → Z∗ shall denote the Gâteaux-differential of the functional I(t, ·). We have the following

result, whose proof is completely analogous to the proof of [33, Lemma 2.4].
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Lemma 2.10 (Gâteaux-differentiability).

Under Assumptions 2.1, 2.5, and (AΩ1), for all t ∈ [0, T ] the functional I(t, ·) : Z → R is Gâteaux-

differentiable at all z ∈ Z, and for all η ∈ Z we have

〈DzI(t, z), η〉Z = 〈Aqz, η〉Z +

∫
Ω

f ′(z)η dx+

∫
Ω

g′(z)W̃ (t,∇umin(t, z))η dx, (2.33)

where we use the abbreviation W̃ (t,∇v) = W (∇v+∇uD(t)) = 1
2Cε(v+uD(t)):ε(v+uD(t)). In particular,

the following estimate holds with a constant c6 depending on the data `, uD, but independent of t and z:

∀ (t, z) ∈ [0, T ]×Z : ‖DzI(t, z)‖Z∗ ≤ c6
(
‖z‖q−1
Z + ‖f ′(z)‖L∞(Ω) + 1

)
. (2.34)

We define

Ĩ(t, z) := I2(t, z) +

∫
Ω

f(z) dx for all (t, z) ∈ [0, T ]×Z (2.35)

with I2 from (2.13), as the part of the reduced energy collecting all lower order terms. Accordingly, DzI
from (2.33) decomposes as

DzI(t, z) = Aqz + DzĨ(t, z) for all (t, z) ∈ [0, T ]×Z. (2.36)

In Lemma 2.12 below we prove that the maps (t, z) 7→ Ĩ(t, z(t)) and that (t, z) 7→ DzĨ(t, z) are Lipschitz

continuous w.r.t. a suitable Lebesgue norm. In view of this, and in order to emphasize that, in (2.36),

DzĨ(t, z) is a lower order term w.r.t. Aqz, from now on we shall often resort to the following

Notation 2.11 (Abuse of notation for DzĨ(t, z)). In view of (2.33), the term DzĨ(t, z) can be identified

with an element of Lµ(Ω) for some µ ≥ 1. The quantity
∥∥DzĨ(t, z)

∥∥
Lµ(Ω)

will be interpreted in this

sense, and with the symbol DzĨ, we shall denote both the derivative of Ĩ as an operator and the

corresponding density in L1(Ω). Accordingly, for a given v ∈ Lµ′(Ω) we shall write
∫

Ω
DzĨ(t, z)v dx in

place of 〈DzĨ(t, z), v〉Lµ′ (Ω).

For h ∈ C0(R) and z1, z2 ∈ Z let

Ch(z1, z2) = max{ |h(s)| ; |s| ≤ ‖z1‖L∞(Ω) + ‖z2‖L∞(Ω) }. (2.37)

This notation will be used along the proof of the following lemma.

Lemma 2.12 (Local Lipschitz continuity of Ĩ and DzĨ).

Under Assumptions 2.1, 2.5, and (AΩ1), there exists a constant c7 > 0 depending on ‖`‖C1,1([0,T ];W 1,−p∗
ΓD

(Ω;Rd))

and ‖uD‖C1,1([0,T ];W 1,p∗
ΓD

(Ω;Rd)) such that for all ti ∈ [0, T ] and all zi ∈ Z it holds∣∣∣Ĩ(t1, z1)− Ĩ(t2, z2)
∣∣∣ ≤ c7(Cf ′(z1, z2) + P (z1, z2)2)

(
|t1 − t2|+ ‖z1 − z2‖L2p∗/(p∗−2)(Ω)

)
, (2.38)

with Cf ′(z1, z2) as in (2.37) (corresponding to h(x) = f ′(x)). Further, for every µ ∈ [1, p∗/2),∥∥∥DzĨ(t1, z1)−DzĨ(t2, z2)
∥∥∥
Lµ(Ω)

≤ c7
(
Cf ′′(z1, z2)

+ (1 + Cg′′(z1, z2))P (z1, z2)3
)(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)
,

(2.39)

where r = p∗µ(p∗ − 2µ)−1, and for µ ∈ [1, p∗/2],

∀ (t, z) ∈ [0, T ]×Z : ‖DzĨ(t, z)‖Lµ(Ω) ≤ c7(1 + ‖f ′(z)‖L∞(Ω) + P (z, 0)2). (2.40)
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Proof. In order to prove estimate (2.38), with elementary calculations we observe that∣∣∣Ĩ(t1, z1)− Ĩ(t2, z2)
∣∣∣ ≤ ∫

Ω

|f(z1)− f(z2)| dx+

∫
Ω

|g(z1)− g(z2)||W̃ (t1,∇u1)| dx

+

∫
Ω

|g(z2)||W̃ (t1,∇u1)− W̃ (t2,∇u2)| dx+ | 〈`(t1)− `(t2), u1〉U |

+ | 〈`(t2), u1 − u2〉U |
.
= I1 + I2 + I3 + I4 + I5,

where ui := umin(ti, zi) ∈W 1,p∗(Ω;Rd) for i = 1, 2. Since f ∈ C1(R) (cf. (2.8)),

I1 ≤ Cf ′(z1, z2)‖z1 − z2‖L1(Ω). (2.41)

Moreover, using (2.9a), (2.10), (2.22), and the Hölder inequality,

I2 ≤ ‖g(z1)− g(z2)‖Lp∗/(p∗−2)(Ω)‖W̃ (t1,∇u1)‖Lp∗/2(Ω) ≤ C‖z1 − z2‖Lp∗/(p∗−2)(Ω)‖u1‖2W 1,p∗ (Ω;Rd)

≤ CP (z1, 0)2‖z1 − z2‖Lp∗/(p∗−2)(Ω)

where the constant C also incorporates the data and the last inequality follows from (2.24) (with p = p∗).

Analogously,

I3 ≤ C
∫

Ω

|g(z2)||ε(u1 + uD(t1)) + ε(u2 + uD(t2))||ε(u1 + uD(t1))− ε(u2 + uD(t2))| dx

≤ C(‖u1 + u2‖W 1,2(Ω;Rd) + 1)(‖u1 − u2‖W 1,2(Ω;Rd) + ‖uD(t1)− uD(t2)‖W 1,2(Ω;Rd))

≤ CP (z1, z2)2(|t1 − t2|+ ‖z1 − z2‖L2p∗/(p∗−2)(Ω))

due to (2.10) and (2.22) and, for the last inequality, to (2.24) (with p = 2), and (2.26) with p = 2, whence

r = 2p∗/(p∗ − 2). Finally,

I4 ≤ ‖`(t1)− `(t2)‖W−1,p∗ (Ω;Rd)‖u1‖W 1,p∗ (Ω;Rd) ≤ C|t1 − t2|P (z1, z2),

I5 ≤ ‖`(t2)‖W−1,2(Ω;Rd)‖u1 − u2‖W 1,2(Ω;Rd) ≤ CP (z1, z2)2(|t1 − t2|+ ‖z1 − z2‖L2p∗/(p∗−2)(Ω))

where the first estimate is due to (2.22) and (2.24), and the second one follows from ` ∈ C0([0, T ];W−1,2
ΓD

(Ω;Rd))
and again (2.26). Collecting the above calculations, we conclude (2.38).

Since f ′ is locally Lipschitz, for the proof of (2.39) we confine ourselves to investigating the properties

of DzI2, given by (2.13). Let µ ∈ [1, p∗/2). We have

‖DzI2(t1, z1)−DzI2(t2, z2)‖Lµ(Ω)

≤ Cg′′(z1, z2) ‖z1 − z2‖Lr(Ω)

∥∥∥W̃ (t1,∇u1)
∥∥∥
Lp∗/2(Ω)

+ c
∥∥∥W̃ (t1,∇u1)− W̃ (t2,∇u2)

∥∥∥
Lµ(Ω)

≤ C(1 + Cg′′(z1, z2))P (z1, z2)3
(
|t1 − t2|+ ‖z1 − z2‖Lr(Ω)

)
and C depends on the data ` and uD. Indeed, the first inequality follows from the form of DzI2 (cf.

(2.33)). The second one ensues from (2.10) and the Hölder inequality for the first term, which is then

estimated by means of (2.24) Lemma 2.6. For the term
∥∥∥W̃ (t1,∇u1)− W̃ (t2,∇u2)

∥∥∥
Lµ(Ω)

, we again use

the Hölder inequality. Ultimately, this leads us to estimate the quantity ‖u1 + u2‖W 1,p∗ (Ω;Rd), for which

we use (2.24), and the quantity ‖u1 − u2‖W 1,p̃(Ω;Rd)
with p̃ = µp∗/(p∗ − µ) , for which we use (2.26)

(observe that µ ≤ p∗
2 ), with r = p∗µ/(p∗ − 2µ) (indeed, r = p∗p̃/(p∗ − p̃)). With completely analogous

calculations, we prove (2.40).

From (2.39) we deduce estimate (2.42) below, which occurs in several of the calculations in Sec. 5.
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Corollary 2.13. Under Assumptions 2.1, 2.5, and (AΩ1), for every w ∈ Z there holds∣∣∣〈DzĨ(t1, z1)−DzĨ(t2, z2), w〉Z
∣∣∣

≤ c7(Cf ′′(z1, z2) + (1 + Cg′′(z1, z2))P (z1, z2)3)(|t1 − t2|+ ‖z1 − z2‖L2p∗/(p∗−2)(Ω))‖w‖L2p∗/(p∗−2)(Ω).
(2.42)

Proof. To check (2.42), we use the Hölder inequality and estimate∣∣∣〈DzĨ(t1, z1)−DzĨ(t2, z2), w〉Z
∣∣∣ ≤ ‖DzĨ(t1, z1)−DzĨ(t2, z2)‖L2p∗/(p∗+2)(Ω)‖w‖L2p∗/(p∗−2)(Ω),

(cf. Notation 2.11), which, with (2.39) for µ = 2p∗/(p∗ + 2) and r = 2p∗/(p∗ − 2), implies (2.42).

We also have the following monotonicity property for DzI.

Corollary 2.14.

Under Assumptions 2.1, 2.5, and (AΩ1), there exist constants c8, c9 > 0 such that for all t ∈ [0, T ] and

zi ∈ Z, i = 1, 2, we have

‖z1−z2‖2L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z ≥ c8 ‖z1−z2‖2W 1,2(Ω) − c9 ‖z1−z2‖2L2(Ω) . (2.43)

Proof. We observe that by (2.5) and (2.42) there holds

‖z1−z2‖2L2(Ω) + 〈DzI(t, z1)−DzI(t, z2), z1−z2〉Z
= ‖z1−z2‖2L2(Ω) + 〈Aqz1 −Aqz2, z1 − z2〉Z + 〈DzĨ(t, z1)−DzĨ(t, z2), z1−z2〉Z

≥ ‖z1−z2‖2L2(Ω) + cq

∫
Ω

(1 + |∇z1|2 + |∇z2|2)
q−2

2 |∇z1 −∇z2|2 dx− c‖z1 − z2‖2L2p∗/(p∗−2)(Ω)

where Ĩ is defined as in (2.35). Then, (2.43) follows upon using (2.2).

Corollary 2.14 implies that the functional z 7→ I(t, z) is λ-convex w.r.t. the L2(Ω)-norm for some λ ∈ R:

∃λ ∈ R ∀ z0, z1 ∈ Z ∀ θ ∈ (0, 1) : I(t, zθ) ≤ (1− θ)I(t, z0) + θI(t, z1)− λθ(1− θ)
2

‖z0−z1‖2L2(Ω) .

However, this property does not automatically guarantee the validity of the chain rule for I, cf. the

discussion at the beginning of Sec. 3.1. As a summary of the previous lemmata we obtain

Corollary 2.15 (Fréchet differentiability of I).

Under Assumptions 2.1, 2.5, and (AΩ1), the functional I is Fréchet differentiable on [0, T ]×Z and

tn → t and zn → z strongly in Z implies DzI(tn, zn)→ DzI(t, z) strongly in Z∗. (2.44)

Furthermore, tn → t and zn ⇀ z weakly in Z implies

lim inf
n→∞

I(tn, zn) ≥ I(t, z), Ĩ(tn, zn)→ Ĩ(t, z), ∂tI(tn, zn)→ ∂tI(t, z),

DzĨ(tn, zn)→ DzĨ(t, z) strongly in Z∗.
(2.45)

Proof. Observe that zn → z in Z implies DzIq(zn)→ DzIq(t, z) in Z∗. Therefore, in view of Lemma 2.12,

the Gâteaux-differential DzI fulfills (2.44), which yields that I is Fréchet differentiable. The continuity

property (2.45) of ∂tI and DzĨ is an immediate consequence of estimates (2.32) and (2.39), and of the

compact embedding Z b Lr(Ω) for all 1 ≤ r ≤ ∞.
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3 The viscous problem

We now address the analysis of the viscous L2-regularization of (1.6) of the rate-independent system

(1.3). To this aim, we introduce the viscous dissipation potential

Rε = R1 +R2,ε with R2,ε(η) =
ε

2
‖η‖2L2(Ω) , (3.1)

with R1 from (1.4). We denote by ∂Rε : Z ⇒ Z∗ its subdifferential (in the sense of convex analysis), in

the duality between Z∗ and Z, and consider viscous doubly nonlinear evolution equation

∂Rε(z′(t)) + DzI(t, z(t)) 3 0 in Z∗ for a.a. t ∈ (0, T ), (3.2)

with the initial condition, featuring z0 ∈ Z,

z(0) = z0. (3.3)

It follows from [2, Cor. IV.6] that ∂Rε(η) = ∂R1(η) + εη for all η ∈ Z. Thus, also taking into account

formula (2.33) for DzI, we see that (3.2) translates into

∂R1(z′(t)) + εz′(t) +Aq(z(t)) +f ′(z(t)) + g′(z(t))W̃ (t,∇umin(t, z(t))) 3 0 in Z∗ for a.a. t ∈ (0, T ). (3.4)

3.1 Weak solutions: definition and existence result

We are going to prove an existence result for a suitable weak solution notion for the Cauchy problem

associated with (3.2). Before defining such a concept, let us explain why we do not treat (3.2) as a

pointwise-in-time differential inclusion in Z∗. Indeed, (3.2) is equivalent to −Aqz(t) − DzĨ(t, z(t)) ∈
∂Rε(z′(t)) for almost all t ∈ (0, T ) with Ĩ from (2.35), viz.

Rε(w)−Rε(z′(t)) ≥ 〈−Aqz(t)−DzĨ(t, z(t)), w − z′(t)〉Z for all w ∈ Z, for a.a. t ∈ (0, T ). (3.5)

In fact, (3.5) implies the information that z′(t) ∈ Z for almost all t ∈ (0, T ). However, as we are going to

show in what follows, the best spatial regularity for z′(t) we can obtain is z′(t) ∈ W 1,2(Ω), which is less

than z′(t) ∈ Z. For achieving the latter, given a sequence of approximate solutions (zk)k to (3.2) (in our

case, constructed by time-discretization), one would need a Z-estimate for (z′k)k, uniform w.r.t. k ∈ N.

This seems to be out of reach, due to the doubly nonlinear character of (3.2), and in particular to the

fact that the multivalued, unbounded operator ∂Rε acts on z′(t).

Another possibility is to interpret the duality pairing 〈Aqz(t) + DzĨ(t, z(t)), w − z′(t)〉Z as a pairing

between Lebesgue spaces. For this it is necessary that z′(t) ∈ Lσ(Ω) and Aqz(t) + DzĨ(t, z(t)) ∈ Lσ′(Ω)

for some σ ∈ [1,∞). This boils down to proving that Aqz(t) ∈ Lσ
′
(Ω), since the term DzĨ(t, z(t)) may

be considered of lower order due to (2.39). Indeed,
∫

Ω
DzĨ(t, z(t))z′(t) dx makes sense thanks to (3.7).

However, an estimate for (Aqzk)k in Lσ
′
(Ω) (for a sequence of approximate solutions (zk)k), is out of

grasp in the present context. Only for σ = 2 it would be possible to estimate (Aqzk)k in L∞(0, T ;L2(Ω)),

by testing an approximate version of (3.2) by the quantity ∂t(Aqzk + f ′(zk)). This is by now standard in

the analysis of doubly nonlinear equations of the type (3.2) and dates back to [9]. Nonetheless, to carry

out the calculations attached to this test, one has to exploit elliptic regularity results for u, which hold

in smooth domains, while in this paper we aim to work under minimal regularity requirements on Ω.

Because of these reasons, we need to resort to the weak solution concept in Definition 3.1 below, where

for general q > d the duality pairing 〈Aqz(t), z′(t)〉Z is replaced by the quantity∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx, (3.6)
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which in fact coincides with d
dtIq(z(t)) for almost all t ∈ (0, T ), cf. (3.20) below.

Definition 3.1 (Weak solution). We say that

z ∈ L∞(0, T ;W 1,q(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)) (3.7)

fulfilling ∫ T

0

∫
Ω

(1 + |∇z(r)|2)
q−2

2 |∇z′(r)|2 dx dr <∞ , (3.8)

is a weak solution of (3.2), if it complies with the variational inequality

Rε(w)−Rε(z′(t)) ≥ 〈−Aqz(t), w〉Z +

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx

−
∫

Ω

DzĨ(t, z(t))(w − z′(t)) dx for all w ∈ Z for a.a. t ∈ (0, T ) .

(3.9)

Observe that
∫

Ω
(1 + |∇z(t)|2)

q−2
2 ∇z(t) · ∇z′(t) dx is well defined as soon as z fulfills (3.8), cf. (3.24)

below. Hereafter, we shall refer to (3.8) as “mixed estimate”, for it involves both z and z′. In fact, (3.8)

shall result from the a priori estimates on the time-discretization of (3.2), contained in Lemma 5.3.

The regularity (3.8) also guarantees the validity of the following chain-rule formula

Theorem 3.2. Under Assumptions 2.1, 2.5, and (AΩ1), for every curve z fulfilling (3.7) and (3.8)

1. the map t 7→ I(t, z(t)) is absolutely continuous on (0, T );

2. the following chain-rule formula is valid:

d

dt
I(t, z(t))− ∂tI(t, z(t))

=

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx+

∫
Ω

DzĨ(t, z(t))z′(t) dx for a.a. t ∈ (0, T ),
(3.10)

where for the second equality we refer to Notation 2.11.

We postpone the proof of this result to Sec. 3.2, and point out that as a consequence of formula (3.10)

the variational inequality in (3.9) is equivalent to the energy inequality associated with (3.2). The latter

inequality involves the Fenchel-Moreau convex conjugate R∗ε taken in the Z −Z∗ duality, and defined by

R∗ε (ξ) = sup { 〈ξ, w〉Z −Rε(w) : w ∈ Z} . In (7.2) we give the explicit formula for R∗ε .

Proposition 3.3. Under Assumptions 2.1, 2.5, and (AΩ1), a curve z fulfilling (3.7) and (3.8) is a weak

solution of (3.2) in the sense of Def. 3.1 if and only if it fulfills for all 0 ≤ s ≤ t ≤ T the energy inequality∫ t

s

Rε(z′(r)) dr +

∫ t

s

R∗ε (−DzI(r, z(r))) dr + I(t, z(t)) ≤ I(s, z(s)) +

∫ t

s

∂tI(r, z(r)) dr. (3.11)

Proof. Taking into account that w ∈ Z is arbitrary, (3.9) rephrases as

Rε(z′(t)) + sup
w∈Z

(
− 〈Aqz(t), w〉Z − 〈DzĨ(t, z(t)), w〉Z −Rε(w)

)
+

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx+

∫
Ω

DzĨ(t, z(t))z′(t) dx ≤ 0 for a.a. t ∈ (0, T ).

In view of the definition of R∗ε and the chain-rule formula (3.10), the above inequality is equivalent to

Rε(z′(t)) +R∗ε (−DzI(t, z(t))) +
d

dt
I(t, z(t)) ≤ ∂tI(t, z(t)) for a.a. t ∈ (0, T ),

i.e. (3.11) upon integrating in time.
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Remark 3.4 (Failure of energy identity). It remains an open problem to improve (3.11) to an energy

identity. This would result from the following chain of inequalities∫ t

s

Rε(z′(r)) dr +

∫ t

s

R∗ε (−DzI(r, z(r))) dr

≤ I(s, z(s))− I(t, z(t)) +

∫ t

s

∂tI(r, z(r)) dr

(1)
= −

∫ t

s

∫
Ω

(1 + |∇z(r)|2)
q−2

2 ∇z(r) · ∇z′(r) dx dr −
∫ t

s

∫
Ω

DzĨ(r, z(r))z′(r) dx dr

(2,?)
= −

∫ t

s

〈DzI(r, z(r)), z′(r)〉Z dr

(3)

≤
∫ t

s

Rε(z′(r)) dr +

∫ t

s

R∗ε (−DzI(r, z(r))) dr .

While (1) follows from an integrated version of (3.10) on the right-hand side of (3.11) and (3) from

an elementary convex analysis inequality, (2, ?) implies the information that z′(t) ∈ Z for almost all

t ∈ (0, T ), which is not at our disposal. Observe that, with this argument we would also conclude that z

fulfills the subdifferential inclusion (3.2), cf. the proofs of [42, Thm. 4.4], [33, Thm. 3.1]. Therefore, the

validity of (3.2) and of the related energy identity is at the moment open for general q > d.

We are now in the position of stating our existence result for the Cauchy problem associated with (3.2).

In fact, we need to impose a further, natural condition on the domain Ω. This is exploited in the proof

of fine spatial regularity estimates on the discrete solutions, which lead to the enhanced regularity (3.13)

below for z, and will enable us to pass to the limit in the time-discretization scheme of (3.2).

Theorem 3.5 (Existence of weak solutions, ε > 0). Under Assumptions 2.1, 2.5, and (AΩ1), suppose in

addition that

(AΩ2) Ω ⊂ Rd is a bounded domain and satisfies the uniform cone condition.

Suppose that the initial datum z0 ∈ Z also fulfills

DzI(0, z0) ∈ L2(Ω). (3.12)

Then,

1. for every ε > 0 there exists a weak solution (in the sense of Definition 3.1) zε ∈ L∞(0, T ;W 1,q(Ω))∩
W 1,2(0, T ;W 1,2(Ω)) to the Cauchy problem (3.2)–(3.3), fulfilling (3.8) as well as the enhanced

regularity

zε ∈ L2q(0, T ;W 1+β,q(Ω)) for every β ∈
[
0,

1

q

(
1− d

q

))
. (3.13)

If in addition f and g comply with (4.3) (cf. Proposition 4.1 ahead) and if z0 ∈ [0, 1], then zε(t, x) ∈
[0, 1] for all (t, x) ∈ [0, T ]× Ω.

2. There exists a family of viscous solutions (zε)ε>0 and constants C0, Cβ > 0 such that the following
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estimates hold uniformly w.r.t. ε

sup
ε>0
‖zε‖W 1,1(0,T ;L2(Ω)) ≤ C0, (3.14)

sup
ε>0
‖zε‖L2q(0,T ;W 1+β,q(Ω))∩L∞(0,T ;W 1,q(Ω)) ≤ Cβ for every β ∈

[
0,

1

q

(
1− d

q

))
, (3.15)

sup
ε>0

∫ T

0

‖zε(t)‖qW 1+β,q(Ω)
‖z′ε(t)‖L2(Ω) dt ≤ Cβ for every β ∈

[
0,

1

q

(
1− d

q

))
, (3.16)

sup
ε>0

∫ T

0

(∫
Ω

(1 + |∇zε(t)|2)
q−2

2 |∇z′ε(t)|2 dx

) 1
2

dt ≤ C0. (3.17)

The proof (see Section 6) relies on the time-discretization analysis performed in Section 4 and on the

a priori estimates provided in Section 5.

The uniform w.r.t. ε estimates (3.14)–(3.17) are the starting point for the vanishing-viscosity analysis

in Section 7. We prove them in Section 5 arguing on the time-discretization of (3.2) and thus deduce

them only for those viscous solutions zε to (3.2), which arise in the limit of the time-discretization scheme

of Sec. 4. The additional condition (3.12) on the initial datum z0 is needed in order to prove the enhanced

regularity estimates for z, as well as the uniform discrete W 1,1-estimate (see Sections 5.3 and 5.4).

A discussion on the interpretation of weak solutions For ξ ∈W 1,q(Ω) let

‖ξ‖∇z(t) :=

(
‖ξ‖2L2(Ω) +

∫
Ω

(1 + |∇z(t)|2)
q−2

2 |∇ξ|2 dx

) 1
2

(3.18)

and define V∇z(t)(Ω) := Z‖·‖∇z(t) . Observe that the set Z− := { z ∈ Z ; z ≤ 0 } is dense in V∇z(t),− :=

{ v ∈ V∇z(t) ; v ≤ 0 }. This implies that the conjugate functional of Rε calculated with respect to the Z−
Z∗ duality (which in this context we denote by R∗Zε ), and the conjugate functional R

∗V∇z(t)
ε with respect

to the V∇z(t) −V∗∇z(t) duality, coincide on V∗∇z(t). Now, let z ∈ L∞(0, T ;W 1,q(Ω)) ∩W 1,2(0, T ;W 1,2(Ω))

be a weak solution to the Cauchy problem (3.2)–(3.3) in the sense of Definition 3.1, with the enhanced

regularity (3.13), and assume in addition that z′(t) ∈ V∇z(t) for almost all t ∈ (0, T ). As it will be

discussed below this is not a trivial assumption, and at the moment it is open whether the solution z

satisfies this assumption at all.

Now we can verify directly relying on Section 2.3 that DzI(t, z(t)) ∈ V∗∇z(t). Having this, with the

additional assumption that z′(t) ∈ V∇z(t) for almost all t ∈ (0, T ), from the local version of (3.11) in

combination with the chain rule (3.10) and the Young-Fenchel inequality for conjugate functionals we

deduce that for almost all t ∈ (0, T ) it holds

Rε(z′(t)) +R∗Zε (−DzI(t, z(t))) ≤ 〈−DzI(t, z(t)), z′(t)〉V∇z(t)
≤ Rε(z′(t)) +R

∗V∇z(t)
ε (−DzI(t, z(t))) = Rε(z′(t)) +R∗Zε (−DzI(t, z(t))).

Hence, for almost all t ∈ (0, T ) the inclusion 0 ∈ ∂Rε(z′(t))+DzI(t, z(t)) is satisfied in the V∇z(t)−V∗∇z(t)
duality and in (3.11) we have equality instead of an inequality.

However, proving that z′(t) ∈ V∇z(t) is at the moment an open problem: Due to the mixed estimate,

for almost all t the function z′(t) belongs to the Banach space W∇z(t) := { v ∈ H1(Ω) ; ‖v‖V∇z(t) <∞}.
If the weight ω(t) := (1 + |∇z(t)|2)

q−2
2 can be shown to be a Muckenhoupt weight, then the spaces V∇z(t)

and W∇z(t) coincide, see for instance [10]. However, we do not see how to deduce this property for our

solution. Another possibility would be to prove directly from the construction of the solutions (via a

time-incremental procedure), that z(t) ∈ V∇z(t). But also this is not clear for us.
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3.2 Proof of the chain rule of Theorem 3.2

Recalling the decomposition I(t, z) = Iq(z) + Ĩ(t, z), we separately address the chain-rule properties

of the functionals Iq and Ĩ. As for the latter, we observe that the Fréchet differentiability stated in

Corollary 2.15 allows us to conclude the validity of the chain-rule formula (3.19), only if the curve z is in

W 1,1([0, T ];Z), which is not granted by (3.7) and (3.8). In the proof of Proposition 3.6 below, we in fact

exploit the finer estimates on Ĩ and DzĨ provided by Lemma 2.12, and combine them with the regularity

(3.7) for z. Note that the mixed estimate (3.8) is not needed.

Proposition 3.6. Under Assumptions 2.1, 2.5, and (AΩ1), for every curve z fulfilling (3.7) the map

t 7→ Ĩ(t, z(t)) is absolutely continuous on (0, T ) and there holds (cf. Notation 2.11)

d

dt
Ĩ(t, z(t))− ∂tĨ(t, z(t)) =

∫
Ω

DzĨ(t, z(t))z′(t) dx for a.a. t ∈ (0, T ). (3.19)

Proof. For any fixed z ∈ L∞(0, T ;W 1,q(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)), the map t 7→ Ĩ(t, z(t)) is absolutely

continuous on [0, T ]: indeed, it follows from (2.38) that∣∣∣Ĩ(t, z(t))− Ĩ(s, z(s))
∣∣∣ ≤ C(|t− s|+ ‖z(t)− z(s)‖L2p∗/(p∗−2)) ≤ C(|t− s|+ ‖z(t)− z(s)‖W 1,2(Ω))

where the last inequality follows from the continuous embedding W 1,2(Ω) ⊂ L2p∗/(p∗−2)(Ω), cf. (2.2). We

now prove the chain-rule formula (3.19). The integral on the right-hand side of (3.19) is well defined since

DzĨ(t, z(t)) ∈ Lµ(Ω) and z′(t) ∈ Lµ′(Ω) with µ = 2p∗/(p∗+2) and µ′ = 2p∗/(p∗−2), cf. Lemma 2.12. In

fact, since Lµ(Ω) ⊂W 1,2(Ω)∗, it follows that DzĨ(t, z(t)) can be identified with an element in W 1,2(Ω)∗

for a.a. t ∈ (0, T ). We fix t ∈ (0, T ), out of a negligible set, such that ∃ d
dt Ĩ(t, z(t)), and compute

h−1(Ĩ(t+ h, z(t+ h))− Ĩ(t, z(t)))

= h−1(Ĩ(t+ h, z(t+ h))− Ĩ(t, z(t+ h))) + h−1(Ĩ(t, z(t+ h))− Ĩ(t, z(t)))

=
1

h

∫ t+h

t

∂tĨ(s, z(t+ h)) ds

+
1

h

∫
Ω

∫ 1

0

DzĨ(t, (1− θ)z(t) + θz(t+ h))(z(t+ h)− z(t)) dθ dx
.
= I1

h + I2
h.

We have that

I1
h =

1

h

∫ t+h

t

∂tĨ(s, z(t)) ds+
1

h

∫ t+h

t

(
∂tĨ(s, z(t+ h))− ∂tĨ(s, z(t))

)
ds.

The first term on the right-hand side converges to ∂tĨ(s, z(t)) as h → 0, while the second one tends

to zero in view of (2.32) and of the fact that z ∈ C0([0, T ]; C0(Ω)) by interpolation in (3.7). To take

the limit as h → 0 of I2
h, we first of all observe that for almost all t ∈ (0, T ) z(t+h)−z(t)

h → z′(t) in

W 1,2(Ω) ⊂ L2p∗/(p∗−2)(Ω) as h → 0, due to z′ ∈ L2(0, T ;W 1,2(Ω)) (cf., e.g., [51, Lemma 5, Sect. 5]).

Moreover, in view of (2.39), the family jh(t, ·) :=
∫ 1

0
DzĨ(t, (1 − θ)z(t, ·) + θz(t + h, ·)) dθ converges to

j(t, ·) := DzĨ(t, z(t, ·)) in L2p∗/(p∗+2)(Ω) as h → 0. Hence, I2
h →

∫
Ω

DzĨ(t, z(t))z′(t) dx as h → 0, and

(3.19) follows.

For the functional Iq, we have the following result.

Proposition 3.7. For every curve z fulfilling (3.7) and (3.8) the map t 7→ Iq(z(t)) is absolutely contin-

uous on (0, T ) and there holds

d

dt
Iq(z(t)) =

∫
Ω

(1 + |∇z(t)|2)
q−2

2 ∇z(t) · ∇z′(t) dx for a.a. t ∈ (0, T ). (3.20)
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We are going to deduce Proposition 3.7 from applying the result below to F := ∇z.

Lemma 3.8. Define Gq : Lq(Ω;Rd) → [0,∞) by Gq(F ) :=
∫

Ω
Gq(F (x)) dx = 1

q

∫
Ω

(1 + |F (x)|2)
q
2 dx. If

F ∈ L∞(0, T ;Lq(Ω;Rd)) ∩W 1,1(0, T ;L2(Ω;Rd)) fulfills∫ T

0

∫
Ω

(1 + |F |2)
q−2

2 |Ft|2 dx dt <∞, (3.21)

then the map t 7→ Gq(F (t)) is absolutely continuous on (0, T ), and there holds

d

dt
Gq(F (t)) =

∫
Ω

(1 + |F (t)|2)
q−2

2 F (t) · Ft(t) dx for a.a. t ∈ (0, T ) . (3.22)

Proof. We split the proof in three claims.

Claim 1 There holds for all 0 ≤ s ≤ t ≤ T and for almost all x ∈ Ω

Gq(F (t, x))−Gq(F (s, x)) =

∫ t

s

(1 + |F (r, x)|2)
q−2

2 F (r, x) · Ft(r, x) dr . (3.23)

Indeed, (3.23) follows from integrating in time the chain rule d
dtGq(F (t, x)) = (1 + |F (r, x)|2)

q−2
2 F (r, x) ·

Ft(r, x) at fixed x, which in turn ensues from applying (3.26) below with η(t) = F (t, x) (here x is fixed

outside a negligible set) and ϕ = Gq. Indeed, (3.21) and the fact that F ∈ L∞(0, T ;Lq(Ω;Rd)) guarantee

(t, x) 7→ (1 + |F (t, x)|2)
q−2

4 Ft(t, x) ∈ L2(0, T ;L2(Ω;Rd)),
(t, x) 7→ (1 + |F (t, x)|2)

q−2
4 F (t, x) ∈ L∞(0, T ;L2(Ω;Rd)).

(3.24)

Hence, by the properties of Bochner integrals we have for almost all x ∈ Ω that t 7→ (1+|F (t, x)|2)
q−2

4 Ft(t, x) ∈
L2(0, T ) and t 7→ (1 + |F (t, x)|2)

q−2
4 F (t, x) ∈ L2(0, T ), therefore t 7→ |(1 + |F (t, x)|2)

q−2
2 F (t, x)||Ft(t, x)|

is in L1(0, T ) for almost all x ∈ Ω, and we can apply Lemma 3.9.

Claim 2 the map t 7→ Gq(F (t)) is absolutely continuous on [0, T ].

Indeed, integrating w.r.t. x ∈ Ω formula (3.23) we find

Gq(F (t))− Gq(F (s)) =

∫ t

s

∫
Ω

(1 + |F (r, x)|2)
q−2

2 F (r, x) · Ft(r, x) dr dx for all 0 ≤ s ≤ t ≤ T. (3.25)

We use this to estimate the difference |Gq(F (t)) − Gq(F (s))|. In view of (3.24) (and the properties

of Bochner integrals), the map t 7→
∫

Ω
(1 + |F (t, x)|2)

q−2
2 F (t, x) · Ft(t, x) dx ∈ L1(0, T ), therefore the

absolute continuity of t 7→ Gq(F (t)) follows from (3.25) and the absolute continuity property of the

Lebesgue integral.

Claim 3 formula (3.22) holds. Let us fix t outside a negligible set such that d
dtI(F (t)) exists as limit

of the difference quotient. Writing (3.25) at t and t+ h yields

1

h
(Gq(F (t+ h))− Gq(F (t))) =

1

h

∫ t+h

t

∫
Ω

(1 + |F (r, x)|2)
q−2

2 F (r, x) · Ft(r, x) dr dx.

Then, it remains to observe that as h→ 0

1

h

∫ t+h

t

∫
Ω

(1 + |F (r, x)|2)
q−2

2 F (r, x) · Ft(r, x) dr dx→
∫

Ω

(1 + |F (t, x)|2)
q−2

2 F (t, x) · Ft(t, x) dx.

This is true for almost all t ∈ (0, T ) thanks to the Lebesgue point property of the map t 7→
∫

Ω
(1 +

|F (t, x)|2)
q−2

2 F (t, x) · Ft(t, x) dx ∈ L1(0, T ).
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We conclude by stating, for the sake of completeness, the following auxiliary result.

Lemma 3.9. Given ϕ ∈ C1(Rd;R), for every η ∈ W 1,2(0, T ;Rd) such that t 7→ |∇ϕ(η(t))||η′(t)| ∈
L1(0, T ) the map t 7→ ϕ(η(t)) is absolutely continuous on (0, T ) and

d

dt
ϕ(η(t)) = ∇ϕ(η(t)) · η′(t) for a.a. t ∈ (0, T ). (3.26)

Proof. The absolute continuity property can be shown by arguing in the very same way as in the proof

of [1, Thm. 1.2.5, page 28]. The chain-rule formula follows from classical arguments.

4 Time-discretization for the viscous problem

We consider the following time-discrete incremental minimization problem: Given ε > 0, z0 ∈ Z and a

uniform partition {0 = tτ0 < . . . < tτN = T} of the time interval [0, T ] with fineness τ = tτk+1 − tτk = T/N

(cf. Remark 5.7 ahead), the elements (zτk )0≤k≤N are determined through zτ0 = z0 and

zτk+1 ∈ Argmin{ I(tτk+1, z) + τRε
(
z − zτk
τ

)
; z ∈ Z }. (4.1)

The existence of minimizers can be checked via the direct method in the calculus of variations, thanks

to the properties of the reduced energy I formulated in Section 2.2. It follows from the representation

formula for ∂Rε (cf. [2, Cor. IV.6]), that, any family {zτ1 , . . . , zτN} ⊂ Z of minimizers of the incremental

problem (4.1) satisfies for all k ∈ {0, . . . , N − 1} the discrete Euler-Lagrange equation

∂R1

(
zτk+1 − zτk

τ

)
+ ε

zτk+1 − zτk
τ

+ DzI(tτk+1, z
τ
k+1) 3 0 in Z∗. (4.2)

Proposition 4.1. Under Assumptions 2.1, 2.5, and (AΩ1), for τ sufficiently small the minimum problem

(4.1) admits a unique solution. Suppose in addition that f and g comply with the following condition

f(0) ≤ f(z), g(0) ≤ g(z) for all z ≤ 0, (4.3)

and that the initial datum z0 fulfills z0(x) ∈ [0, 1] for almost all x ∈ Ω. Then, the minimizer zτk from

(4.1) also fulfills zτk (x) ∈ [0, 1] for almost all x ∈ Ω.

The proof of uniqueness follows from standard arguments, exploiting estimate (2.43) from Corollary 2.14.

The property zτk (x) ∈ [0, 1] is standard, as well, (see e.g. [33, Prop. 4.5]).

Notation 4.2. The following piecewise constant and piecewise linear interpolation functions will be used:

zτ (t) = zτk+1 for t ∈ (tτk, t
τ
k+1], zτ (t) = zτk for t ∈ [tτk, t

τ
k+1), ẑτ (t) = zτk+

t− tτk
τ

(zτk+1−zτk ) for t ∈ [tτk, t
τ
k+1].

Furthermore, we shall use the notation

τ(r) = τ for r ∈ (tτk, t
τ
k+1),

tτ (r) = tτk+1 for r ∈ (tτk, t
τ
k+1],

tτ (r) = tτk for r ∈ [tτk, t
τ
k+1),

uτ (r) = umin(tτ (r), zτ (r)) for r ∈ (tτk, t
τ
k+1],

uτ (r) = umin(tτ (r), zτ (r)) for r ∈ [tτk, t
τ
k+1),

ûτ (r) = uτ (r) +
r−tτ (r)

τ (uτ (r)− uτ (r)) for r ∈ [tτk, t
τ
k+1].
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Clearly,

tτ (t), tτ (t)→ t as τ → 0 for all t ∈ [0, T ]. (4.4)

Moreover, for any given function b which is piecewise constant on the intervals (tτi , t
τ
i+1) we set

4τ(r)b(r) = b(r)− b(s) for r ∈ (tτk, t
τ
k+1) and s ∈ (tτk−1, t

τ
k).

With the above notation, (4.2) can be reformulated in Z∗ as

∂R1 (ẑ′τ (t)) + εẑ′τ (t) + DzI(tτ (t), zτ (t)) 3 0 for a.a. t ∈ (0, T ), viz. (4.5)ωτ (t) + εẑ′τ (t) +Aqzτ (t) + DzĨ(tτ (t), zτ (t)) = 0,

ωτ (t) ∈ ∂R1 (ẑ′τ (t))
for a.a. t ∈ (0, T ). (4.6)

Notation 4.3. In what follows, we will denote most of the positive constants occurring in the calculations

by the symbols c, C ′, whose meaning may vary even within the same line. Furthermore, the symbols

Ii, Si, Fi, i = 0, 1, . . . , will be used as abbreviations for several integral terms appearing in the various

estimates: we warn the reader that we will not be self-consistent with the numbering, so that, for instance,

I1 will appear several times with different meanings.

4.1 Global higher differentiability of the time-discrete damage variable

In this section we derive the higher differentiability of the solutions zτk of the time-incremental minimi-

zation problem (4.1), Theorem 4.4. The proof relies on a difference quotient argument in the spirit of

[50, 15, 31] and requires the additional condition (AΩ2) on Ω stated in Theorem 3.5.

We address the higher differentiability of minimizers for (4.1) in a more general context. In particular,

in view of future developments we deal with an Lα-viscosity term instead of L2-viscosity. Therefore, let

q > d, p > 2. For z, ζ ∈W 1,q(Ω), w ∈W 1,p
ΓD

(Ω;Rd), τ > 0, ε ≥ 0 and α ≥ 2 we define

F(z;α, τ, ε, ζ, w) :=

∫
Ω

1

2
g(z)Cε(w) : ε(w) + f(z) +

1

q
(1 + |∇z|2)

q
2 dx+R1(z − ζ) +

ετ

α

∥∥∥∥z − ζτ
∥∥∥∥α
Lα(Ω)

(4.7)

with R1 from (1.4). The time-incremental minimization problem (4.1) can be rewritten as

zτk+1 ∈ Argmin{F(z; 2, τ, ε, zτk , umin(tτk+1, z) + uD(tτk+1)) ; z ∈ Z }. (4.8)

Theorem 4.4 (Spatial differentiability of the damage variable). Under Assumptions 2.1, (AΩ1), and

(AΩ2), suppose further that w ∈W 1,p
ΓD

(Ω;Rd) for some p ≥ 2, and that τ > 0, ε ≥ 0, α ≥ 2 and q > d.

Let z ∈ Z = W 1,q(Ω) be a minimizer of F(·;α, τ, ε, ζ, w) over Z. Then for all 0 ≤ β < 1
q

(
1− d

q

)
we

have z ∈W 1+β,q(Ω). Moreover, there exists a constant cβ > 0 such that

‖z‖W 1+β,q(Ω) ≤ cβ(1 + ‖z‖W 1,q(Ω))

(
1 + ‖f ′(z)‖

1
q

L∞(Ω) + ‖w‖
2
q

W 1,p(Ω;Rd)
+ ε

1
q

∥∥∥∥z − ζτ
∥∥∥∥α−1

q

Lα(Ω)

)
, (4.9)

and the constant cβ is independent of α, ε, τ, z, w and ζ.

Remark 4.5. For ε = 0, Theorem 4.4 yields a regularity result for global energetic solutions associated

with the energy I(·, ·) from (2.13) and the dissipation potential R1. Indeed, let z : [0, T ]→ Z be a global

energetic solution associated with I and R1. The stability condition, that is satisfied by global energetic

solutions, implies that for all t ∈ [0, T ] the function z(t) minimizes F(·; 2, 1, 0, z(t), umin(t, z(t))). Hence,

by Theorem 4.4, for all t ∈ [0, T ] it holds z(t) ∈W 1+β,q(Ω) with supt∈[0,T ] ‖z(t)‖W 1+β,q(Ω) <∞. We refer

to [43, 54] for the analysis of damage models in the context of global energetic solutions.

24



Proof of Theorem 4.4. The proof relies on a difference quotient argument. Since spatially shifted versions

of the minimizer z of F not necessarily lie below the function ζ, we also have to shift the function z in

“vertical” direction.

Let Ω ⊂ Rd satisfy (AΩ2). Let x0 ∈ ∂Ω be arbitrary and choose e ∈ Rd with |e| = 1 in such a way that

there exist constants R, h0 > 0 such that for all y ∈ Ω ∩BR(x0) and all 0 < h ≤ h0 we have y + he ∈ Ω.

Since Ω satisfies the uniform cone condition it is possible to find a basis of Rd such that every basis vector

has this property.

Let ϕ ∈ C∞0 (BR(x0)) be a cut-off function with 0 ≤ ϕ ≤ 1 and ϕ
∣∣
BR/2(x0)

≡ 1. Further, let us define

the transformation Th : Rd → Rd by Th(x) := x + hϕ(x)e. If h ∈ [0, h0] is small enough, this mapping

is an isomorphism with Th(Ω) ⊂ Ω and it coincides with the identity outside of the ball BR(x0). For

w ∈W 1,p
ΓD

(Ω;Rd) and ζ ∈W 1,q(Ω) let

z ∈ Argmin{F(z̃;α, τ, ε, ζ, w) ; z̃ ∈ Z }. (4.10)

From the definition of R1 it follows that z ≤ ζ almost everywhere in Ω. Moreover, since q > d, we have

z ∈ C0,γ(Ω) with γ = 1− d
q > 0. For h > 0 let δh := hγ ‖z‖C0,γ(Ω) ≤ chγ ‖z‖W 1,q(Ω). Observe that

|z(x)− z(Th(x))| ≤ δh for all x ∈ Ω. (4.11)

Hence, the function zh(x) := z(Th(x)) − δh is an admissible test function for the minimization problem

(4.10) in the sense that R1(zh−ζ) is finite. Indeed, ζ(x)−zh(x) = ζ(x)−z(x)+(z(x)−z(Th(x))+δh) ≥ 0

for all x ∈ Ω. Since z is a minimizer, for all z̃ ∈W 1,q(Ω) it satisfies the variational inequality

R1(z̃ − ζ)−R1(z − ζ)

≥ −〈Aqz, z̃ − z〉Z −
∫

Ω

(1

2
g′(z)Cε(w) : ε(w) + f ′(z)

)
(z̃ − z) dx− ε

∫
Ω

∣∣∣∣z − ζτ
∣∣∣∣α−2

z − ζ
τ

(z̃ − z) dx.

(4.12)

With the special choice z̃ = zh, due the definition of R1 this variational inequality rewrites as

−
∫

Ω

(1 + |∇z|2)
q−2

2 ∇z · ∇(z ◦ Th − z) dx ≤
∫

Ω

ρ(z − zh) dx+

∫
Ω

(
1
2g
′(z)Cε(w) : ε(w) + f ′(z)

)
(zh − z) dx

+ ε

∫
Ω

∣∣∣∣z − ζτ
∣∣∣∣α−2

z − ζ
τ

(zh − z) dx.

Now we apply inequality (2.4) with a = ∇z and b = ∇(z ◦ Th), and setting 4hz := z ◦ Th − z we thus

obtain the estimate (recall that Gq(A) = 1
q (1 + |A|2)

q
2 )

cq

∫
Ω

(1 + |∇z|2 + |∇zh|2)
q−2

2 |∇4hz|2 dx ≤
∫

Ω

Gq(∇(z ◦ Th))−Gq(∇z) dx

+

∫
Ω

ρ |4hz − δh| dx+

∫
Ω

(
g′(z)Cε(w) : ε(w) + f ′(z)

)
(zh − z) dx

+ ε

∫
Ω

∣∣∣∣z − ζτ
∣∣∣∣α−2

z − ζ
τ

(zh − z) dx =: S1 + S2 + S3 + S4.

The goal is to show that there exists a β ∈ (0, 1) such that the right-hand side can be estimated by chβ .

This estimate then implies that z
∣∣
BR/2(x0)

belongs to the Nikolskii space N 1+ β
2 ,2(Ω)∩N 1+ β

q ,q(Ω), which

is continuously embedded in W 1+ β
2−δ,2(Ω) ∩W 1+ β

q−δ,q(Ω) for all δ > 0.
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Since by assumption we have z ∈W 1,q(Ω), the term S2 can be estimated as

S2 ≤
∫

Ω

ρ |4hz| dx+ δh |Ω| ≤ c(|h|+ |h|γ)
(

1 + ‖z‖W 1,q(Ω)

)
,

and the constant c depends on Ω and the chosen cut-off-function, but is independent of h and z.

Taking into account (2.8) the second part of S3 can be estimated as follows∫
Ω

|f ′(z)| |zh − z| dx ≤ c ‖f ′(z)‖L∞(Ω) ‖z‖W 1,q(Ω) (|h|γ + |h|).

Hölder’s inequality applied to the first component of S3 yields∫
Ω

g′(z)Cε(w) : ε(w)(zh − z) dx ≤ c ‖w‖2W 1,p(Ω;Rd) (‖4hz‖
L

p
p−2 (Ω)

+ δh),

where we have used that p ≥ 2. By (4.11), the term in brackets on the right-hand side is bounded by

cδh ≤ c̃ |h|γ ‖z‖W 1,q(Ω). Putting together these estimates we obtain

|S3| ≤ c(|h|+ |h|γ) ‖z‖W 1,q(Ω) (‖f ′(z)‖L∞(Ω) + ‖w‖2W 1,p(Ω;Rd))

and the constant c is independent of h, z, w.

In a similar way we obtain for S4, applying again Hölder’s inequality,

|S4| ≤ cε
∥∥∥∥z − ζτ

∥∥∥∥α−1

Lα(Ω)

(
‖4hz‖Lα(Ω) + δh

)
≤ cε

∥∥∥∥z − ζτ
∥∥∥∥α−1

Lα(Ω)

(|h|+ |h|γ) ‖z‖W 1,q(Ω) .

It remains to estimate S1. Here we use an argument that relies on a change of variables in the first term

(cf. [15, 50, 30]): With y = Th(x) it follows∫
Ω

Gq(∇z(Th(x))∇Th(x)) dx =

∫
Th(Ω)

Gq(∇z(y)∇Th(T−1
h (y))) det∇yT−1

h (y) dy

Observe that due to the special choice of the vector e it holds Th(Ω) ⊂ Ω for 0 ≤ h < h0. Hence, since

Gq(∇z) ≥ 0 almost everywhere, we arrive at

S1 ≤
∫
Th(Ω)

Gq(∇z(y)(∇T−1
h (y))−1) det∇T−1

h (y) dy −
∫
Th(Ω)

Gq(∇z) dx.

Elementary calculations (based on the fact that det∇T−1
h ∼ (1 − h ‖ϕ‖C1(Ω)) and a Taylor expansion

of Gq) show that S1 can be further estimated by S1 ≤ c |h| (1 + ‖z‖qW 1,q(Ω)). Again, the constant c is

independent of h and z. Collecting all estimates we finally arrive at∫
Ω

(1 + |∇z|2 + |∇zh|2)
q−2

2 |∇4hz|2 dx

≤ c(|h|+ |h|γ)(1 + ‖z‖qW 1,q(Ω))

(
1 + ‖f ′(z)‖L∞(Ω) + ‖w‖2W 1,p(Ω;Rd) + ε

∥∥∥∥z − ζτ
∥∥∥∥α−1

Lα(Ω)

)
.

Since x0 ∈ ∂Ω was chosen arbitrarily, after covering Ω with a finite number of balls BRx0
(x0) we finally

obtain that z ∈ N 1+ γ
q ,q(Ω) with

‖z‖
N 1+

γ
q
,q

(Ω)
≤ c(1 + ‖z‖W 1,q(Ω))

(
1 + ‖f ′(z)‖

1
q

L∞(Ω) + ‖w‖
2
q

W 1,p(Ω;Rd)
+ ε

1
q

∥∥∥∥z − ζτ
∥∥∥∥α−1

q

Lα(Ω)

)
,

and the constant c is independent of α, ε, τ, z, w and ζ.
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5 A priori estimates

This section is devoted to deriving for the approximate solutions (zτ , ẑτ , uτ , ûτ ) constructed from the

time-incremental minimization problem (4.1) a number of a priori estimates, uniform w.r.t. τ > 0. These

will allow us to pass to the limit in the approximate differential inclusion (4.5) and conclude the existence

of weak viscous solutions to (the Cauchy problem for) (3.2). In view of the vanishing-viscosity analysis

in Sec. 7, in the following we will specify which estimates are, in addition, uniform w.r.t. ε > 0. However,

for notational simplicity we shall omit to indicate the dependence of the interpolants (zτ , ẑτ , uτ , ûτ ) on ε.

5.1 Energy estimate

We start by stating the basic energy estimate derived from the time-incremental minimization (4.1). It

holds uniformly with respect to τ and ε > 0.

Lemma 5.1. Under Assumptions 2.1, 2.5, and (AΩ1), for every z0 ∈ Z there exists a constant C1 > 0

such that for all τ > 0 and ε > 0 there holds

sup
t∈[0,T ]

I(tτ (t), zτ (t)) +

∫ T

0

Rε(ẑ′τ (r)) dr ≤ C1, (5.1)

sup
t∈[0,T ]

‖zτ (t)‖W 1,q(Ω) + sup
t∈[0,T ]

‖ẑτ (t)‖W 1,q(Ω) ≤ C1. (5.2)

‖uτ‖L∞(0,T ;W 1,p∗ (Ω;Rd)) ≤ C1. (5.3)

Proof. From (4.1) (with competitor z = zτk ) we deduce

I(tτk+1, z
τ
k+1) + τkRε

(
zτk+1 − zτk

τk

)
≤ I(tτk+1, z

τ
k ) = I(tτk, z

τ
k ) +

∫ tτk+1

tτk

∂tI(s, zτk ) ds. (5.4)

Then, we observe that supt∈[0,T ] |∂tI(t, zτk )| ≤ C thanks to (2.31) in Lemma 2.9. Hence, (5.1) follows

upon adding (5.4) up for k = 0, . . . , N − 1. Observe that (5.1) yields (5.2) thanks to (2.25) in Lemma 2.6

and the Poincaré inequality. Finally, (5.3) follows from (5.2) via estimate (2.24).

5.2 Higher spatial differentiability for the damage variable

Theorem 4.4 yields an enhanced differentiability estimate for zτ and ẑτ , uniform w.r.t. τ and ε.

Lemma 5.2. Under Assumptions 2.1, 2.5, (AΩ1) and (AΩ2), for every β ∈ [0, 1
q (1 − d

q )), for every

z0 ∈ Z it holds

zτ (t), ẑτ (t) ∈W 1+β,q(Ω) for all τ > 0 and all t ∈ (0, T ].

Moreover, for all β ∈ [0, 1
q (1− d

q )) there exists a constant C2 > 0 such that for all τ > 0 and ε > 0 there

holds

‖zτ‖L2q(0,T ;W 1+β,q(Ω)) + ‖ẑτ‖L2q(0,T ;W 1+β,q(Ω)) ≤ C2 . (5.5)

Proof. Applying Theorem 4.4 with α = 2, ζ = zτk , w = umin(tτk+1, z
τ
k+1) + uD(tτk+1) and p = p∗, we find∥∥zτk+1

∥∥
W 1+β,q(Ω)

≤cβ(1 + ‖zτk‖W 1,q(Ω))

×

(
1 +

∥∥umin(tτk+1, z
τ
k+1) + uD(tτk+1)

∥∥ 1
q

W 1,p∗ (Ω;Rd)
+ ε

1
q

∥∥∥∥zτk+1 − zτk
τ

∥∥∥∥ 1
q

L2(Ω)

)
,

(5.6)
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with cβ independent of τ and ε. Taking into account the previously proved uniform estimates (5.2) and

(5.3) for zτk and umin(tτk+1, z
τ
k+1), we then have ‖zτ (t)‖2qW 1+β,q(Ω) ≤ C

(
1 + ε2 ‖ẑ′τ (t)‖2L2(Ω)

)
for a.a. tin

(0, T ). Then, (5.5) follows from integrating the above estimate on (0, T ) and using (5.1).

5.3 Enhanced temporal regularity estimates

The proof of the enhanced regularity estimates (5.7) and (5.8) below relies on the higher regularity for

z0 guaranteed by (3.12), i.e., DzI(0, z0) ∈ L2(Ω). We also provide estimate (5.9), later used in the proof

of Lemma 5.5, cf. (5.30) below. Observe that the bounds in (5.7)–(5.9) might explode as ε→ 0.

Lemma 5.3. Under Assumptions 2.1, 2.5, (AΩ1) and (AΩ2), for every z0 ∈ Z fulfilling (3.12) and for

every ε > 0 there exists a constant C3 = C3(ε) > 0, with C3(ε)→∞ as ε→ 0, such that for all τ > 0∫ T

0

∫
Ω

(1 + |∇ẑτ (r)|2)
q−2

2 |∇ẑ′τ (r)|2 dx dr ≤ C3(ε), (5.7)

ε ‖ẑ′τ‖
2
L∞(0,T ;L2(Ω)) ≤ C3(ε), (5.8)

ε

∥∥∥∥ẑ′τ ( tτ12
)∥∥∥∥

L2(Ω)

≤ C3,1

(
1 + ‖DzI(0, z0)‖L2(Ω)

)
exp (C3,2τ/ε), (5.9)

where tτ1 is the first non-zero node of the partition of [0, T ], and C3,1, C3,2 do not depend on ε or τ .

Proof. For t ∈ (tτk, t
τ
k+1) we define hτ (t) := εẑ′τ (t) + Aqzτ (t) + DzĨ(tτ (t), zτ (t)). Hence, relation (4.5) is

equivalent to −hτ (t) ∈ ∂R1(ẑ′τ (t)) for t ∈ (tτk, t
τ
k+1). Since for convex, 1-homogeneous functionals Ψ it

holds ∂Ψ(v) ⊂ ∂Ψ(0) as well as ∂Ψ(v) = { η ; Ψ(v) = 〈η, v〉 }, we deduce

∀ t ∈ (tτk, t
τ
k+1) −R1(ẑ′τ (t)) = 〈hτ (t), ẑ′τ (t)〉Z , (5.10)

∀ r ∈ [0, T ]\{tτ0 , . . . , tτN} R1(ẑ′τ (t)) ≥ 〈−hτ (r), ẑ′τ (t)〉Z . (5.11)

Adding both relations, it follows 0 ≥ τ−1〈hτ (ρ) − hτ (σ), ẑ′τ (ρ)〉Z with ρ ∈ (tτi , t
τ
i+1) and σ ∈ (tτi−1, t

τ
i ),

which can be rewritten as (for 1 ≤ i ≤ N − 1)

ετ−1 〈ẑ′τ (ρ)− ẑ′τ (σ), ẑ′τ (ρ)〉L2(Ω)︸ ︷︷ ︸
= I1

+ τ−1 〈Aqzτ (ρ)−Aqzτ (σ), ẑ′τ (ρ)〉Z︸ ︷︷ ︸
= I2

≤ −τ−1 〈DzĨ(tτ (ρ), zτ (ρ))−DzĨ(tτ (σ), zτ (σ)), ẑ′τ (ρ)〉Z︸ ︷︷ ︸
= I3

. (5.12)

Now, we observe that I1 ≥ 1
2

∫
Ω

(
|ẑ′τ (ρ)|2 − |ẑ′τ (σ)|2

)
dx whereas, relying on inequality (2.3), we find

I2 ≥ c
∫

Ω

(1 + |∇zτ (ρ)|2 + |∇zτ (σ)|2)
q−2

2 |∇ẑ′τ (ρ)|2 dx ≥ c
∫

Ω

(1 + |∇ẑτ (ρ)|2)
q−2

2 |∇ẑ′τ (ρ)|2 dx, (5.13)

where the second inequality is due to the fact that |∇ẑτ (ρ)|2 ≤ 2|∇zτ (ρ)|2 + 2|∇zτ (σ)|2. Finally, relying

on estimate (2.42), we obtain

|I3| ≤ C(1 + ‖ẑ′τ (ρ)‖L2p∗/(p∗−2)(Ω))‖ẑ′τ (ρ)‖L2p∗/(p∗−2)(Ω) . (5.14)

All in all, inserting the above calculation in (5.12) and multiplying by τ we find

ε

2
‖ẑ′τ (ρ)‖2L2(Ω) + τC

∫
Ω

(
1 + |∇ẑτ (ρ)|2

) q−2
2 |∇ẑ′τ (ρ)|2 dx (5.15)

≤ ε

2
‖ẑ′τ (σ)‖2L2(Ω) + τC(1 + ‖ẑ′τ (ρ)‖L2p∗/(p∗−2)(Ω)) ‖ẑ

′
τ (ρ)‖L2p∗/(p∗−2)(Ω) .

28



Hence, taking the sum with respect to ρ ∈ (tτi , t
τ
i+1) of (5.15) on the time interval (t0, t), with t0 ∈ (0, tτ1)

and t ∈ (tτk, t
τ
k+1), and using Young’s inequality, we arrive at

ε

2
‖ẑ′τ (t)‖2L2(Ω) + C

∫ tτ (t)

tτ1

∫
Ω

(
1 + |∇ẑτ (ρ)|2

) q−2
2 |∇ẑ′τ (ρ)|2 dx dρ

≤ ε

2
‖ẑ′τ (t0)‖2L2(Ω) + C

∫ tτ (t)

tτ1

(1 + ‖ẑ′τ (ρ)‖2L2p∗/(p∗−2)(Ω)) dρ. (5.16)

For the first time step with t0 ∈ (0, tτ1) we obtain from (5.10):

0 = R1(ẑ′τ (t0)) + 〈h̄τ (t0), ẑ′τ (t0)〉Z ≥ ε ‖ẑ′τ (t0)‖2L2(Ω) + 〈DzI(tτ1 , z
τ
1 ), ẑ′τ (t0)〉Z . (5.17)

With DzI(tτ1 , z
τ
1 ) = DIq(zτ1 )−DIq(z0)+DzĨ(tτ1 , z

τ
1 )−DzĨ(0, z0)+DzI(0, z0), Young’s inequality, (3.12)

and similar arguments as for I2 and I3 from above, we find

ε ‖ẑ′τ (t0)‖2L2(Ω) + cτ

∫
Ω

(1 + |∇ẑτ (t0)|2)
q−2

2 |∇ẑ′τ (t0)|2 dx

≤ −〈DzI(0, z0), ẑ′τ (t0)〉Z + 〈DzĨ(0, z0)−DzĨ(tτ1 , z
τ
1 ), ẑ′τ (t0)〉Z

≤ ε

2
‖ẑ′τ (t0)‖2L2(Ω) + ε−1 ‖DzI(0, z0)‖2L2(Ω) + cτ(1 + ‖ẑ′τ (t0)‖2L2p∗/(p∗−2)(Ω)).

We sum the above estimate with (5.16). Adding the term
∫ tτ (t)

0
‖ẑ′τ (ρ)‖2L2(Ω) dρ to both sides of the

resulting inequality, we obtain

ε

2
‖ẑ′τ (t)‖2L2(Ω) + C1

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2L2(Ω) dρ+ C1

∫ t̄τ (t)

0

∫
Ω

(1 + |∇ẑτ (ρ)|2)
q−2

2 |∇ẑ′(ρ)|2 dxdρ

≤ ε−1 ‖DzI(0, z0)‖2L2(Ω) + C1

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2L2(Ω) dρ+ C2

∫ tτ (t)

0

(1 + ‖ẑ′τ (ρ)‖2L2p∗/(p∗−2)(Ω)) dρ

≤ C + ε−1 ‖DzI(0, z0)‖2L2(Ω) + C

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2L2(Ω) dρ+
C1

4

∫ tτ (t)

0

‖ẑ′τ (ρ)‖2W 1,2(Ω) dρ, (5.18)

where for the last inequality we have applied estimate (2.2) to absorb C1

4

∫ tτ (t)

0
‖ẑ′τ (ρ)‖2W 1,2(Ω) dρ into the

corresponding term on the left-hand side. Now with the Gronwall inequality, we conclude that for all

t ∈ [0, T ]\{tτ0 , . . . , tτN}

ε ‖ẑ′τ (t)‖2L2(Ω) ≤
(
C ′ +

1

2ε
‖DzI(0, z0)‖2L2(Ω)

)
exp(Ctτ (t)/ε), (5.19)

from which we derive (5.8), (5.9) and (5.7).

Lemma 5.4. Under Assumptions 2.1, 2.5, (AΩ1), and (AΩ2), for every z0 ∈ Z such that (3.12) is valid

there exists a constant C4 = C4(ε) > 0, with C4(ε)→∞ as ε→ 0, such that for all τ > 0 there holds

‖ûτ‖W 1,2(0,T ;W 1,2(Ω;Rd)) ≤ C4(ε). (5.20)

Proof. Lemma 2.7 with p̃ = 2 and r = 2p∗(p∗ − 2)−1 implies for all t ∈ (0, T )\{tτ0 , . . . , tτN} that

‖û′τ (t)‖W 1,2(Ω) ≤ c(1 + ‖ẑ′τ (t)‖Lr(Ω)). Since W 1,2(Ω) ⊂ Lr(Ω), the claim of Lemma 5.4 follows with

(5.3) and (5.7).
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5.4 A uniform discrete BV-estimate

The following estimates will be used to pass to the vanishing-viscosity limit ε → 0 and therefore are

uniform both w.r.t. τ and w.r.t. ε.

Lemma 5.5. Under Assumptions 2.1, 2.5, (AΩ1) and (AΩ2), for every z0 ∈ Z such that (3.12) is valid

there exists a constant C5 > 0 such that for all τ > 0 and ε > 0 with τ ≤ 2ε there holds∫ T

0

‖ẑ′τ (t)‖W 1,2(Ω) dt ≤ C5, (5.21)∫ T

0

‖ẑ′τ (t)‖L2(Ω) dt+

∫ T

0

(∫
Ω

(1 + |∇ẑτ (r)|2)
q−2

2 |∇ẑ′τ (r)|2 dx

) 1
2

dr ≤ C5. (5.22)

Note that, in comparison with the previous (5.7), formula (5.22) has an L1-character, in the sense that

it can be rewritten as

‖Mτ‖L1(0,T ) ≤ C with Mτ (t) :=

(
‖ẑ′τ (t)‖2L2(Ω) +

∫
Ω

(1 + |∇ẑτ (r)|2)
q−2

2 |∇ẑ′τ (t)|2 dx

) 1
2

. (5.23)

This reflects the fact that (5.22) is invariant under time rescalings.

Proof. We start from (5.12), written for ρ = mk and σ = mk−1, where mk := 1
2 (tτk−1 + tτk) and k ∈

{2, . . . , N}. Adding the term ‖ẑ′τ (mk)‖2L2(Ω) on both sides and taking into account that zτ (mk−1) =

zτ (mk), we obtain

ε

τ
〈ẑ′τ (mk)− ẑ′τ (mk−1), ẑ′τ (mk)〉L2(Ω) + τ−1〈Aqzτ (mk)−Aqzτ (mk), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω)

≤ −τ−1〈DzĨ(tτk, zτ (mk))−DzĨ(tτk−1, zτ (mk)), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω) , (5.24)

where Ĩ is defined as in (2.35). For the first time step we start with (5.17) and find

ε

τ
‖ẑ′τ (m1)‖2L2(Ω) + τ−1〈Aqzτ (m1)−Aqzτ (m1), ẑ′τ (m1)〉Z + ‖ẑ′τ (m1)‖2L2(Ω)

≤ −τ−1〈DzI(0, z0), ẑ′τ (m1)〉Z − τ−1〈DzĨ(tτ1 , zτ (m1))−DzĨ(tτ0 , zτ (m1)), ẑ′τ (m1)〉Z + ‖ẑ′τ (m1)‖2L2(Ω) ,

(5.25)

where we used the fact that (0, z0) = (tτ0 , zτ (m1)). Hence, with ẑ′τ (m0) := 0, for all k ∈ {1, . . . , N} we

have

ε

τ
〈ẑ′τ (mk)− ẑ′τ (mk−1), ẑ′τ (mk)〉L2(Ω) + τ−1〈Aqzτ (mk)−Aqzτ (mk), ẑ′τ (mk)〉Z + ‖ẑ′τ (mk)‖2L2(Ω)

≤ −1

τ
〈DzĨ(tτk, zτ (mk))−DzĨ(tτk−1, zτ (mk)), ẑ′τ (mk)〉Z+‖ẑ′τ (mk)‖2L2(Ω)+

δ1,k
τ
|〈DzI(0, z0), ẑ′τ (m1)〉Z | ,

(5.26)

with the Kronecker symbol δi,j . Thanks to estimate (2.5) and the fact that |∇ẑτ (mk)|2 ≤ 2|∇zτ (mk)|2 +

2|∇zτ (mk−1)|2, the left-hand side of (5.26) can be bounded by

L.H.S. ≥ ε

2τ
‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+ M2

k, (5.27)

where we use the abbreviation (cf. notation (5.23))

M2
k := cq

∫
Ω

(1 + |∇ẑτ (mk)|2)
q−2

2 |∇ẑ′τ (mk)|2 dx+ ‖ẑ′τ (mk)‖2L2(Ω)
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with a constant cq ∈ (0, 1]. Using estimate (5.14) for the first term on the right-hand side of (5.26), the

fact that W 1,2(Ω) is compactly embedded in L2p∗/p∗−2(Ω) ⊂ L2(Ω) ⊂ L1(Ω), the Gagliardo-Nirenberg

estimate ‖ζ‖L2p∗/p∗−2(Ω) ≤ c ‖ζ‖θL1(Ω) ‖ζ‖
1−θ
W 1,2(Ω) with suitable θ ∈ (0, 1) and Young’s inequality, the

right-hand side of (5.26) can be bounded as follows (see the proof of [33, Proposition 4.3])

R.H.S. ≤ cq
2
‖ẑ′τ (mk)‖2W 1,2(Ω) + C

(
1 + ‖ẑ′τ (mk)‖L1(Ω)R1(ẑ′τ (mk))

)
+ δ1,kτ

−1 |〈DzI(0, z0), ẑ′τ (m1)〉Z |

≤ 1

2
M2
k + C

(
1 + ‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk)) + δ1,kτ

−1 |〈DzI(0, z0), ẑ′τ (m1)〉Z |
)
.

Hence, estimate (5.26) yields for k ∈ {1, . . . , N}

ε

2τ
‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+

1

2
M2
k

≤ C
(

1 + ‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk)) + δ1,kτ
−1 |〈DzI(0, z0), ẑ′τ (m1)〉Z |

)
,

where the constant C is independent of τ, k and ε. Multiplying this inequality by 4τ/ε and taking into

account that M2
k ≥ ‖ẑ′τ (mk)‖2L2(Ω) we arrive at

2 ‖ẑ′τ (mk)‖L2(Ω)

(
‖ẑ′τ (mk)‖L2(Ω) − ‖ẑ

′
τ (mk−1)‖L2(Ω)

)
+
τ

ε
‖ẑ′τ (mk)‖2L2(Ω) +

τ

ε
M2
k

≤ 4τC

ε
+

4τC

ε
‖ẑ′τ (mk)‖L2(Ω)R1(ẑ′τ (mk)) + 4C

δ1,k
ε
|〈DzI(0, z0), ẑ′τ (m1)〉Z | ,

(5.28)

which is valid for all 1 ≤ k ≤ N . We define now for 1 ≤ k ≤ N

ak = ‖ẑ′τ (mk)‖L2(Ω) , c2 = 8C, µ2 = ε |〈DzI(0, z0), ẑ′τ (m1)〉| , rk = 2CR1(ẑ′τ (mk)), γ =
τ

2ε
,

so that, with a0 = 0, (5.28) can be rewritten as

2ak(ak − ak−1) + 2γa2
k + 2γM2

k ≤ c2γ(1 +
δ1,k
τε µ

2) + 4γakrk, (5.29)

which holds for 1 ≤ k ≤ N . With Lemma B.1 we arrive at

N∑
k=1

τMk ≤ C

(
T + µ+

N∑
k=1

τR1(ẑ′τ (mk))

)
, (5.30)

where we used that, here, a0 = 0. Thanks to (5.9) and assumption (3.12), µ is uniformly bounded w.r.t.

ε and we conclude that (5.22) and therefore (5.21) hold.

For later use we pin down a crucial consequence of the higher differentiability estimate (5.6) for zτ ,

and of the uniform W 1,1(0, T ;L2(Ω))-estimate for ẑτ , combined with (5.1).

Lemma 5.6. Under Assumptions 2.1, 2.5, (AΩ1) and (AΩ2), for every z0 ∈ Z with (3.12), for all

β ∈ [0, 1
q (1− d

q )) there exists a constant C6 > 0 such that for all τ > 0 and ε > 0 there holds∫ T

0

‖zτ (t)‖q
W 1+β,q(Ω)

‖ẑ′τ (t)‖L2(Ω) dt ≤ C6 . (5.31)

Proof. From (5.6), again taking into account the previously proved uniform estimates (5.2) and (5.3) for

zτk and umin(tτk+1, z
τ
k+1), we also gather

∥∥zτk+1

∥∥q
W 1+β,q(Ω)

≤ C(1 + ε
∥∥(zτk+1 − zτk )/τ

∥∥
L2(Ω)

), whence

∥∥zτk+1

∥∥q
W 1+β,q(Ω)

∥∥∥∥zτk+1 − zτk
τ

∥∥∥∥
L2(Ω)

≤ C

(∥∥∥∥zτk+1 − zτk
τ

∥∥∥∥
L2(Ω)

+ ε

∥∥∥∥zτk+1 − zτk
τ

∥∥∥∥2

L2(Ω)

)
. (5.32)

Then, (5.31) follows by integrating (5.32) in time, taking into account the basic energy estimate (5.1) as

well as estimate (5.21).

31



Remark 5.7. Observe that the a priori estimates from Lemmas 5.1–5.4 could be obtained also in the case of

a time-discretization scheme with variable time step τk = tτk+1−tτk, with fineness τ = sup0≤k≤N (tτk+1−tτk).

Accordingly, part 1 of Theorem 3.5 could be extended to the variable time step framework, like in [33].

The reason why we have confined ourselves to a constant time step is in fact related to the validity of

some calculations in the proof of Lemma 5.5.

6 Proof of Theorem 3.5 on the existence of viscous solutions

In this section, ε > 0 is fixed and the limit as τ tends to zero is discussed. In order to pass to the limit

in the time-discretization scheme of the viscous problem, as in [33] we are going to adopt a variational

approach, along the lines of [42]. Namely, instead of taking the limit of the discrete subdifferential

inclusion (4.5), we shall pass to the limit in the discrete energy inequality (6.1) derived in Lemma 6.1

below. Observe that, one of the peculiarities of this problem is that we have not used inequality (6.1)

to deduce the basic energy estimates for the approximate solutions like it could be expected. In fact,

the last remainder term on the right-hand side of (6.1) prevents us from doing so. Instead, relying on

the a priori estimates obtained in Section 5 and on suitable compactness arguments (see the forthcoming

Prop. 6.2), we are going to show that this remainder tends to zero, cf. (6.8) ahead).

Lemma 6.1 (Discrete energy inequality).

Under Assumptions 2.1, 2.5, and (AΩ1), the discrete solutions of (4.5) satisfy the discrete energy in-

equality for all 0 ≤ s ≤ t ≤ T∫ tτ (t)

tτ (s)

(
Rε(ẑ′τ (r)) +R∗ε (−DzI(tτ (r), zτ (r)))

)
dr + I(t, ẑτ (t))

≤ I(s, ẑτ (s)) +

∫ tτ (t)

tτ (s)

∂tI(r, ẑτ (r)) dr

+ C sup
t∈[0,T ]

‖zτ (t)− ẑτ (t)‖L2p∗/(p∗−2)(Ω)

∫ tτ (t)

tτ (s)

(|tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L2p∗/(p∗−2)(Ω)) dr.

(6.1)

Proof. From (4.5) and as a consequence of the Fenchel-Moreau theorem we get

Rε (ẑ′τ (r)) +R∗ε
(
−DzI(tτ (r), zτ (r))

)
= 〈−DzI(tτ (r), zτ (r)), ẑ′τ (r)〉Z for a.a. r ∈ (0, T ) . (6.2)

On the other hand, since ẑτ ∈ C0
lip([0, T ];Z), the standard chain rule yields d

dtI(r, ẑτ (r)) = ∂tI(r, ẑτ (r))+

〈DzI(r, ẑτ (r)), ẑ′τ (r)〉Z for a.a. r ∈ (0, T ). Thus the right-hand side of (6.2) can be rewritten as

〈DzI(tτ (r), zτ (r)), ẑ′τ (r)〉Z

=
d

dr
I(r, ẑτ (r))− ∂tI(r, ẑτ (r)) + 〈DzI(tτ (r), zτ (r))−DzI(r, ẑτ (r)), ẑ′τ (r)〉Z .

(6.3)

Then, combining (6.2) and (6.3) and integrating on the interval (tτ (s), tτ (t)) we get∫ tτ (t)

tτ (s)

(
Rε(ẑ′τ )(r) +R∗ε (−DzI(tτ (r), zτ (r)))

)
dr + I(t, ẑτ (t))

= I(s, ẑτ (s)) +

∫ tτ (t)

tτ (s)

∂tI(r, ẑτ (r)) dr −
∫ tτ (t)

tτ (s)

〈DzI(tτ (r), zτ (r))−DzI(r, ẑτ (r)), ẑ′τ (r)〉Z dr .

(6.4)
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Let us estimate now the last term on the right-hand side:∫ tτ (t)

tτ (s)

〈DzI(tτ (r), zτ (r))−DzI(r, ẑτ (r)), ẑ′τ (r)〉Z dr

=

∫ tτ (t)

tτ (s)

〈Aqzτ (r)−Aq ẑτ (r), ẑ′τ (r)〉Z dr +

∫ tτ (t)

tτ (s)

〈DzĨ(tτ (r), zτ (r))−DzĨ(r, ẑτ (r)), ẑ′τ (r)〉Z dr

=: F1 + F2.

Now, from the definition of ẑτ and (2.5) it follows that F1 ≥ 0. To estimate F2, we use (2.42) from

Corollary 2.13 and, observing that P (zτ , ẑτ ) (for P (z1, z2) defined as in (2.23)) is bounded uniformly in

τ thanks to (5.2), we get

|F2| ≤ C
∫ tτ (t)

tτ (s)
(|(tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L2p∗/(p∗−2)(Ω))‖zτ (r)− ẑτ (r)‖L2p∗/(p∗−2)(Ω) dr

≤ C supt∈[0,T ] ‖zτ (t)− ẑτ (t)‖L2p∗/(p∗−2)(Ω)

∫ tτ (t)

tτ (s)
(|(tτ (r)− r|+ ‖zτ (r)− ẑτ (r)‖L2p∗/(p∗−2)(Ω)) dr,

which together with (6.4) and the fact that −F1 ≤ 0 gives (6.1).

As a consequence of the a priori estimates of Sec. 5, we have the following result.

Proposition 6.2 (Compactness). Under Assumptions 2.1, 2.5, (AΩ1), and (AΩ2), for every z0 ∈ Z with

(3.12) and for every sequence of time-steps (τj)j tending to 0 there exist a (not-relabeled) subsequence

and z ∈ L∞(0, T ;Z) ∩W 1,2(0, T ;W 1,2(Ω)) fulfilling the mixed estimate (3.8), as well as the enhanced

regularity (3.13), and such that the following convergences hold: for all β ∈ [0, 1
q (1− d

q ))

zτj , ẑτj
∗
⇀ z in L2q(0, T ;W 1+β,q(Ω)) ∩ L∞(0, T ;Z), (6.5)

ẑτj ⇀ z in W 1,2(0, T ;W 1,2(Ω)), (6.6)

ẑτj → z strongly in L2q(0, T ;W 1+β,q(Ω)), (6.7)

sup
t∈[0,T ]

∥∥zτj (t)− ẑτj (t)∥∥W 1,2(Ω)
≤ C(ε)

√
τj (6.8)

sup
t∈[0,T ]

∥∥DzI(tτj (t), zτj (t))−DzI(t, ẑτj (t))
∥∥
Z∗ ≤ C(ε)

√
τj . (6.9)

Therefore, (6.7), (6.8) and (6.9) imply

DzI(tτj (t), zτj (t))→ DzI(t, z(t)) strongly in Z∗ for a.a. t ∈ (0, T ). (6.10)

Moreover,

ẑτj (t) ⇀ z(t) in Z for all t ∈ [0, T ], (6.11)

I(t, ẑτj (t))→ I(t, z(t)) for almost all t ∈ (0, T ). (6.12)

Proof. Convergences (6.5)–(6.6) are a straightforward consequence of estimates (5.2), (5.5), and (5.7) via

the Banach selection principle.

Estimate (5.5) implies that ẑτj ⇀ z in L2q(0, T ;W 1+β,q(Ω)) for every β ∈ [0, 1
q

(
1 − d

q

)
). This fact,

together with (6.6) and [51, Corollary 4] yields the strong convergence (6.7) due to the compact embedding

W 1+β1,q(Ω) ⊂ W 1+β2,q(Ω) for β1 > β2. Now, (6.8) follows from the bound ‖ẑ′τ‖L2(0,T ;W 1,2(Ω)) ≤ C (cf.

estimates (5.7) and (5.8)).
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In order to prove estimate (6.9), we notice that for every w ∈ Z

| 〈DzI(tτj (t), zτj (t))−DzI(t, ẑτj (t)), w〉Z |

≤ | 〈Aqzτj (t)−Aq ẑτj (t), w〉Z |+ | 〈DzĨ(tτj (t), zτj (t))−DzĨ(t, ẑτj (t)), w〉Z | =: F1 + F2.
(6.13)

By estimate (2.6) and a careful application of the Hölder inequality with 1
2 + q−2

2q + 1
q = 1

F1 ≤C
(∫

Ω

(1 + |∇zτj (t)|2 + |∇ẑτj (t)|2)
q−2

2 |∇(zτj (t)− ẑτj (t))|2 dx

) 1
2

× (1 + ‖zτj (t)‖W 1,q(Ω) + ‖ẑτj (t)‖W 1,q(Ω))
q−2

2 ‖∇w‖Lq(Ω).

Therefore, by using the energy estimate (5.2) we obtain

‖Aqzτj (t)−Aq ẑτj (t)‖Z∗ ≤ C
(∫

Ω

(1 + |∇zτj (t)|2 + |∇zτj (t)|
2)

q−2
2 τ2|∇ẑ′τj (t)|

2 dx

) 1
2

≤ C
√
τ

∫ T

0

(∫
Ω

(1 + |∇zτj (t)|2 + |∇zτj (t)|
2)

q−2
2 |∇ẑ′τj (t)|

2 dx

) 1
2

dt ≤ C
√
τC3(ε),

where for the second estimate we have used the Hölder inequality and (5.7) for the last one. All in all,

‖Aqzτj (t)−Aq ẑτj (t)‖Z∗ ≤ C(ε)
√
τ . (6.14)

Now we estimate F2. By Corollary 2.13 and the embedding of W 1,2(Ω) in L2p∗/(p∗−2)(Ω)

F2 ≤ C(|tτj (t)− t|+ ‖zτj (t)− ẑτj (t)‖L2p∗/(p∗−2)(Ω))‖w‖L2p∗/(p∗−2)(Ω)

≤ C(τ + ‖zτj (t)− ẑτj (t)‖W 1,2(Ω))‖w‖L2p∗/(p∗−2)(Ω).

Therefore, taking into account (6.8) we get

‖DzĨ(tτj (t), zτj (t))−DzĨ(t, ẑτj (t))‖Z∗ ≤ C(τ +
√
τ), (6.15)

and (6.13)–(6.15) give (6.9).

Now, from (6.7) it follows that ẑτj (t)→ z(t) strongly in W 1+β,q(Ω)) for a.a. t ∈ (0, T ). Thus, by (2.44)

in Corollary 2.15, DzI(t, ẑτj (t)) → DzI(t, z(t)) strongly in Z∗ for a.a. t ∈ (0, T ). This, together with

(6.9) yields (6.10).

The mixed estimate (3.8) follows from estimate (5.7) by lower semicontinuity of the functional (A,B) 7→∫ T
0

∫
Ω

(1 + |A|2)
q−2

2 |B|2 dx dt, which is convex in B, observing that (6.6) implies ∇ẑ′τj ⇀ ∇z′ in

L2((0, T )× Ω) and that (6.7) implies ∇ẑτj → ∇z in L1((0, T )× Ω) (see e.g. [11, Theorem 3.23]).

Convergence (6.11) follows from the fact that L∞(0, T ;Z)∩W 1,2(0, T ;W 1,2(Ω)) is compactly embedded

in C0([0, T ];X ) for every X such that Z b X ⊂ W 1,2(Ω) (cf., e.g., [51]), combined with the estimate

supj∈N supt∈[0,T ] ‖ẑτj‖W 1,q(Ω) ≤ C, cf. (5.2).

Finally, from (6.7) we get pointwise convergence in W 1+β,q(Ω)) for a.a. t. Then, the continuity of

z 7→ I(t, z) ensues (6.12).

The convergences (6.5)–(6.12) are sufficient to pass to the limit in the time-discretization scheme, and

conclude the existence of a weak solution (in the sense of Def. 3.1), to the Cauchy problem (3.2)–(3.3). In

order to deduce by lower semicontinuity arguments the uniform w.r.t. ε-estimates (3.14)–(3.17) for any

family of solutions (zε) arising from the time-discretization procedure of Sec. 4, additional compactness

arguments are needed, which we develop in the forthcoming Lemma 6.3. We postpone its statement and

proof after the proof of Theorem 3.5.

34



Proof of Theorem 3.5. For fixed ε > 0 let (τj)j∈N be a sequence along which the convergences in Propo-

sition 6.2 are valid. Proposition 6.2 also ensures that, for the limit curve z fulfills the mixed estimate

(3.8) holds.

First of all, we pass to the limit in the discrete energy inequality (6.1). Thanks to convergence (6.11), for

all t ∈ [0, T ] it holds that lim infj→∞ I(t, ẑτj (t)) ≥ I(t, z(t)) while, from (6.12) I(s, ẑτj (s)) → I(s, z(s))

for a.a. s ∈ (0, T ). The convergence of the term involving ∂tI is an immediate consequence of the

convergence stated in (6.7), taking into account the continuity properties of ∂tI (see estimate (2.32) in

Lemma 2.9). Due to (6.10) and the lower semicontinuity of R∗ε we conclude that

lim inf
τj

∫ t̄τj (t)

tτj
(s)

R∗ε (−DzI(t̄τj (r), z̄τj (r))) dr ≥
∫ t

s

R∗ε (−DzI(r, z(r))) dr.

Similarly, from (6.6), by lower semicontinuity it follows that lim infτj
∫ t̄τj (t)

tτj
(s) Rε(ẑ

′
τj (r)) dr ≥

∫ t
s
Rε(z′(r)) dr.

Moreover, the remainder term on the right-hand side of (6.1) tends to zero thanks to (6.8) and the em-

bedding of W 1,2(Ω) in L2p∗/(p∗−2)(Ω). Altogether we arrive at the energy inequality∫ t

s

(Rε(z′(r)) +R∗ε (−DzI(r, z(r))) dr + I(t, z(t)) ≤ I(s, z(s)) +

∫ t

s

∂tI(r, z(r)) dr, (6.16)

for all t ∈ [0, T ], for s = 0, and for almost all 0 < s < t.

We now check that (6.16) holds for all 0 ≤ s ≤ t. Let sn ↗ s be a sequence of points for which (6.16)

is satisfied. Thus,∫ s

sn

(Rε(z′(r)) +R∗ε (−DzI(r, z(r))) dr ≤ I(sn, z(sn))− I(s, z(s)) +

∫ s

sn

∂tI(r, z(r)) dr

= −
∫ s

sn

∫
Ω

(1 + |∇z(r)|2)(q−2)/2∇z(r) · ∇z′(r) dx dr −
∫ s

sn

∫
Ω

DzĨ(r, z(r))z′(r) dx dr

where the equality follows by an integrated-in-time version of the chain-rule formula (3.10). Passing to the

limit as sn ↗ s and using the absolute continuity of the Lebesgue integral, from the second inequality we

derive I(sn, z(sn))→ I(s, z(s)), and therefore we obtain (3.11) for all s and t. Thanks to Proposition 3.3,

we conclude that z is a weak solution (in the sense of Def. 3.9), to the Cauchy problem (3.2)–(3.3).

Estimates (3.14)–(3.17) follow from Lemma 6.3 below.

The proof of the following Lemma exploits Young measure tools, which we recall in Appendix A.

Lemma 6.3. Under Assumptions 2.1, 2.5, (AΩ1) and (AΩ2), for every z0 ∈ Z such that DzI(0, z0) ∈
L2(Ω) and for every ε > 0 estimates (3.14)–(3.15) hold. In addition, z from Proposition 6.2 also fulfills∫ T

0

‖z(t)‖q
W 1+β−δ,q(Ω)

‖z′(t)‖L2(Ω) dt ≤ lim inf
j→0

∫ T

0

‖zτj (t)‖
q
W 1+β,q(Ω)

‖ẑ′τj (t)‖L2(Ω) dt (6.17)

for all β ∈ [0, 1
q

(
1− d

q

)
), and

∫ T

0

(∫
Ω

(1 + |∇z(t)|2)
q−2

2 |∇z′(t)|2 dx

) 1
2

dt ≤ lim inf
j→0

∫ T

0

(∫
Ω

(1 + |∇ẑτj (t)|2)
q−2

2 |∇ẑ′τj (t)|
2 dx

) 1
2

dt.

(6.18)

As a consequence, estimates (3.16)–(3.17) hold.

Proof. Estimates (3.14)–(3.15) follow from (5.1), (5.2), and (5.5) by convergences (6.5)–(6.6) and lower

semicontinuity arguments.
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In order to prove inequalities (6.17) and (6.18), we resort to a Young measure argument, based on

A. Indeed, we can apply the compactness theorem A.2, with the space V = W 1+β,q(Ω) ×W 1,2(Ω), to

the sequence (zτj , ẑ
′
τj )j , bounded in L2(0, T ;W 1+β,q(Ω) × W 1,2(Ω)) for all β ∈ [0, 1

q (1 − d
q )). There-

fore, up to a not relabeled subsequence, (zτj , ẑ
′
τj )j admits a limiting Young measure µ = {µt}t∈(0,T ) ∈

Y (0, T ;W 1+β,q(Ω) ×W 1,2(Ω)), such that for almost all t ∈ (0, T ) the measure µt is concentrated on

the limit points of (zτj (t), ẑ
′
τj (t))j , w.r.t. the W 1+β,q(Ω) ×W 1,2(Ω)-weak topology. Now, by (6.7)–(6.8)

we have that zτj (t) → z(t) strongly in W 1,q(Ω). Therefore, denoting by π1 the projection operator

(z, v) ∈ W 1+β,q(Ω) ×W 1,2(Ω) 7→ z ∈ W 1,q(Ω), it is immediate to check that the projection measure

(π1)](µt) coincides with the Dirac delta δz(t). With a disintegration argument we in fact see that µt is of

the form δz(t) ⊗ νt, and that the parameterized measure {νt}t∈(0,T ) fulfills∫
W 1,2(Ω)

v dνt(v) = z′(t) for almost all t ∈ (0, T ). (6.19)

Then, the lim inf-inequality (A.2) with the normal integrand H(t, (z, v)) := ‖z‖q
W 1+β,q(Ω)

‖v‖L2(Ω) yields

lim inf
j→0

∫ T

0

‖zτj (t)‖
q
W 1+β,q(Ω))

‖ẑ′τj (t)‖L2(Ω) dt

≥
∫ T

0

∫∫
W 1+β,q(Ω)×W 1,2(Ω)

‖z‖q
W 1+β,q(Ω))

‖v‖L2(Ω) d(δz(t) ⊗ νt)(z, v) dt

≥
∫ T

0

‖z(t)‖q
W 1+β,q(Ω))

∥∥∥∥∥
∫
W 1,2(Ω)

v dνt(v)

∥∥∥∥∥
L2(Ω)

=

∫ T

0

‖z(t)‖q
W 1+β,q(Ω)

‖z′(t)‖L2(Ω) dt

where the second estimate is due to Jensen’s inequality and the last equality to (6.19). This gives (6.17).

As for (6.18), we now consider the sequence of gradients (∇ẑτj ,∇ẑ′τj )j , bounded in L2(0, T ;L2(Ω;Rd)×
L2(Ω;Rd)). Relying on Theorem A.2, we associate with (∇ẑτj ,∇ẑ′τj )j its limiting Young measure µ̃ =

{µ̃t}t∈(0,T ) ∈ Y (0, T ;L2(Ω;Rd)×L2(Ω;Rd)), concentrated on the set of the weak-L2(Ω;Rd)×L2(Ω;Rd)
limit points of (∇ẑτj ,∇ẑ′τj )j . On account of the strong convergence (6.7), arguing as in the above lines

we conclude that µ̃t = δ∇z(t) ⊗ ν̃t for almost all t ∈ (0, T ), with {ν̃t}t∈(0,T ) satisfying∫
L2(Ω;Rd)

B dν̃t(B) = ∇z′(t) for almost all t ∈ (0, T ). (6.20)

Therefore, inequality (A.2) with the normal integrand H(t, (A,B)) :=
(∫

Ω
(1 + |A|2)

q−2
2 |B|2 dx

) 1
2

yields

lim inf
j→0

∫ T

0

(∫
Ω

(1 + |∇ẑτj (t)|2)
q−2

2 |∇z′τj (t)|
2 dx

) 1
2

dt

≥
∫ T

0

∫∫
L2(Ω;Rd)×L2(Ω;Rd)

(∫
Ω

(1 + |A|2)
q−2

2 |B|2 dx

) 1
2

d(δ∇z(t) ⊗ ν̃t)(A,B) dt

=

∫ T

0

∫
L2(Ω;Rd)

(∫
Ω

(1 + |∇z(t)|2)
q−2

2 |B|2 dx

) 1
2

dν̃t(B) dt

≥
∫ T

0

∫
Ω

(1 + |∇z(t)|2)
q−2

2

∣∣∣∣∣
∫
L2(Ω;Rd)

B dν̃t(B)

∣∣∣∣∣
2

dx

 1
2

dt

where the latter estimate again follows from Jensen’s inequality. Then, in view of (6.20), (6.18) ensues.

Estimates (3.16)–(3.17) are then a consequence of (6.17) and (6.18), combined with the bounds (5.31)

and (5.22), respectively.
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7 Vanishing viscosity limit

Throughout this section, we shall work with a family (zε)ε ⊂ L∞(0, T ;W 1,q(Ω)) ∩W 1,2(0, T ;W 1,2(Ω))

of weak solutions (in the sense of Definition 3.1), to the ε-viscous Cauchy problem (3.2)–(3.3). We shall

suppose that for (zε)ε the following estimates, uniform w.r.t. the parameter ε, are valid:

sup
ε>0
‖zε‖W 1,1(0,T ;L2(Ω)) ≤ C, (7.1a)

sup
ε>0
‖zε‖L2q(0,T,W 1+β,q(Ω))∩L∞(0,T ;W 1,q(Ω)) ≤ C, (7.1b)

sup
ε>0

∫ T

0

‖zε(t)‖qW 1+β,q(Ω)
‖z′ε(t)‖L2(Ω) dt ≤ C, for every β ∈

[
0,

1

q

(
1− d

q

))
, (7.1c)

sup
ε>0

∫ T

0

(∫
Ω

(1 + |∇zε(t)|2)
q−2

2 |∇z′ε(t)|2 dx

) 1
2

dt ≤ C. (7.1d)

The existence of solutions (zε)ε fulfilling (7.1) is ensured by Theorem 3.5, under the condition that the

initial datum z0 ∈ Z also fulfills DzI(0, z0) ∈ L2(Ω).

In what follows, we shall reparameterize the curves (zε)ε by their L2(Ω)-arclength, and study the

asymptotic behavior of the reparameterized trajectories as ε → 0. This leads (cf. Theorem 7.4 below)

to the notion of weak parameterized solution to the rate-independent damage system (1.3), which we

introduce in Definition 7.2.

7.1 Weak parameterized solutions

The starting point for the passage of the vanishing-viscosity limit is the energy inequality (3.11), which

lies at the core of the notion of weak solutions to the viscous problem. Taking into account the definition

of Rε, and the fact that R∗ε is given by (cf. [33, Lemma 3.1])

R∗ε (σ) =
1

ε
min

µ∈∂R1(0)
R̃2(σ − µ), with R̃2(σ) :=

 1
2 ‖σ‖

2
L2(Ω) if σ ∈ L2(Ω),

∞ if σ ∈ Z∗\L2(Ω),
(7.2)

thanks to the inf-sup convolution formula, inequality (3.11) rephrases as∫ t

s

R1(z′ε(r)) +
ε

2
‖z′ε(r)‖2L2(Ω) dr +

∫ t

s

1

ε
min

µ∈∂R1(0)
R̃2(−DzI(r, zε(r))− µ

)
dr + I(t, zε(t))

≤ I(s, zε(s)) +

∫ t

s

∂tI(r, zε(r)) dr for all 0 ≤ s ≤ t ≤ T .

(7.3)

Now, for every ε > 0 we consider the L2(Ω)-arclength parameterization of the curve zε, viz.

sε(t) = t+

∫ t

0

‖z′ε(r)‖L2(Ω) dr. (7.4)

Let Sε = sε(T ): it follows from (7.1a) that supε>0 Sε <∞. We introduce the functions t̃ε : [0, Sε]→ [0, T ]

and z̃ε : [0, Sε]→ Z
t̃ε(s) := s−1

ε (s), z̃ε(s) := zε(t̃ε(s)) (7.5)

fulfilling the normalization condition

t̃′ε(s) + ‖z̃′ε(s)‖L2(Ω) = 1 for a.a. s ∈ (0, Sε) (7.6)
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and study the limiting behavior as ε → 0 of the parameterized trajectories { (t̃ε(s), z̃ε(s)) ; s ∈ [0, Sε] }.
Since supε>0 Sε < ∞, up to a subsequence, Sε → S as ε→ 0, with S ≥ T (the latter inequality follows

from the fact that sε(t) ≥ t). With no loss of generality, we may consider the parameterized trajectories

to be defined on the fixed time interval [0, S].

From the energy inequality (7.3) we deduce that the parameterized trajectories (t̃ε(s), z̃ε(s))s∈[0,S] fulfill∫ σ2

σ1

(
R1(z̃′ε(s))+

ε

2t̃′ε(s)
‖z̃′ε(s)‖

2
L2(Ω) +

t̃′ε(s)

2ε
d2

2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0))
)

ds+ I(t̃ε(σ2), z̃ε(σ2))

≤ I(t̃ε(σ1), z̃ε(σ1)) +

∫ σ2

σ1

∂tI(t̃ε(s), z̃ε(s))t̃
′
ε(s) ds ∀ (σ1, σ2) ⊂ [0, S],

(7.7)

where we have used the short-hand notation d2(ξ, ∂R1(0)) := minµ∈∂R1(0)

√
2R̃2(ξ−µ). Upon introduc-

ing the functional (cf. [40, Sec. 3.2])

Mε : (0,∞)× L2(Ω)× [0,∞)→ [0,∞], Mε(α, v, ζ) := R1(v) +
ε

2α
‖v‖2L2(Ω) +

α

2ε
ζ2, (7.8)

the above inequality rephrases as∫ σ2

σ1

Mε(t̃
′
ε(s), z̃

′
ε(s),d2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0))) ds+ I(t̃ε(σ2), z̃ε(σ2))

≤ I(t̃ε(σ1), z̃ε(σ1)) +

∫ σ2

σ1

∂tI(t̃ε(s), z̃ε(s))t̃
′
ε(s) ds ∀ (σ1, σ2) ⊂ [0, S].

(7.9)

We will pass to the limit as ε → 0 in (7.9). For this, we shall rely on the following Γ-convergence/lower

semicontinuity result, [40, Lemma 3.1] (cf. also [33, Lemma 5.1]).

Lemma 7.1. Extend the functional Mε (7.8) to [0,+∞)× L2(Ω)× [0,∞) via

Mε(0, v, ζ) :=

0 for v = 0 and ζ ∈ [0,+∞) ,

∞ for v ∈ L2(Ω)\{0} and ζ ∈ [0,+∞) .

Define M0 : [0,∞)× L2(Ω)× [0,∞)→ [0,∞] by

M0(α, v, ζ) :=

R1(v) + ζ ‖v‖L2(Ω) if α = 0,

R1(v) + I0(ζ) if α > 0,
(7.10)

where I0 denotes the indicator function of the singleton {0}. Then,

(A) Mε Γ-converges to M0 on [0,∞) × L2(Ω) × [0,∞) w.r. to the strong-weak-strong topology. (B) If

αε ⇀ ᾱ in L1(a, b), vε ⇀ v̄ in L1(a, b;L2(Ω)), and lim infε→0 ζε(s) ≥ ζ̄(s) for a.a. s ∈ (a, b), then∫ b

a

M0(ᾱ(s), v̄(s), ζ̄(s)) ds ≤ lim inf
ε→0

∫ b

a

Mε(αε(s), vε(s), ζε(s)) ds .

We now introduce the notion of solution which arises from passing to the limit as ε→ 0 in (7.9).

Definition 7.2 (Weak parameterized solutions). A pair (t̃, z̃) ∈ C0
lip([0, S]; [0, T ] × L2(Ω)) is a weak

parameterized solution of the rate-independent damage system (1.3), if it satisfies the energy inequality∫ σ2

σ1

M0(t̃′(s), z̃′(s),d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) ds+ I(t̃(σ2), z̃(σ2))

≤ I(t̃(σ1), z̃(σ1)) +

∫ σ2

σ1

∂tI(t̃(s), z̃(s))t̃′(s) ds for all 0 ≤ σ1 ≤ σ2 ≤ S.

(7.11)
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We say that a weak parameterized solution (t̃, z̃) ∈ C0
lip([0, S]; [0, T ]×L2(Ω)) is non-degenerate if it fulfills

t̃′(s) + ‖z̃′(s)‖L2(Ω) > 0 for a.a. s ∈ (0, S). (7.12)

Recall that the chain rule provided by Theorem 3.2 is a key ingredient for getting further insight into

the notion of weak solution to the viscous system from Def. 3.9. Indeed, it is by a chain-rule argument

that we can show that the pointwise variational inequality (3.9) is equivalent to the energy inequality

(3.11). Likewise, the following result, which the parameterized counterpart to the chain rule of Theorem

3.2, shall enable us to obtain a differential characterization of the notion of weak parameterized solution

in terms of the energy inequality (7.11). Indeed, Prop. 7.3 shall be exploited in the proof of Prop. 7.6.

Proposition 7.3. Under Assumptions 2.1, 2.5, and (AΩ1), let (t̃, z̃) ∈ C0
lip([0, S]; [0, T ] × L2(Ω)) fulfill

in addition

z̃ ∈ L∞(0, S;W 1,q(Ω)), (7.13)∫ S

0

M(s) ds <∞ with M(s) :=

(∫
Ω

(1 + |∇z̃(s)|2)
q−2

2 |∇z̃′(s)|2 dx

) 1
2

. (7.14)

Then, the map s 7→ I(t̃(s), z̃(s)) is absolutely continuous on (0, S), and the following chain-rule formula

is valid:
d

ds
I(t̃(s), z̃(s))− ∂sI(t̃(s), z̃(s))t̃′(s) =

∫
Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · ∇z̃′(s) dx

+

∫
Ω

DzĨ(t̃(s), z̃(s))z̃′(s) dx .

(7.15)

Proof. From (7.13) and (7.14) we deduce with the Hölder inequality that∫ S

0

∫
Ω

∣∣∣(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · ∇z̃′(s)
∣∣∣ dx ds

=

∫ S

0

∫
Ω

∣∣∣(1 + |∇z̃(s)|2)
q−2

4 ∇z̃′(s)
∣∣∣ ∣∣∣(1 + |∇z̃(s)|2)

q−2
4 ∇z̃(s)

∣∣∣ dx ds

≤
∫ S

0

M(s)‖(1 + |∇z̃(s)|2)
q−2

4 ∇z̃(s)‖L2(Ω) ds ≤ c
∫ S

0

M(s)(1 + ‖∇z̃(s)‖
q
2

Lq(Ω)) ds <∞,

where the last estimate relies on (7.13). Now we can argue as in the proof of Theorem 3.2 to deduce that

(t̃, z̃) fulfill the parameterized version of the chain rule (7.15).

7.2 The vanishing-viscosity result

We are now in the position of stating and proving our main vanishing-viscosity result.

Theorem 7.4. Under Assumptions 2.1, 2.5, (AΩ1), and (AΩ2), let (zε)ε be a family of weak solutions

(according to Definition 3.1), in L∞(0, T ;W 1,q(Ω))∩W 1,2(0, T ;W 1,2(Ω)), to the ε-viscous Cauchy problem

(3.2)–(3.3). Suppose that the estimates (7.1) are valid for (zε)ε, and let (t̃ε, z̃ε)ε>0 ⊂ C0
lip([0, S]; [0, T ] ×

L2(Ω)) be defined by (7.5).

Then, for every sequence εn ↘ 0 there exist a pair (t̃, z̃) ∈ C0
lip([0, S]; [0, T ] × L2(Ω)), such that z̃ has

the regularity

z̃ ∈ Lq(0, S;W 1+β,q(Ω)) ∩ L∞(0, S;W 1,q(Ω)) for every β ∈
[
0,

1

q

(
1− d

q

))
, (7.16)
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and a (not-relabeled) subsequence such that

(t̃εn , z̃εn)
∗
⇀ (t̃, z̃) in W 1,∞(0, S; [0, T ]× L2(Ω)),

t̃εn → t̃ in C0([0, S]; [0, T ]), z̃εn(s) ⇀ z̃(s) in L2(Ω) for all s ∈ [0, S],
(7.17)

and (t̃, z̃) is a weak parameterized solution of the rate-independent damage system (1.3), fulfilling

t̂′(s) + ‖ẑ′(s)‖L2(Ω) ≤ 1 for a.a. s ∈ (0, S). (7.18)

Furthermore, z̃ fulfills (7.14).

For the proof, we will rely on the following a priori estimates for the parameterized solutions

Lemma 7.5. Under Assumptions 2.1, 2.5, (AΩ1), and (AΩ2), let (zε)ε be a family of weak solutions

(according to Definition 3.1), in L∞(0, T ;W 1,q(Ω))∩W 1,2(0, T ;W 1,2(Ω)), to the ε-viscous Cauchy problem

(3.2)–(3.3). Suppose that (zε)ε satisfy (7.1). Then

sup
ε>0
‖z̃ε‖W 1,∞(0,S;L2(Ω)) ≤ C, (7.19a)

sup
ε>0
‖z̃ε‖L∞(0,S;W 1,q(Ω)) ≤ C, (7.19b)

sup
ε>0
‖z̃ε‖Lq(0,S;W 1+β,q(Ω)) ≤ Cβ for every β ∈

[
0,

1

q

(
1− d

q

))
, (7.19c)

sup
ε>0

∫ S

0

(∫
Ω

(1 + |∇z̃ε(s)|2)
q−2

2 |∇z̃′ε(s)|2 dx

) 1
2

ds ≤ C. (7.19d)

Moreover, there holds

sup
ε>0

∫ S

0

d2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0)) ds ≤ C. (7.20)

Proof. Estimates (7.19a)–(7.19b) are trivial consequences of (7.1a) and (7.1b). It can be easily checked

that (7.19c) ensues from (7.1b) and (7.1c) via reparameterization. Moreover, since (7.1d) essentially has

a L1-character (cf. (5.23)), it is preserved by the reparameterization in (7.19d).

Finally, as a consequence of (7.7) and the uniform bounds (7.19), we have

C ≥
∫ S

0

( ε

2t̃′ε(s)
‖z̃′ε(s)‖

2
L2(Ω) +

t̃′ε(s)

2ε
d2

2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0))
)

ds

≥
∫
{ s∈(0,S) ; t̃′ε(s)≤δ }

‖z̃′ε(s)‖L2(Ω) d2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0)) ds

+

∫
{ s∈(0,S) ; t̃′ε(s)>δ }

δ

2ε
d2

2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0)) ds

for arbitrary δ ∈ (0, 1). Due to the normalization condition (7.6) the first term on the right-hand side

satisfies ‖z̃′ε(s)‖L2(Ω) = 1− t̃′ε(s) ≥ 1− δ. Hence, with θε(s) := d2(−DzI(t̃ε(s), z̃ε(s)), ∂R1(0)) we obtain∫ S

0

θε(s) ds ≤
∫
{ s∈(0,S) ; θε(s)≥1,t̃′ε(s)≤δ }

θε(s) ds+

∫
{ s∈(0,S) ; θε(s)≥1,t̃′ε(s)>δ }

θε(s)
2 ds+

∫
{ s ; θε(s)<1 }

1 ds

≤ C((1− δ)−1 + 2εδ−1) + S,

which is (7.20).

Relying on the above result, we now develop the
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Proof of Theorem 7.4. From the normalization condition (7.6), we deduce that there exists a parameter-

ized curve (t̃, z̃) ∈ C0
lip([0, S]; [0, T ]×L2(Ω)) such that convergences (7.17) hold along some subsequence.

Further, from estimates (7.19) it follows (possibly after extracting a further subsequence) that

z̃ε
∗
⇀ z̃ in L∞(0, S;W 1,q(Ω)), (7.21)

z̃ε(s)→ z̃(s) uniformly in X for all W 1,q(Ω) b X ⊂ L2(Ω) and all s ∈ [0, S], (7.22)

z̃ε → z̃ strongly in Lq(0, S;W 1+β,q(Ω)) for all β ∈
[
0,

1

q

(
1− d

q

))
. (7.23)

(7.22) is a consequence of [51, Cor. 5, Sect. 8] together with (7.19a) and (7.19b), while (7.23) follows from

(7.19a) and (7.19c) with [51, Cor. 9, Sect. 10]. Arguing as in the proof of Theorem 3.5 and relying on

Corollary 2.15, we find that

lim
n→∞

I(t̃εn(s), z̃εn(s)) = I(t̃(s), z̃(s)), DzI(t̃εn(s), z̃εn(s))→ DzI(t̃(s), z̃(s)) strongly (!) in Z∗,

∂tI(t̃εn(s), z̃εn(s))→ ∂tI(t̃(s), z̃(s)) in L1(0, S).
(7.24)

for almost all s ∈ (0, S). Now, (7.18) follows by taking the limit as εn → 0 in (7.6), with a trivial

lower semicontinuity argument. We then apply Lemma 7.1. Estimate (7.20) guarantees that for a.a.

s ∈ (0, S) lim infεn→0 d2(−DzI(t̃εn(s), z̃εn(s)), ∂R1(0)) < ∞. In view of (7.24), we have that, for all

0 ≤ σ1 ≤ σ2 ≤ S

lim inf
εn→0

∫ σ2

σ1

Mεn(t̃′εn(s), z̃′εn(s),d2(−DzI(t̃εn(s), z̃εn(s)), ∂R1(0))) ds

≥
∫ σ2

σ1

M0(t̃′(s), z̃′(s),d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) ds.

Then, combining (7.17) and (7.24), and using that z̃ε(0) = zε(0) = z0 for all ε > 0, we pass to the limit

in (7.9) for all σ2 ∈ [0, S], for σ1 = 0, and for almost all 0 < σ1 < σ2 such that the convergences in (7.24)

are valid. We thus find that the pair (t̃, z̃) satisfies (7.11) for all σ2 ∈ [0, S], for σ1 = 0, and for almost

all 0 < σ1 < σ2.

With the same Young measure argument as in the proof of Lemma 6.3, it follows that the limit function

z̃ satisfies the mixed estimate (7.14). Applying the chain rule (7.3), we then conclude in the same way as

at the end of the proof of Theorem 3.5 that the energy inequality in fact holds for all 0 ≤ σ1 ≤ σ2 ≤ S.

Differential characterization of (non-degenerate) weak parameterized solutions Following

the lines of [41, Prop. 5.3,Cor. 5.4] and of [33, Prop. 5.1], we now aim to provide a characterization of

weak parameterized solutions as solutions of a suitable subdifferential inclusion. Loosely speaking, the

latter should reflect two evolutionary regimes for the damage system, namely

• rate-independent evolution when t̃′ > 0 (and z̃′ 6= 0)

• (possibly) viscous evolution when t̃′ = 0 (and z̃′ 6= 0).

We have to interpret Proposition 7.6 below in this spirit: for t̃′ > 0, the variational inequality (7.25)

is a weak formulation of the rate-independent subdifferential inclusion ∂R1(z̃′(s)) + DzI(s, z̃(s)) 3 0 for

a.a. s ∈ (0, S). For t̃′ = 0, z̃′ 6= 0 follows from the non-degeneracy condition. The system may be subject

to viscous dissipation. This viscous regime is seen as a jump in the (slow) external time scale, encoded

by the time function t̃, which is frozen. Indeed, the variational inequality (7.27) is a (very) weak form of

the viscous ∂R1(z̃′(s)) + λ(s)z̃′(s) + DzI(s, z̃(s)) 3 0 for a.a. s ∈ (0, S) (with λ : (0, S)→ [0,+∞)).
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Proposition 7.6 (Differential characterization). Under Assumptions 2.1, 2.5, (AΩ1), and (AΩ2), let

(t̃, z̃) ∈ C0
lip([0, S]; [0, T ]× L2(Ω)) be a non-degenerate parameterized weak solution of (1.3) with (7.14),

then

1. If t̃′(s) > 0, then for every w ∈ Z

R1(w)−R1(z̃′(s)) ≥ −
∫

Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · (∇w −∇z̃′(s)) dx

−
∫

Ω

DzĨ(t̃(s), z̃(s))(w − z̃′(s)) dx

(7.25)

2. If t̃′(s) = 0, then

R1(z̃′(s)) + d2(−DzI(t̃(s), z̃(s)), ∂R1(0))‖z̃′(s)‖L2(Ω)

≤ −
∫

Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · ∇z̃′(s) dx−
∫

Ω

DzĨ(t̃(s), z̃(s))z̃′(s) dx.
(7.26)

As a consequence, for every w ∈ Z

R1(w)−R1(z̃′(s)) ≥ 〈DzI(t̃(s), z̃(s)) + η(s), w − z̃′(s)〉L2(Ω)

−
∫

Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · (∇w −∇z̃′(s)) dx−
∫

Ω

DzĨ(t̃(s), z̃(s))(w − z̃′(s)) dx,
(7.27)

where η(s) ∈ ∂R1(0) is such that

d2(−DzI(t̃(s), z̃(s)), ∂R1(0)) = ‖ −DzI(t̃(s), z̃(s))− η(s)‖L2(Ω). (7.28)

Observe that, in view of Notation 2.11 we could replace the duality pairings on the right-hand sides of

(7.25) and (7.27) by
∫

Ω
DzĨ(t̃(s), z̃(s))(w − z̃′(s)) dx.

Proof. We differentiate (7.11) w.r.t. time and get for a.a. s ∈ (0, S)

M0(t̃′(s), z̃′(s),d2(−DzI(t̃(s), z̃(s)), ∂R1(0))) ≤ − d

ds
I(t̃(s), z̃(s)) + ∂tI(t̃(s), z̃(s))t̃′(s)

= −
∫

Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · ∇z̃′(s) dx−
∫

Ω

DzĨ(t̃(s), z̃(s))z̃′(s) dx,
(7.29)

where the second equality follows from the parameterized chain rule (7.15). Now, according to the

definition (7.10) of M0 we distinguish between two cases.

If t̃′(s) > 0, then (7.29) yields

R1(z̃′(s))+I0(d2(−DzI(t̃(s), z̃(s)), ∂R1(0)))

≤ −
∫

Ω

(1 + |∇z̃(s)|2)
q−2

2 ∇z̃(s) · ∇z̃′(s) dx−
∫

Ω

DzĨ(t̃(s), z̃(s))z̃′(s) dx.
(7.30)

Thus d2(−DzI(t̃(s), z̃(s)), ∂R1(0)) = 0, so that −DzI(t̃(s), z̃(s)) ∈ ∂R1(0) ⊂ Z∗ which implies that for

every w ∈ Z
R1(w) ≥ 〈−DzI(t̃(s), z̃(s)), w〉Z . (7.31)

Adding (7.30) and (7.31) we get (7.25).

If t̃′(s) = 0, then from (7.29) together with (7.10) we deduce (7.26). Let now η ∈ ∂R1(0) as in (7.28).

Then, for every w ∈ Z there holds R1(w) ≥ 〈η, w〉Z which, together with (7.26) (upon adding and

subtracting 〈DzI(t̃(s), z̃(s)), w〉Z on the right-hand side) provides (7.27).
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We would like to thank Giuseppe Savaré for useful suggestions about the proof of Theorem 3.2. We are

also grateful to Karoline Disser and Jens Griepentrog for enlightening discussions on function spaces.

We appreciate very much the thoroughful reading and valuable remarks of the unknown reviewers.

D.K. and C.Z. are grateful for the kind hospitality of the Section of Mathematics of DICATAM, Univer-

sity of Brescia, where part of this work was performed. R.R. and C.Z. acknowledge the kind hospitality

of the Weierstrass Institute for Applied Analysis and Stochastics, where part of this research was car-

ried out. This project was partially supported by the 2012-PRIN project “Calcolo delle Variazioni”,

by GNAMPA (Indam) and the Deutsche Forschungsgemeinschaft through the project C32 “Modeling of

Phase Separation and Damage Processes in Alloys” of the Research Center MATHEON.

A Young measure tools

Here, we provide a minimal aside on Young measures with values in infinite-dimensional reflexive Banach

spaces (see e.g. [57]). Theorem A.2 is an extension to weak topologies of the so-called Fundamental

Theorem of Young measures.

We denote by L(0,T ) the σ-algebra of the Lebesgue measurable subsets of the interval (0, T ) and,

given a reflexive Banach space V , by B(V ) its Borel σ-algebra. We use the symbol ⊗ for product

σ-algebras. We consider the space V endowed with the weak topology, and say that a L(0,T ) ⊗B(V )–

measurable functional H : (0, T ) × V → (−∞,+∞] is a weakly-normal integrand if for a.a. t ∈ (0, T )

the map w 7→ H(t, w) is sequentially lower semicontinuous on V w.r.t. the weak topology. We denote by

M (0, T ;V ) the set of all L(0,T )-measurable functions y : (0, T )→ V .

Definition A.1 ((Time-dependent) Young measures). A Young measure in the space V is a fam-

ily µ := {µt}t∈(0,T ) of Borel probability measures on V such that the map on (0, T ), t 7→ µt(B) is

L(0,T )-measurable for all B ∈ B(V ). We denote by Y (0, T ;V ) the set of all Young measures in V .

We are now in the position of recalling the following compactness result, which was proved in [48,

Thm. 3.2] (see also [52, Thm. 4.2]).

Theorem A.2. Let 1 ≤ p ≤ ∞ and let (wn) ⊂ Lp(0, T ;V ) be a bounded sequence. Then, there exists a

subsequence (wnk) and a Young measure µ = {µt}t∈(0,T ) ∈ Y (0, T ;V ) such that for a.a. t ∈ (0, T )

µt is concentrated on the set L(t) :=
⋂∞
l=1

{
wnk(t) : k ≥ l

}weak
(A.1)

of the limit points of the sequence (wnk(t)) with respect to the weak topology of V and, for every weakly-

normal integrand H : (0, T ) × V → (−∞,+∞] such that the sequence t 7→ H−(t, wnk(t)) is uniformly

integrable (H− denoting the negative part of H), there holds

lim inf
k→∞

∫ T

0

H(t, wnk(t)) dt ≥
∫ T

0

∫
V

H(t, w) dµt(w) dt . (A.2)

As a consequence, setting w(t) :=
∫
V
w dµt(w) for a.a. t ∈ (0, T ) , there holds wnk ⇀ w in Lp(0, T ;V ),

with ⇀ replaced by
∗
⇀ if p =∞.
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B An abstract discrete estimate

Lemma B.1. Let {ak}Nk=0, {Mk}Nk=1, {rk}Nk=1, µ and c be non-negative numbers, ε, τ > 0 with γ :=

τ/(2ε) ≤ 1 and N ∈ N, Nτ = T . Assume that for 1 ≤ k ≤ N it holds

2ak(ak − ak−1) + 2γa2
k + 2γM2

k ≤ c2γ(1 +
δ1,k
τε µ

2) + 4γakrk, (B.1)

where δ1,k is the Kronecker symbol. Then there exists a constant C = C(c,Nτ) > 0 not depending on

any of the other above quantities such that

N∑
k=1

τMk ≤ C

(
T + εa0 + µ+

N∑
k=1

τrk

)
. (B.2)

The proof of this lemma is a discrete version of the calculations in Section 3.4 in the preprint version

of [45] and a slightly modified version of [33, (4.36)–(4.47)] with the additional term involving µ and

starting with the summation from k = 1 instead of k = 2 in [33]. We give here a short sketch, often

referring to [33] and not elaborating all intermediate steps.

Proof. With bi =
√

2γMi, c
2
i = c2γ(1 +

δi,1
τε µ

2), di = 2γri, (B.1) can be rewritten as

2ai(ai − ai−1) + b2i + 2γa2
i ≤ c2i + 2aidi

for 1 ≤ i ≤ N . Hence, by the discrete Gronwall estimate [33, Lemma 4.1, (4.51)] we find for all n ≥ 1:(
n∑
k=1

(1 + γ)2(k−n)−1b2k

)1/2

≤

(
(1 + γ)−2na2

0 +

n∑
k=1

(1 + γ)2(k−n)−1c2k

)1/2

+
√

8

n∑
k=1

(1 + γ)k−n−1γrk.

(B.3)

As in [33, (4.38)] one estimates

n∑
k=1

(1 + γ)2(k−n)−1c2k ≤ c2(1 +
γ

ετ
(1 + γ)1−2nµ2). (B.4)

Observe that γ(1 + γ)/(ετ) ≤ ε−2. With the Hölder inequality and (B.3) one obtains

n∑
k=1

(1 + γ)2(k−n)−1γMk ≤

(
n∑
k=1

(1 + γ)2(k−n)−1γ

)1/2( n∑
k=1

(1 + γ)2(k−n)−1γM2
k

)1/2

≤ C

(
1 + (1 + γ)−n(a0 + ε−1µ) +

n∑
k=1

γ(1 + γ)k−n−1rk

)
, (B.5)

which corresponds to [33, (4.41)]. Multiplication with τ and summation with respect to n ∈ {1, . . . , N}
yields

N∑
n=1

τ

n∑
k=1

γ(1 + γ)2(k−n)−1Mk ≤ C
N∑
n=1

τ

(
1 + (1 + γ)−n(a0 + ε−1µ) +

n∑
k=1

γ(1 + γ)k−n−1rk

)
. (B.6)

We now change the order of summation and obtain as in [33, (4.43)]

N∑
n=1

τ

n∑
k=1

γ(1 + γ)2(k−n)−1Mk =

N∑
k=1

τMk
1 + γ

2 + γ
(1 + γ)(1− (1 + γ)−2(N−k+1)). (B.7)
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With similar calculations for the term with rk on the right-hand side of (B.6) and taking into account

that
∑N
n=1 τ(1 + γ)−n ≤ 2ε we finally deduce from (B.6)(

N∑
k=1

τMk

)
−

N∑
k=1

τMk(1 + γ)2(k−N−1) ≤ C
(
Nτ + εa0 + µ+

N∑
k=1

τrk

)
.

Estimating the second term on the left hand side with the aid of (B.5), we finally arrive at (B.2).
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[10] V. Chiadò Piat and F. Serra Cassano. Relaxation of degenerate variational integrals. Nonlinear Anal., Theory

Methods Appl., Ser. A, Theory Methods, 22(4):409–424, 1994.

[11] B. Dacorogna. Introduction to the calculus of variations. Transl. from the French. 2nd ed. London: Imperial

College Press, 2008.

[12] G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for cam-clay plasticity: a weak

formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differential Equations,

40:125–181, 2011.

[13] G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for cam-clay plasticity: properties of

the viscosity solutions. Calc. Var. Partial Differential Equations, 44:495–541, 2012.

[14] A. DeSimone, J. Marigo, and L. Teresi. A damage mechanics approach to stress softening and its application

to rubber. European Journal of Mechanics A, 20:873–892, 2001.

[15] C. Ebmeyer and J. Frehse. Mixed boundary value problems for nonlinear elliptic equations in multidimen-

sional non-smooth domains. Math. Nachrichten, 203:47–74, 1999.

[16] M. Efendiev and A. Mielke. On the rate–independent limit of systems with dry friction and small viscosity.

J. Convex Analysis, 13:151–167, 2006.

[17] A. Fiaschi, D. Knees, and U. Stefanelli. Young-measure quasi-static damage evolution. Arch. Ration. Mech.

Anal., 203(2):415–453, 2012.

45



[18] G. Francfort and A. Garroni. A variational view of partial brittle damage evolution. Arch. Ration. Mech.

Anal., 182(1):125–152, 2006.

[19] G. Francfort and U. Stefanelli. Quasistatic evolution for the Armstrong-Frederick hardening-plasticity model.

Applied Maths. Res. Express, 2:297–344, 2013.
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