
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sparse identification of posynomial models / Calafiore, Giuseppe Carlo; El Ghaoui, Laurent M.; Novara, Carlo. - In:
AUTOMATICA. - ISSN 0005-1098. - STAMPA. - 59:(2015), pp. 27-34. [10.1016/j.automatica.2015.06.003]

Original

Sparse identification of posynomial models

Publisher:

Published
DOI:10.1016/j.automatica.2015.06.003

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2619525 since: 2015-10-08T12:58:57Z

Elsevier



Sparse Identification ofPosynomialModels

G.C. Calafiorea, L. El Ghaouib, C. Novaraa

aDAUIN, Politecnico di Torino, Italy.
Email: giuseppe.calafiore@polito.it, carlo.novara@polito.it

bEECS and IEOR, UC Berkeley, CA, USA.
Email: elghaoui@berkeley.edu

Abstract

Posynomials are nonnegative combinations of monomials with possibly fractional and both positive and negative exponents.
Posynomial models are widely used in various engineering design endeavors, such as circuits, aerospace and structural design,
mainly due to the fact that design problems cast in terms of posynomial objectives and constraints can be solved efficiently
by means of a convex optimization technique known as geometric programming (GP). However, while quite a vast literature
exists on GP-based design, very few contributions can yet be found on the problem of identifying posynomial models from
experimental data. Posynomial identification amounts to determining not only the coefficients of the combination, but also the
exponents in the monomials, which renders the identification problem numerically hard. In this paper, we propose an approach
to the identification of multivariate posynomial models, based on the expansion on a given large-scale basis of monomials.
The model is then identified by seeking coefficients of the combination that minimize a mixed objective, composed by a term
representing the fitting error and a term inducing sparsity in the representation, which results in a problem formulation of the
“square-root LASSO” type, with nonnegativity constraints on the variables. We propose to solve the problem via a sequential
coordinate-minimization scheme, which is suitable for large-scale implementations. A numerical example is finally presented,
dealing with the identification of a posynomial model for a NACA 4412 airfoil.

1 Introduction
A posynomial model is defined by a function ψ of the
form ψ(w) =

∑nc

i=1 ciw
αi , where w ∈ Rnw

++ (the posi-
tive orthant), ψ(w) ∈ R, ci ≥ 0 are coefficients, αi =
[αi1 · · · αinw

]> ∈ Rnw are vectors of exponents with
αij ∈ R, and wαi is defined as wαi

.
=
∏nw

j=1 w
αij

j . The
term ciw

αi is called a monomial. Note that, while in
polynomial models the exponents αij are nonnegative
integers, in posynomial models these exponents may also
be negative and/or noninteger.
Posynomial models are of great importance in many
fields of technology, ranging from structural design, net-
work flow, optimal control (see (Beightler & Phillips
1976, Wilde 1978)), to aerospace system design (Hoburg
& Abbeel 2012), circuit design (Boyd, Kim, Patil &
Horowitz 2005, Daems, Gielen & Sansen 2003, Sapat-
nekar, Rao, Vaidya &Kang 1993), antennas (Babakhani,
Lavaei, Doyle & Hajimiri 2010) and communication sys-
tems (Chiang 2005). The interest in posynomials is mo-
tivated by the fact that they lead to computationally ef-
ficient geometric programming models for optimal sys-
tem design, see, e.g., (Duffin, Peterson & Zener 1967,
Beightler & Phillips 1976, Wilde 1978).
Despite the fact that a consistent number of papers is
available in the literature where posynomial models and
geometric programming are used for design purposes,

very few works can be found to date addressing the rel-
evant problem of identifying a posynomial model from
experimental data; see (Daems et al. 2003) for such an
exception. Typically, the model is assumed known (i.e.,
the coefficients ci and the exponents αij are assumed
known), and then it is processed by geometric program-
ming to obtain an optimal design. However, in most real-
world applications, the model is not known a priori, and
it has to be identified from experimental data. Note that
both the coefficients ci and the exponents αij have to
be estimated, and this task is quite hard, making the
identification problem significantly more difficult than a
linear regression problem.
Identification of posynomial models can be performed
following the standard approach used for polynomials.
In this approach, an heuristic search finalized at finding
a viable model structure, i.e., a suitable set of exponent
vectors {αi} is first carried out. Once the exponent vec-
tor set has been chosen, the coefficients ci are estimated
by means of least-squares or other convex optimization
algorithms, see, e.g., (Spinelli, Piroddi & Lovera 2006,
Pulecchi & Piroddi 2007, Daems et al. 2003, Novara,
Vincent, Hsu, Milanese & Poolla 2011). A critical issue
in this approach is that the model structure search may
be extremely time consuming and in most cases leads
only to approximate model structures. An alternative
approach is to assume (or estimate by means of some
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heuristic) a value n̂c for the basis cardinality nc, and
then estimate ci and αi by means of nonlinear program-
ming algorithms. However, these kind of algorithms are
non-convex and thus do not ensure convergence to the
optimal parameter estimate. A third approach, which
overcomes the issues of the other two, consists in consid-
ering an over-parametrized model and inserting in the
optimization problem a sparsity promoting term, given
by the `1-norm of the coefficient vector. This term allows
one to efficiently select the model structure and, at the
same time, to avoid the problem of overfitting. This ap-
proach is based on the well-known LASSO (least abso-
lute shrinkage and selection operator) or other similar al-
gorithms, see, e.g., (Tibshirani 1996, Kukreja, Lofberg &
Brenner 2006, De Mol, De Vito & Rosasco 2009, Bonin,
Seghezza & Piroddi 2010, Novara 2012). The optimiza-
tion problem is in this case convex but, due to the over-
parametrization, it typically involves a very large num-
ber of decision variables.
In this paper, we propose a novel posynomial iden-
tification method, based on this latter approach: we
minimize a convex objective, defined as the sum of a
regularized accuracy term based on the `2-norm of the
estimation residual, and a sparsity-inducing term given
by a weighted `1-norm of the coefficient vector. We
name this method nonnegative regularized square-root
LASSO or nnrsqrt-LASSO. Within this method, we
provide three main contributions. The first one is an op-
timization technique for nonnegative constrained sqrt-
LASSO problems, which exploits an a-priori condition,
called feature elimination. This condition, if satisfied
for a certain monomial, guarantees that this monomial
does not appear in the representation (i.e., it has a
null coefficient). The condition is very easy to check,
and can thus be applied a-priori, in a pre-optimization
phase, to eliminate all the monomials which are not
needed to explain the data. For the optimization phase,
a large-scale-capable algorithm is proposed to solve the
nnrsqrt-LASSO problem. The algorithm is based on a
sequential coordinate minimization scheme where, at
each step, a univariate optimization problem is solved
analytically (and thus very efficiently). The sequential
scheme is shown to converge to an optimal solution.
The second main contribution is the idea of using such
a computational framework for efficient identification of
posynomial models. The third contribution consists in
the application of the technique to a problem of interest
in the aerospace filed. In particular, we show through
a numerical example that the method is effective for
identifying reliable posynomial models for airfoils.

2 Identification of posynomial models
2.1 Model setup
Consider a posynomial ψo(w) =

∑nc

i=1 c
o
iw

αo
i , where

the coefficients coi , the exponent vectors αoi and the ex-
pansion cardinality nc are not known. Suppose that a
set of noise-corrupted measurements is available: D =
{y(k), w(k)}mk=1, where y(k) = ψo(w(k)) + e(k), and
e(k) ∈ R is a noise term. The problem considered in this
paper is to estimate from these data the unknown pa-
rameters coi , αoi , i = 1, . . . , nc, and the cardinality nc.

To this end, we define an over-parametrized posynomial
family

ψ(w) =

n∑
i=1

xiw
αi (1)

where n � nc. In real-world situations, this over-
parametrization can be obtained from the available
prior information on the exponents αoij . Formally, we
assume that the following prior information is available
on the exponents: αij ∈ Qj , i = 1, . . . , n, where Qj
is a set of exponents which, on the basis of the avail-
able prior information, can be considered reasonable
for the variable wj . Then, the set of exponent vectors
{αi}ni=1 defining the over-parametrization (1) can be
constructed as Sα

.
= {αi}ni=1 =

∏nw

j=1Qj (the Cartesian
product of the Qjs). Note that this approach can be
adopted also if an exponent is known to belong to a
continuous (finite) interval, in which case the set Qj can
be obtained by properly discretizing the interval. If the
a-priori information is correct, then Sα is guaranteed to
contain the true exponent vectors: Sα ⊃ Sαo

.
= {αoi }

nc

i=1.
2.2 Square-root LASSO formulation
Model identification is here performed by minimizing
with respect to the coefficients xi in the expansion (1)
an objective function defined as the sum of an accu-
racy objective and a sparsity-promoting term, allowing
us to select, in the over-parametrized family, a parsi-
monious model structure. Define y = [y(1) · · · y(m)]>,

x = [x1 · · · xn]>, and Φ =


w(1)α1 · · · w(1)αn

...
. . .

...

w(m)α1 · · · w(m)αn

.
The objective we consider is of the form

f(x)
.
=

∥∥∥∥∥
[

Φx− y
σx

]∥∥∥∥∥
2

+ λ> |x| , (2)

where σ ≥ 0, λ ∈ Rn with λ ≥ 0 (component-wise), and
|x| denotes a vector whose entries are the absolute values
of the entries in x.We define, for notational compactness,

Φ̃
.
=

[
Φ

σI

]
, ỹ .

=

[
y

0

]
, φ̃i

.
=

[
φi

σei

]
, where φ̃i denotes

the ith column of Φ̃, and ei is the i-th vector of the
standard basis of Rn. The objective thus becomes

f(x)
.
= ‖Φ̃x− ỹ‖2 + λ> |x| . (3)

Note that λ> |x| is a weighted `1-norm. Vector λ is thus a
penalty factor which quantifies the tradeoff between the
accuracy objective ‖Φ̃x− ỹ‖2 and the term λ> |x|, which
is a proxy for sparsity in the solution, see (Donoho, Elad
& Temlyakov 2006, Candes & Tao 2006). Clearly, for
λ = γ1 (where 1 is a vector with all entries equal to one),
and σ = 0, the rsqrt-LASSO problem coincides with the
standard sqrt-LASSO. The use of the sparsity promoting
term λ> |x| instead of the standard term γ‖x‖1 allows for
more flexibility, in problems where the entries of x have
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different scales, see, e.g., (Daubechies, Defrise & Mol
2004, Zou 2006, Carvajal, Godoy, Aguero & Goodwin
2012). The regularization parameter σ ≥ 0 is introduced
to improve the numerical conditioning of the problem,
guaranteeing (if σ > 0) that Φ̃ has full rank, and that
the `2 term of the objective remains differentiable for all
x, if y 6= 0.
We hence consider the following two optimization prob-
lems, which we name regularized square-root LASSO
(rsqrt-LASSO)

p∗
.
= min
x∈Rn

f(x), (4)

and nonnegative regularized square-root LASSO
(nnrsqrt-LASSO)

p∗+
.
= min
x∈Rn

+

f(x), (5)

where Rn+
.
= {x ∈ Rn : x ≥ 0} (the inequality is

component-wise). The first model can be used for poly-
nomial model identification, and the second one for
posynomial model identification, which is the main
focus of this paper.

Remark 1 The proposed regularized square-root
LASSO and nnsquare-root LASSO models are quite dif-
ferent from the standard LASSO, (Tibshirani 1996), the
Elastic-Net, (Zou & Hastie 2005, De Mol et al. 2009),
and the LAR (Least Angle Regression), (Efron, Hastie,
Johnstone & Tibshirani 2004), models. In fact, these
latter formulations do not allow natively for a-priori
feature elimination (see Remark 2 below), and, more-
over, the corresponding algorithms are not tailored for
dealing with the non-negativity constraints on x that
we need for our posynomial identification application.
Further, although we do not develop here a specific
statistical analysis of our model, we remark that it
has been observed in, e.g., (Belloni, Chernozhukov &
Wang 2011, Babu & Stoica 2014), that using a plain
`2 term instead of a squared one may lead to “pivotal”
estimates that are less sensitive to the noise level in
the data, and hence to the choice of the regularization
parameter λ. 2

In the following sections, we describe a simple scheme
for solving both the unconstrained and the constrained
versions of the regularized sqrt-LASSO problem, based
on a two-phase procedure: problem reduction using fea-
ture elimination, followed by a coordinate-minimization
(CM) scheme applied to the reduced problem. There
clearly exist other general algorithms that can poten-
tially be used for the numerical solution of our prob-
lem, such as, for instance, the FISTA algorithm (Beck
& Teboulle 2009), or the forward-backward splitting
method of (Duchi & Singer 2009); see also (Combettes
& J.-C-Pesquet 2007). A brief discussion on the numer-
ical performance of these methods compared to the CM
method on a numerical example is reported in Section 6.

We shall assume throughout that y 6= 0, since for y = 0
the optimal solution of both problems (4), (5) is trivially
x∗ = 0.

3 Dual formulations and feature elimination
We next derive dual formulations of the rsqrt-LASSO
and nnrsqrt-LASSO problems, and then show how a fea-
ture elimination condition is obtained from these dual
formulations.
3.1 Dual of the rsqrt-LASSO problem
We here derive a dual formulation for problem (4). We
use the fact that ‖Φ̃x−ỹ‖2 = max‖u‖2≤1 u

>(Φ̃x−ỹ), and
λ>|x| =

∑n
i=1 λi|xi| = max|v|≤λ v

>x. We thus rewrite
problem (4) as

p∗ = min
x∈Rn

max
‖u‖2≤1,|v|≤λ

u>(Φ̃x− ỹ) + v>x.

Then, a standard saddle-point result (see, for instance,
Sion’s theorem, (Komiya 1988, Sion 1958)), prescribes
that we may exchange the order of min and max in the
previous expression without changing the optimal value,
whence
p∗ = max

‖u‖2≤1,|v|≤λ
min
x∈Rn

u>(Φ̃x− ỹ) + v>x.

Notice further that the infimum over x ∈ Rn of the term
(u>Φ̃ + v>)x is −∞, unless the coefficient u>Φ̃ + v> is
zero, hence
p∗ = max

u,v
−u>ỹ

s.t.: Φ̃>u+ v = 0, ‖u‖2 ≤ 1, |v| ≤ λ.
Eliminating the v variable, we obtain the following for-
mulation for the dual of problem (4)

p∗ = max
u

−u>ỹ (6)

s.t.: ‖u‖2 ≤ 1

|φ̃>i u| ≤ λi, i = 1, . . . , n. (7)

3.2 Dual of the nnrsqrt-LASSO problem
The derivation of the dual for the nnrsqrt-LASSO prob-
lem (5) follows similar lines, noticing that, for x ≥ 0, we
have λ>|x| = λ>x, hence

p∗+ = max
‖u‖2≤1

min
x≥0

u>(Φ̃x− ỹ) + λ>x,

and the infimum over x ≥ 0 of the term (u>Φ̃ + λ>)x is
−∞, unless u>Φ̃ + λ> ≥ 0, thus

p∗+ = max
u

−u>ỹ (8)

s.t.: ‖u‖2 ≤ 1

φ̃>i u+ λi ≥ 0, i = 1, . . . , n. (9)

3.3 Safe feature elimination
In this section we analyze the dual formulations of prob-
lems (4), (5), in order to derive a simple sufficient con-
dition that permits one to predict when an entry xi is
zero at optimum, and hence to eliminate a priori some
features (i.e., columns of Φ̃) from the problem. This type
of condition, first introduced by (El Ghaoui, Viallon &
Rabbani 2012) in the context of the standard LASSO
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problem, is named safe feature elimination. Observe that
max‖u‖2≤1 |φ̃>i u| = ‖φ̃i‖2. Therefore, if for some i ∈
{1, . . . , n} it holds that ‖φ̃i‖22 = ‖φi‖22 + σ2 < λ2i , then
the corresponding constraint in (7), as well as in (9), will
certainly be satisfied with strict inequality, that is, it will
be inactive at the optimum. This means that it can be
safely eliminated from the dual optimization problem,
without changing the optimal objective value. Such re-
duced dual is associated with a reduced primal problem
where the columns φ̃i corresponding to the inactive dual
constraints are removed from matrix Φ̃. This in turn im-
plies that the corresponding variables xi in the primal
problem are set to zero, i.e.,

‖φi‖22 + σ2 < λ2i ⇒ x∗i = 0. (10)

Remark 2 Feature elimination permits one to elimi-
nate some features (and thus to reduce the variable size)
before we actually run the algorithm, by just check-
ing the condition in Eq. (10). This is not true for the
LASSO and, e.g., for the problem studied in (Hale, Yin
& Zhang 2008), where only an a-posteriori elimination
condition is obtained, i.e., a condition checkable only af-
ter the algorithm has been run. 2

4 Univariate solutions
Consider the following rsqrt-LASSO problem with a sin-
gle scalar variable x:

min
x∈R

f(x)
.
=

∥∥∥∥∥
[
φx− y
σex− ξ

]∥∥∥∥∥
2

+ λ|x|, (11)

where λ ≥ 0 (now a scalar), σ ≥ 0, φ ∈ Rm, y ∈ Rm,
ξ ∈ Rn are given, and e is a vector of all zeros, except for
an entry in generic position i, which is equal to one, and
correspondingly we postulate that ξi = 0, thus it holds
that e>ξ = 0. We set for convenience

φ̃
.
=

[
φ

σe

]
, ỹ

.
=

[
y

ξ

]
. (12)

Thus, problem (11) rewrites to

min
x∈R

f(x)
.
= ‖φ̃x− ỹ‖2 + λ|x|. (13)

We assume that ỹ 6= 0 and φ̃ 6= 0, otherwise the optimal
solution is simply x = 0. Let us define

xls
.
=
φ̃>ỹ

‖φ̃‖22
=

φ>y

‖φ‖22 + σ2
,

which corresponds to the solution of the problem for
λ = 0. The following theorem holds.
Theorem 1 Let ỹ 6= 0, φ̃ 6= 0, λ ≥ 0.
(1) x∗ = 0 is an optimal solution for (13) if and only if

|φ̃>ỹ| ≤ λ‖ỹ‖2

(notice, in particular, that if ‖φ̃‖2 ≤ λ, then the
above condition is certainly satisfied, hence x∗ = 0).

(2) If |φ̃>ỹ| > λ‖ỹ‖2 (hence ‖φ̃‖2 > λ), then the opti-
mal solution of (13) is given by

x∗ = xls − sgn (xls)
λ

‖φ̃‖22

√
‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22 − λ2
.

(14)
Proof. The problem is convex but nonsmooth, hence we
write the optimality conditions in terms of the subdiffer-
ential of the objective: 0 ∈ ∂f(x) = ∂‖φ̃x− ỹ‖2 +λ∂|x|,
where

∂‖φ̃x− ỹ‖2 =


φ̃>(φ̃x− ỹ)

‖φ̃x− ỹ‖2
if φ̃x− ỹ 6= 0

{φ̃>g : ‖g‖2 ≤ 1} if φ̃x− ỹ = 0,

∂|x|=

{
sgn (x) if x 6= 0

{v : |v| ≤ 1} if x = 0.

For point 1 we thus check under what conditions 0 is
contained in the subdifferential of f at x = 0, that is

x∗ = 0 is optimal

m
0 ∈ ∂f(0) =

{
φ̃>ỹ
‖ỹ‖2 + λv, |v| ≤ 1

}
.

Since the term λv may take any value in the interval
[−λ, λ], it follows that the above condition is satisfied
if and only if |φ̃>ỹ|/‖ỹ‖2 ≤ λ, which proves the first
part of the theorem. Also, since by the Cauchy-Schwartz
inequality it holds that |φ̃>ỹ| ≤ ‖φ̃‖2‖ỹ‖2, it is clear
that ‖φ̃‖2 ≤ λ implies |φ̃>ỹ| ≤ λ‖ỹ‖2, hence the optimal
solution is certainly zero when ‖φ̃‖2 ≤ λ.

Consider next the case in point 2, where |φ̃>ỹ| > λ‖ỹ‖2,
thus ‖φ̃‖2 > λ and the solution is nonzero. We initially
assume for simplicity that φ̃ and ỹ are not collinear, so
that φ̃x− ỹ 6= 0 for all x; later we show that the derived
solution is still valid if this assumption is lifted. With
this assumption, and since x 6= 0, we have that

x is optimal ⇔ 0 = ∂f(x) =
φ̃>(φ̃x− ỹ)

‖φ̃x− ỹ‖2
+λ sgn (x),

that is, since ‖φ̃x− ỹ‖2 6= 0, for

φ̃>(φ̃x− ỹ) = −λ‖φ̃x− ỹ‖2sgn (x). (15)

All solution to this equation are also solutions of the
squared equation

(φ̃>φ̃x− φ̃>ỹ)2 = λ2‖φ̃x− ỹ‖22, (16)
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which is a quadratic equation in x, equivalent to:

‖φ̃‖22(‖φ̃‖22−λ2)x2−2φ̃>ỹ(‖φ̃‖22−λ2)x+(φ̃>ỹ)2−λ2‖ỹ‖22 = 0.

The roots of this equation are in

x± = xls ±

√
xls2 −

(φ̃>ỹ)2 − λ2‖ỹ‖22
‖φ̃‖22(‖φ̃‖22 − λ2)

.

Observe that the term under the square root is nonneg-
ative, since

δ
.
= xls

2 − (φ̃>ỹ)2 − λ2‖ỹ‖22
‖φ̃‖22(‖φ̃‖22 − λ2)

=
(φ̃>ỹ)2

‖φ̃‖4
− (φ̃>ỹ)2 − λ2‖ỹ‖22
‖φ̃‖22(‖φ̃‖22 − λ2)

=
λ2

‖φ̃‖22
· ‖φ̃‖

2
2‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22(‖φ̃‖22 − λ2)
,

where, under the conditions of point 2, ‖φ̃‖22 − λ2 > 0,
and ‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2 ≥ 0, by the Cauchy-Schwartz
inequality. Further, δ ≥ 0 is smaller in magnitude than
xls

2, since the condition |φ̃>ỹ| > λ‖ỹ‖2 implies that
xls

2 − δ > 0. It follows that the sign of x± = xls ±
√
δ

is the same sign of xls (since adding ±
√
δ to xls cannot

change its sign). Then, plugging x ← x± into equation
(15), we have the left-hand side

‖φ̃‖22x± − φ̃>ỹ = ‖φ̃‖22(xls ±
√
δ)− φ̃>ỹ = ±

√
δ

and the right-hand side

−λ‖φ̃x± − ỹ‖2sgn (x±) = −λ‖φ̃x± − ỹ‖2sgn (xls).

Thus, sign consistency is obtained by choosing the so-
lution with “+” when xls is negative, and with “-” when
xls is positive. In conclusion, the unique solution to eq.
(15) is given by

x∗ = xls − sgn (xls)
λ

‖φ̃‖22

√
‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22 − λ2
,

which is the expression we wished to prove.
It only remains to be proved that the above expression
is still valid also when ỹ and φ̃ are collinear. In this case,
since ‖φ̃‖22‖ỹ‖22 = (φ̃>ỹ)2, eq. (14) gives x∗ = xls, and we
have that φ̃x∗− ỹ = 0. Let us check that this solution is
indeed optimal. The subdifferential of f at x∗ 6= 0 such
that φ̃x∗ − ỹ = 0 is

∂f(x∗) = {φ̃>g + λ sgn (x∗), ‖g‖2 ≤ 1},

and we see that 0 ∈ ∂f(x∗) if ‖φ̃‖2 ≥ λ, which is indeed
the condition under which the expression (14) for x∗
holds. 2

4.1 Univariate solution of nnrsqrt-LASSO
The solution of the univariate nnrsqrt-LASSO problem
in the scalar variable x

min
x≥0

f(x)
.
= ‖φ̃x− ỹ‖2 + λ|x|, (17)

can be readily obtained from the solution of the corre-
sponding unconstrained problem (13), by the following
reasoning. Since (17) is a convex optimization problem
in one variable and one linear inequality constraint, its
optimal solution is either on the boundary of the feasible
set (in this case, at x = 0), or it coincides with the solu-
tion of the unconstrained version of the problem. Thus,
we solve the unconstrained problem (13): if this solution
is nonnegative, then it is also the optimal solution to
(17); if it is negative, then the optimal solution to (17)
is x = 0. Since the sign of the solution of (13) is simply
the sign of φ̃>ỹ, we can state the following theorem.
Theorem 2 Let ỹ 6= 0, φ̃ 6= 0, λ ≥ 0.
(1) x∗ = 0 is an optimal solution for (17) if and only if

φ̃>ỹ ≤ λ‖ỹ‖2.

(2) Otherwise, the optimal solution of (17) is given by

x∗ = xls −
λ

‖φ̃‖22

√
‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22 − λ2
. (18)

Remark 3 For the specific structure of φ̃ and ỹ in (12),
we have that

‖φ̃‖22 = ‖φ‖22 +σ2, φ̃>ỹ = φ>y, ‖ỹ‖22 = ‖y‖22 + ‖ξ‖22,

and the solutions in theorems 1 and 2 can be expressed
accordingly in terms of φ>y, ‖φ‖2, ‖y‖2, ‖ξ‖2, and σ,
λ. In particular, the condition for x = 0 being optimal
becomes

|φ>y| ≤ λ
√
‖y‖22 + ‖ξ‖22,

which, in particular, is satisfied if ‖φ‖22 + σ2 ≤ λ2.
Notice further that φ̃x − ỹ 6= 0 for x = 0, since we
assumed ỹ 6= 0, and that, for σ > 0, φ̃x − ỹ 6= 0 also
for x 6= 0, since the i-th entry of ξ is zero by definition.
Therefore, for σ > 0, the `2-norm part of the objective
is always nonzero, and hence differentiable. 2

5 Sequential coordinate minimization scheme
We next outline a sequential coordinate minimization
scheme for the rsqrt-LASSO problem (4). Suppose all
variables xj , j ∈ {1, . . . , n} \ i, are fixed to some numer-
ical values, and we wish to minimize the objective in (4)
with respect to the scalar variable xi. We have that

fi(xi)
.
= ‖

n∑
j=1

φ̃jxj − ỹ‖2 +

n∑
j=1

λj |xj |

= ‖φ̃ixi − ỹ(i)‖2 + λi|xi|+
∑
j 6=i

λj |xj |,
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where we defined ỹ(i)
.
= ỹ −

∑
j 6=i φ̃jxj . We thus have

that
x∗i

.
= arg minxi fi(xi)

= arg minxi ‖φ̃ixi − ỹ(i)‖2 + λi|xi|,

where the minimizer x∗i is readily computed by applying
Theorem 1.
A sequential coordinate minimization scheme works by
updating the variables xi cyclically, according to the
above univariate minimization criterion. The scheme of
the algorithm is as follows.
(1) Initialize x(0) = 0 (an n-vector of zeros), k = 1;
(2) For i = 1, . . . , n, let

x
(k)
i = arg minxi

f(x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x

(k−1)
n );

(3) If some stopping criterion is met, finish and return
x(k), else set k ← k + 1, and goto 2.

The same coordinate minimization scheme can be used
also for solving the nnrsqrt-LASSO problem (5), by us-
ing the result in Theorem 2 for updating the i-th coor-
dinate. The detailed data management involved in ap-
plying this scheme to our specific problem is described
in Section 5.1.
Remark 4 Observe that, due to Theorem 1, all vari-
ables xi for which ‖φ̃i‖2 ≤ λi are never updated by the
algorithm, i.e., they remain fixed at their initial zero
value. The inner loop on i can thus be sped up by con-
sidering only the indices i such that ‖φ̃i‖2 > λi, which
can be determined a priori (feature elimination). 2

Remark 5 As a stopping criterion, one may use a stan-
dard check on sufficient progress in objective reduction.
For improved efficiency, in the numerical implementa-
tion of this algorithm, we actually used a variant of
the cyclic coordinate update scheme based on a so-
called active set convergence criterion, see Section 2.6
in (Friedman, Hastie & Tibshirani 2010). 2

Convergence of the proposed scheme is established in
the following theorem, which is a direct consequence of
a result in (Tseng 2001).
Theorem 3 (Convergence) For σ > 0, y 6= 0, the
sequential coordinate minimization algorithm converges
to an optimal point, for both the rsqrt-LASSO and the
nnrsqrt-LASSO problems.
Proof. The function f(x) in (2) that we minimize us-
ing coordinate minimization is convex and composite,
i.e., f(x) = f0(x) +

∑n
i=1 ψi(xi), where ψi are con-

vex and nonsmooth. In the unconstrained case, we have
ψi(xi) = λi|xi|. The constrained case, where xi ≥ 0, can
also be tackled as an unconstrained one, by considering
ψi(xi) = λi|xi| + I+(xi), where I+(xi) is equal to zero
if xi ≥ 0 and it is +∞ otherwise. Further, the function
f0(x) = ‖Φ̃x − ỹ‖2 is convex and, for σ > 0 and y 6= 0,
it is differentiable over all x ∈ Rn. Since the objective
we minimize satisfies the hypotheses of Theorem 5.1 in
(Tseng 2001), convergence of the sequential coordinate
minimization algorithm to an optimal point is guaran-
teed for both the rsqrt-LASSO and the nnrsqrt-LASSO
problems. 2

5.1 Data management and cost per iteration
We next analyze in more detail the data management
and the computational cost per iteration of the coordi-
nate minimization scheme.
5.1.1 Variable update
Suppose we have a current value of x and we want to
update the i-th coordinate of x. Suppose further that the
following quantities are available: h .

= Φ̃>r, c .
= ‖r‖22,

where r .
= Φ̃x − ỹ is the current value of the residual

vector (as we shall see, we do not need to store r: only
h and c need be updated). We set up the univariate
minimization problem minz ‖φ̃iz− ỹ(i)‖2 +λi|z|, where
ỹ(i) = ỹ −

∑
j 6=i φ̃jxj = φ̃ixi − (Φ̃x − ỹ) = φ̃ixi − r.

Notice that all we need in order to compute the optimal
coordinate z∗, by applying Theorem 1 (or Theorem 2, in
the nonnegative constrained case) is the following data:
φ̃>i ỹ(i) = ‖φ̃i‖22xi − hi, ‖ỹ(i)‖22 = ‖φ̃i‖22x2i + c − 2xihi.
Therefore, we find the optimal z∗, and we update the
solution x to x+ = x + ei(z

∗ − xi) = x + eiδi, where
δi

.
= z∗− xi. Also, we update the data necessary for the

next iteration. Since r+
.
= Φ̃x+ − ỹ = r + φ̃iδi, we have

that c+
.
= ‖r+‖22 = c + ‖φ̃i‖22δ2i + 2δihi, h+

.
= Φ̃>r+ =

h + Φ̃>φ̃iδi. Then, we let i ← i + 1, h ← h+, c ← c+,
x← x+ and iterate. The whole process is initialized with
x = 0, h = −Φ̃>ỹ, c = ‖ỹ‖22.
5.1.2 Storage and computational cost per iteration
Let us define the kernel matrix K̃ ∈ Rn,n and the pro-
jected response vector q ∈ Rn: K̃ .

= Φ̃>Φ̃ = K + σ2In,
q
.
= Φ̃>ỹ = Φ>y, where K .

= Φ>Φ. Initialization of the
coordinate minimization method requires h = −q, and
c = ‖y‖22, as described previously.
For updating the i-th variable, the method does not nec-
essarily need to store or access the whole kernel matrix
K̃. Indeed, computing the i-th optimal update just re-
quires access to ‖φ̃i‖22 = K̃ii, andO(1) operations. Then,
the update of the h vector requires access to the i-th
column of K̃, and then n operations for computing h+.
The storage requirement of themethod is thus essentially
given by keeping in memory h ∈ Rn and x ∈ Rn, so it
is O(n), if K̃ is not stored. Evaluating the i-th column
of the kernel matrix requires O(mn) operations, unless
the values of the kernel can be obtained directly (i.e.,
without actually performing the inner products φ>i φj),
as it is the case, for instance, for polynomial kernels.

6 Identification of an airfoil drag force
In this numerical experiment, we considered the problem
of identifying a posynomial model for the drag force (per
unit length) of a NACA 4412 airfoil.
This force can be evaluated as a function of the air flow
density ρ, the wing chord η, the incidence angle θ and the
flow velocity v, that is FD = ψo(w), where w = [ρηθv]>.
No analytical expression is available for this function.
The values ψo(w) can be obtained via simulations based
on CFD (computational fluid dynamics), by integration
of the Navier-Stokes equations. Each evaluation is nu-
merically very costly, thus it is of interest to obtain a
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simple model for FD, to be used, for instance, in a later
stage of system evaluation or design. A model in posyn-
omial form is important since this form allows the appli-
cation of geometric programming algorithms, which in
turn allow for efficient optimization of the airfoil char-
acteristics, see, e.g., (Hoburg & Abbeel 2012).
In this example, we identified a posynomial model for the
drag force of the airfoil, from data obtained throughCFD
simulations. A set D = {y(k) = ψo(w(k)), w(k)}50k=1 of
50 input-output data points has been collected, for ran-
domly chosen values of ρ, η, θ and v in the intervals
shown in Table 1.

PARAM. Minimum Maximum Dimension

ρ 0.039 1.2250 [kg/m3]

η 0.1 1 [m]

θ -5 10 [deg]

v 0 40 [m/s]

Table 1
Parameter intervals considered in the CFD simulations.

The exponent sets Qj = {−2,−1, 0, 1, 2}, j = 1, . . . , 4,
have been assumed, following the approach described in
Section 2.1. This choice has been made after a prelim-
inary trial and error process, and induces a regression
matrix Φ having n = 625 columns.
Since a low number of data was available (as discussed
above, data generation through simulation is very time-
consuming), a leave-one-out (LOO) cross-validation was
carried out.
First, a subset D̂ ⊂ D was defined, composed of all the
pairs (y(j), w(j)) ∈ D for which w(j) lies within 80%
from the boundary of the the hyperrectangle defining the
minimum and maximum deviation for each parameter
(as defined in Table 1). This was done in order to avoid
points near the boundary of the w domain, which are
too close to the region not explored by the data D.
Then, we set for simplicity λ = γ1, σ = γ/10, and
we considered 20 values of γ, logarithmically spaced in
the interval [1, 105]. For each pair (y(j), w(j)) ∈ D̂ and
for each value of γ, a posynomial model was identified
from the data set D \ (y(j), w(j)), applying the safe fea-
ture elimination and solving the optimization problem
(5). The identified model is then tested on the single
datum (y(j), w(j)), and the relative error ERR(γ, j) =
|y(j)− ŷ(γ, j)|/‖y‖∞ was evaluated, where ŷ(γ, j) is the
output predicted by the model, and ‖y‖∞ is the `∞ norm
of the vector with entries y(k), k = 1, . . . , 50. The cardi-
nality CARD(γ, j) of the solution x of the optimization
problem (5) was also recorded, providing a measure of
the model complexity (we recall that the cardinality of
a vector is the number of its nonzero entries).
Figure 1 shows the obtained relative errors and cardi-
nalities as a function of γ. For each j indexing the set
D̂, we have a light line in the first plot, representing
ERR(γ, j), and a corresponding line in the second plot
representing CARD(γ, j). The bold lines correspond to
the following upper bounds: ERR(γ)

.
= maxj ERR(γ, j),

CARD(γ)
.
= maxj CARD(γ, j). These two bounds are
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Figure 1. LOO procedure. Bold line: upper bounds ERR(γ)

and CARD(γ). Light lines: relative errors ERR(γ, j) and
cardinalities CARD(γ, j). *: best trade-off (γ = 785).
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Figure 2. LOO procedure. ERR(γ) vs CARD(γ). *: best
trade-off (γ = 785).

also represented in Figure 2, where ERR(γ) is shown as
a function of CARD(γ).
Based on these curves, the value γ = 785 has been
chosen, since providing the best trade-off between the
model complexity (measured by the cardinality of x)
and its accuracy (measured by the relative error), see
the marker * in Figures 1 and 2. Indeed, values of γ
larger than 785 lead to models with a high relative er-
ror, whereas values smaller than 785 yield models with
a higer cardinality but essentially with the same relative
error. Note that, for γ = 785, the maximum relative er-
ror is ERR(785) = 0.12. This result is quite surprising:
the model is able to approximate the unknown function
with a good accuracy, even if a very small number of
points (i.e., 49) are used to explore its 4-dimensional do-
main.
Assuming λ = γ1, σ = γ/10 and γ = 785, a model was
identified from the whole data set D, applying the safe
feature elimination and solving the optimization prob-
lem (5). This model is given by

ψ(w) = x340ηv
2 + x440ρv

2 + x465ρηv
2 + x565ρ

2v2

where x340 = 1.2746 × 10−4, x440 = 3.5469 × 10−3,
x465 = 2.8703 × 10−4, and x565 = 5.0722 × 10−4 (the
units of these coefficient can be inferred from Table 1).
To this model there correspond a LOO error estimate
given by ERR(785) = 0.12 = 12%.
It is interesting to note that this model selected only
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Figure 3. Plot of objective value vs. variable updates for the
coordinate minimization method.

four terms out of 625. Also, the dependence of the drag
force on the square velocity has been found by the algo-
rithm and this result is consistent with the well-known
drag equation. No significant dependence on the inci-
dence angle θ has been observed. A possible interpreta-
tion for this latter result is that the range considered for
θ is not sufficiently large compared to the ranges consid-
ered for ρ, η and v (see Table 1) and, consequently, the
force variations due to θ are negligible with respect to
those produced by the other three parameters.
The safe feature elimination discussed in Section 3.3,
reduced the number of columns of Φ from 625 to 222
(this latter is the average value obtained in the LOO
validation, for γ = 785), suggesting that this elimination
phase can be quite useful in practical problems.

6.1 Comparison with other methods
We next briefly discuss the numerical performance of the
proposed coordinate minimization (CM) method, com-
pared with two popular algorithms for regularized re-
gression, namely the backward-forward splitting (BFS)
method described in (Duchi & Singer 2009), and the
FISTA, (Beck & Teboulle 2009). In all experiments, we
set an exit condition when the relative improvement of
the objective value from one iteration to the next is be-
low 10−7.
The time taken for applying the safe elimination and
solving the optimization problem (5) with the CM ap-
proach described in Sections 3-5 (with active set conver-
gence) was about 0.015 seconds on a PC with a Core
i7 processor and a RAM memory of 8GB (average time
obtained in the LOO validations, with γ = 785). A plot
of objective values vs. variable updates is shown in Fig-
ure 3. The first 220 updates in Figure 3 correspond to
a full sweep over the problem variables; the subsequent
abrupt decrease in objective value is due to iterations on
the active set only (variables that are nonzero after the
first full sweep), and this was basically enough to achieve
convergence, in this example.
A plain implementation of the BFS method of (Duchi
& Singer 2009) resulted in extremely slow convergence
(several minutes); this method seems unsuitable for the
problem at hand. Considerably better results were ob-
tained using the FISTA: this method converged in about
8.9 seconds; a plot of objective values vs. iterations is
shown in Figure 4. Anyways, the FISTA performance
on our test problem resulted to be worse than the one
we obtain via the CM method by almost three orders of
magnitude.
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Figure 4. Plot of objective value vs. iterations for the FISTA.
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7 Conclusions
An approach for the identification of posynomial models
has been presented in this paper, based on the solution
of a nonnegative regularized square-root LASSO prob-
lem. In this approach, a large-scale expansion of mono-
mials is considered, and the model is identified by seek-
ing coefficients of the expansion that minimize an ob-
jective composed by a fitting error term and a sparsity
promoting term. A sequential coordinate minimization
scheme has been developed to solve the nnrsqrt-LASSO
problem. This scheme guarantees convergence to a mini-
mum of the objective function and it is suitable for large-
scale implementations. An applicative example on iden-
tification of a posynomial model for a NACA 4412 airfoil
demonstrates the potential effectiveness of the proposed
approach.
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