
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SafeRazor: Metastability-Robust Adaptive Clocking in Resilient Circuits / Cannizzaro, Marco; Beer, Salomon; Cortadella,
Jordi; Ginosar, Ran; Lavagno, Luciano. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR
PAPERS. - ISSN 1549-8328. - 62:9(2015), pp. 2238-2247. [10.1109/TCSI.2014.2365878]

Original

SafeRazor: Metastability-Robust Adaptive Clocking in Resilient Circuits

Publisher:

Published
DOI:10.1109/TCSI.2014.2365878

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2616953 since: 2015-09-15T11:31:04Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS

1

SafeRazor: metastability-robust adaptive clocking in
resilient circuits

Marco Cannizzaro†, Salomon Beer∗, Jordi Cortadella‡, Ran Ginosar∗ and Luciano Lavagno†
†Dipartimento di Elettronica ∗Electrical Engineering Department ‡Department of Software
Politecnico di Torino, Italy Technion, Israel Universitat Politecnica de Catalunya, Spain
marco.canizzaro@polito.it sbeer@tx.technion.ac.il jordi.cortadella@upc.edu
luciano.lavagno@polito.it ran@ee.technion.ac.il

Abstract—Razor-based circuits can run faster or at a lower
voltage than those designed to work at the worst-case corner.
However, all known implementations are prone to failures due
to the non-deterministic timing behavior introduced by metasta-
bility, even in the case where sufficient time is left for resolution.
This paper analyzes the causes why Razor-based circuits fail
and proposes a new scheme combining the Razor principle with
stoppable clocks in a GALS setting. This scheme avoids any
timing failure due to metastability and does not require any
checkpointing or pipeline restarting logic, other than the usual
auxiliary latch to store valid data. The experiments show how
the Razor principle can be extended to any generic logic circuit,
and not just to micro-processors with sophisticated pipeline
flush/recovery mechanisms. In this way, the performance/power
benefits of Razor can be adopted without the complex archi-
tectural changes required by the various Razor schemes in the
literature.

Index Terms—digital circuits, low power design, high speed
integrated circuits.

I. INTRODUCTION

PROCESS and operating condition variability plays a key
role in digital integrated circuits (ICs), forcing them

to operate at speed, voltage and power conditions that are
far from the optimum, due to margins. In modern process
technology, this usually means operating at a frequency which
is 0.7-0.5X the optimum speed of each circuit, and at 2-4X the
optimum power level. This huge gap is frequently addressed
by using two techniques.

• “Binning” sorts ICs after fabrication based on their per-
formance, allowing identification of the fastest circuits
and the possibility to sell them with different pricing. This
is applicable mainly to processors, memories, FPGAs and
graphics chips, due to their market sizes and the cost
involved in the binning process.

• Adaptive voltage scaling (AVS) estimates the perfor-
mance of the circuit dynamically, due to both fabrication
and current operating conditions, and adapts the supply
voltage to meet the performance requirements at a re-
duced power and energy consumption level. It is usually
applied to portable electronics, such as cell phones, due
to the high demand for low energy circuits in battery
powered devices. However, AVS still requires a margin

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

due to the fact that performance is estimated, by using a
delay line that replicates the delay of the critical paths.
This leaves about 10-20% of performance unexploited
(a margin which is likely to increase with technology
scaling) and 30-40% of excessive power and energy
consumption [2], [8], [9].

The Razor approach presented in [4] proposed estimating
the true performance of the circuit at runtime. It actively strives
to run the circuit at the lowest supply voltage or at the highest
performance (depending on the goal of the IC). Errors may
occur as a consequence of the setup and hold time violations,
but are corrected with the aid of special circuitry.

The trouble with Razor is that metastability may produce
flip-flop outputs that change even after the worst-case clock-
to-output delay, generating further timing errors in subsequent
stages. The authors of [4], [11], [6] claim to handle metastabil-
ity by detecting it and using an N-flip-flop synchronizer [7], [1]
for metastability resolution. Then, the circuit is re-started from
the last safely check-pointed state (before the metastability
occurred).

However, both the original Razor mechanism and all its
variants that are known from the literature may miss some
metastability failures, as will be discussed in much more detail
below.

The Safe Razor approach proposed in this paper relies
on locally generated clocks that can be reliably stopped
every time some register enters a metastability condition. This
completely confines both metastability and logic errors to
the first layer of flips-flops in which the error may occur.
It uses the metastability error signal to latch a handshaking
or local clock generation signal, so that no clock pulses
can be propagated to the downstream flip-flops, and hence
no metastability can propagate and no illegal state can be
generated, until metastability has been resolved.

The key idea of the paper is that the output of a meta-
stability detector rises (if it rises at all) a bounded amount of
time after the clock edge that caused meta-stability to occur.
Only the falling edge of that signal occurs an unbounded
amount of time after the clock edge. This is the reason why it is
impossible to confine meta-stability in a synchronous setting,
once it has occurred. Only its spreading can be made very
unlikely, thus increasing the Mean Time Between Failure to
a sufficiently long value (centuries, or more). This property
of meta-stability detectors is obvious in the Spice simulation
shown in Figure 1, where the MD output rising edges are

2

 !" #
!" $
!" %
!" &
!" '

#" !
#" $

() ((*) ((+) ((,) ((-) ((.) ((/) ((

0 12 34 56 70 8

9 :; < => ? < @ A
Fig. 1. Behavior of a meta-stability detector output

deterministic, while the falling edges are not.
Hence the Safe Razor approach could be applied both to

asynchronous circuits (for example with a 2-phase or a 4-
phase protocol), and to locally generated stoppable clocks in
a Globally-Asynchronous Locally-Synchronous (GALS) archi-
tecture. In this paper we focus on the GALS approach, and we
leave other asynchronous protocols to future work. This allows
us to implement Safe Razor starting from any synchronous
logic circuit, without the need to use expensive multi-cycle
check-pointing registers or to perform combinational datapath
modifications to be able to “roll back” the entire circuit state
2-3 cycles earlier. We only replace locally the flip-flops with
“Safe Razor flip-flops” and use one or more locally generated
stoppable clocks. The combinational logic of the circuit and
its overall architecture remain unchanged.

The Q-modules project [10] proposed a related approach, in
which metastability was detected and resolved in a specially
designed cell called a Q-flop, and the next local clock pulse
was generated only after its resolution. However, Q-modules
were fairly large and slow, used a dedicated transistor-level
design for Q-flops and used delay-insensitive inter-module
communication. Our proposed approach uses standard cells
for logic and storage and a standard synchronous data-path.

The paper is organized as follows. In section II we review
the main metastability failures present in different Razor
variants and analyze why all those approaches fail to prevent
metastability. In section III we introduce the asynchronous
SafeRazor architecture in a GALS system with stoppable
clocks. Section IV presents the timing and performance analy-
sis of SafeRazor. In section V we report experimental results.

II. METASTABILITY IN RAZOR

In this section we provide evidence and simulation results
that show the vulnerability of the original Razor approach and
of all its known derivatives to metastability failures. In [5]
the Razor concept, usually denoted as Razor I, was presented.
A modified version, usually denoted as Razor II, was later
presented in [11], [4], and its metastability properties were
discussed in [3]. Finally, a 2-phase latch-based architecture
called Bubble Razor was proposed in [6]. Most of the other
publications on Razor circuits are derivations of either Razor
I or Razor II.

The authors of [3] proposed the safest approach, which con-
fines meta-stability to the control path, and hence is immune

? ?

?

clk

Clk_b clk

Clk_b

Error

Error

Metastability detector

Shadow latch

Clk_d

Clk_d_b

D Q

Inv_n

Inv_p

Vmn Vsn

xor

meta

Vm Vs

Fig. 2. Razor I circuit [5].

to the undetected timing errors described below, that plague
the other Razor-like approaches. However, even they can only
claim to extend the MTBF to a value that is comparable to that
due to Single-Event Upsets in traditional synchronous circuits.
Moreover, their approach reduces the amount of speculation
that can be performed, and hence the potential gains, to about
one half of what is achievable with our approach. This is
because if the control path goes meta-stable and resolves to no
error, then the maximum amount of undetected timing error
of that stage of the datapath plus the maximum amount of
timing error of the next stage must not exceeed the overalll
maximum recoverable amount.

This section first analyzes the metastability properties of
the Razor I implementation, and then discusses why Razor
II and Bubble Razor still suffer from the same problem,
which is inherent in any synchronous approach to avoid the
effects meta-stability. Its probability of occurrence can only be
minimized, and only if the circuit is kept operating far away
from potential meta-stability conditions.

A. Razor I
The basic concept behind Razor I was presented in [5]

(Figure 2). The incoming data is sampled twice, first by the
main flip-flop at the positive clock edge and then by the
shadow latch at the negative clock edge. Since the clock
frequency is higher than the worst case (WC) clock frequency,
differences between the sample from the main flip-flop and the
shadow latch may arise and are detected by the comparator.
When an error is detected, the input mux updates the data with
the shadow latch data and a fail signal is issued to stop the
pipeline. Since the main flip-flop may sample below marginal
conditions (violating setup time) it is prone to metastability
errors. For this purpose a metastability detector is used,
and in the original paper it restarts the pipeline after some
synchronization flip-flops.

In the implementation of Figure 2, the metastability detector
is based on two inverter gates with skewed threshold voltages
and designed such that the metastability voltage lies in be-
tween the thresholds. The circuit of Figure 2 presents many
potential flaws, since latch feedbacks are not gated, which
produces short-circuit power consumption. A better circuit
implementation is provided in [4], where those contentions
are eliminated, but which still has meta-stability problems and
which can be analyzed in a similar way.

The Razor I approach described above presents two main
potential issues in detecting metastability: (1) Metastability in
the master is resolved before the negative clock edge and (2)
Metastability in the slave is resolved before the next positive
clock edge. We now describe both cases in detail.

3

1) Master metastability resolved before the negative clock
edge: Assume that metastability has occurred at the master
latch, and has resolved during the first phase of the clock.
The metastability detector cannot detect this metastability. In
Figure 2 it monitors the slave latch (rather than the master
latch) and when metastability resolves in the master, it is not
detectable at the slave. Metastability may resolve into either
the same state as captured by the shadow latch, or the opposite
state. In the latter case, the error signal is affected before the
end of the cycle and triggers the restoration circuit. In the
former case, however, the error signal does not trigger, but
the flip-flop output may exhibit a late transition, potentially
causing timing failures or metastability in subsequent logic.
Such cases go undetected, as shown in Figure 3. V m refers
to the internal node in the master latch that becomes metastable
(Figure 2), V sn is the internal slave latch node, V q is the
razor flip-flop output, and clock d is the delayed clock that
is used in the shadow latch. Xor is the output of the error
comparator and meta is the output of the metastability detector,
while error is the error signal. Figure 3 shows the master
becoming metastable until it resolves before the negative clock
edge. Neither metastability nor error are detected, but output
V q is clearly delayed. This could cause undetected errors
in the stages downstream, since this (non-deterministic) delay
may be beyond the range of timing errors that Razor is
designed to identify and correct (typically about half the clock
period, and always less than a clock period).

2) Slave metastability resolved before the next positive
clock edge: In this scenario, the master becomes metastable,
and metastability is transferred to the slave latch at the negative
clock edge [1]. Slave latch metastability is resolved during the
negative clock phase, resulting in an increased output delay of
V q. But also in this case the metastability detector does not
guarantee safe operation because (1) either it may not stay
high long enough (2) or it may trigger a meta-stability in the
synchronization flip-flops, which resolves to 0. Yet, as shown
in Figure 4, output V q may be delayed.

B. Razor II

The Razor II circuit, proposed in [11], is designed to solve
the timing and design issues that appeared in Razor I. Instead
of performing both error detection and correction in the flip-
flop, Razor II performs only detection in the flip-flop, while
correction is performed at the architectural level. This allowed
reduction in the complexity and size of the Razor flip-flop,
at the cost of increased latency penalty during recovery. The
Razor II framework assumes that the system provides an
architectural recovery mechanism such as architectural replay,
a technique used in microprocessors to support speculative
operations such as branch prediction.

The circuit proposed in the Razor II paper is shown in
Figure 5. The flip-flop uses a positive level-sensitive latch
instead of a master-slave flip-flop. Any transition on the input
data within a “forbidden window” is flagged as a timing error.
The error detection window lies between the rising edge of
DC and the falling edge of CLK. This constrains the minimum
propagation delay for a combinational logic path terminating
in a Razor II flip-flop to be greater than the high clock
phase duration. Delay buffers are required for those paths

Fig. 5. Razor II flip-flop diagram.

which fail to meet this minimum path delay constraint. It is
claimed in [11] that the supply voltage is never lowered to the
point where the latch transitions at the falling clock edge and
hence metastability of the latch node is avoided. However, a
transition too close to the falling or rising edge of DC can
lead to metastability at the Error output.

The authors of [11] claim that when the Error signal
becomes metastable the actual latch node is still correct.
However, if the metastable Error signal recovers from metasta-
bility by going low, it would miss to detect the increased
delay output that may further propagate to flip-flops in sub-
sequent stages and cause metastability in them. In this way, a
metastable event in the error signal propagates to a data signal
in subsequent flip-flops.

Figure 6 describes the scenario discussed above, when
the error signal becomes metastable but resolves to low,
not generating an error event. In this case, the latch output
transitions after a delay that may be much longer than the
maximum clock-to-output delay, and hence may produce a
failure in a subsequent register.

C. Bubble Razor
Bubble Razor [6] uses a two-phase latch-based datapath

instead of a flip-flop based datapath. This has two main
benefits: (1) it breaks the dependency between short path
constraints and speculation window, enabling large speculation
windows, and (2) it allows for architecture independent local
correction, which can scale to large high performance systems.

If data arrives during the speculation window, after the latch
opens, then Bubble Razor flags an error. Since when the latch
opens, the previous latch closes, there is no possibility of short
paths being flagged as timing errors. Moreover, when a latch
stalls, data is not immediately lost (unlike with flip-flop based
implementations), because its neighboring latches operates out
of phase. Therefore stall signals only need to be propagated to
neighboring stages and the system is scalable to an arbitrary
size.

Both a shadow latch plus a comparator (similar to RazorI)
and a transition detector (similar to RazorII) can be used as
detection and correction mechanisms. As we already demon-
strated, both alternatives may have metastability, which can
lead to false positive events.

D. Summary
We have shown that the non-deterministic timing of

metastable signals may lead to false positives. The key reason
is that Razor circuits assume that any positive edge of the
error signal is detected and used to trigger a recomputation.
However synchronizers only ensure that a signal which may

4

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 time (nsec)

V
ol

ta
ge

 (v
)

clock data Vm Vsn Vq

Reduced Propagation
Delay time

Master latch
metastable

(resolved before
negedge)

Slave doesn’t get
metastable

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 time (nsec)

Vo
lta

ge
 (v

)

clock
d data xor meta Error

Delayed clock
(accounts for

margins)
No Error is

detected at next
Clock cycle

Error is generated during
metastability of master

(disappears as
metastability is resolved)

Fig. 3. Simulation of the circuit of Figure 2, when the master becomes metastable and resolves before the negative clock edge.

go meta-stable resolves with a very high probability to 0
or 1 before being used by downstream circuits. Hence the
synchronized error may resolve to 0, thus failing to trigger a
recomputation even though the data output was delayed due
to meta-stability.

In summary, we can claim that none of the Razor variants
presented in the literature completely avoids missing metasta-
bility errors, which may propagate throughout the circuit
without being ever detected. In the following section we
discuss how the problem, which is inherent in any synchronous
circuit, can be solved by resorting to an asynchronous (GALS
or handshaking-based) implementation.

III. SAFERAZOR ARCHITECTURE IN A GALS SYSTEM

Figure 7 shows the implementation of a locally syn-
chronous SafeRazor module, which can be used in a Globally-
Asynchronous Locally-Synchronous (GALS) architecture.

The architecture has three main components:
• Combinational logic, which is identical to the one of a

conventional architecture.
• Storage block, containing the flip-flops (FFs) and the

logic to detect metastability and speculation errors.
• Ring oscillator, containing the adaptable delays to gener-

ate the clock under different operating conditions: normal,
metastability and/or speculation errors.

We will now introduce the different components of the ar-
chitecture by incrementally explaining the modes of operation
under the occurrence of different events (as shown in the
timing diagram of Figure 8).

A. Normal mode of operation
When neither metastability nor errors occur in the storage

block, the signals meta and error are always at zero. Thus,
the two muxes in the ring oscillator and storage blocks are
selecting the “No Err” input. In this mode, the Metastability
Detection (MD) D-latch is always transparent.

This mode of operation is controlled by the ring oscillator
formed by the delays d1 and d2. The sum of these two delays
should be close to the nominal case delay of the combinational
logic. The XOR gate in the ring oscillator is simply a pulse
generator. The falling edge is generated after a delay d3 from
the rising edge (where d1 + d2 + d3 must be larger than
the worst-case delay of the logic, as discussed below). The
outputs of the main FFs are fed back to the combinational
logic through the “No Err” input of the mux. The output data
(data out) is directly sent through the shadow D-latch. It is
important to notice that this latch is borrowing time from the
next clock cycle, since the falling edge of the clock is delayed
by the amount of time determined by d3. This means that
SafeRazor can improve the performance of critical paths fully
enclosed within a GALS module, not of critical cycles between
modules, because those must always use the non-speculative
data, since metastability prevention is ensured only within a
module.

B. Operation with metastability
Let us consider the case when some FF may enter a

metastable state. The Metastability Detector MD block must

5

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (nsec)

V
o
la

tg
e

 (
v
)

clock data Vm Vmn VQ Vs Vsn

Master nodes
(Vm,Vmn)

metastable

Slave nodes
(Vs,Vsn)

metastable

Output (VQ)
delayed

Remaining
Resolution time

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 time (nsec)

V
o
lt
a

g
e

 (
v
)

clock
d Error Metastable XOR clock

Metastable
detection pulse
Is a very small

pulse

XOR and Error pulses
Disappear before next

clock edge

Errors
Reset before

next clock cycle

Fig. 4. Simulation of the circuit of Figure 2, when the slave becomes metastable and resolves before the positive clock edge.

Fig. 6. Simulation of the circuit of Figure 5, when the error signal becomes metastable and resolves to low.

6

Fig. 7. A SafeRazor module in a GALS system.

Fig. 8. Timing diagram of the Safe Razor modes of operation.

have access to the output(s) of the master latch of the FF,
because only that latch can go metastable. The slave cannot
do so when using our scheme, since (as discussed in Section II)
any metastability in the slave is a propagation of metastability
in the master, and we stop the clock (and hence prevent
closing the slave) while the master is meta-stable. Any MD
implementation from the literature may be used.

The module-level meta signal is generated by OR-ing the
outputs of all MD blocks. The meta signal controls the MD
latch, which halts the ring oscillator to guarantee that any
decision on data errors (discussed in the next section) is only
taken when any metastability condition has been resolved. In
this way, no false positives are possible with this architecture.

C. Operation with error detection and correction

At every cycle, the error detection logic (ED) checks for a
speculation error in each main FF. The shadow latch always

captures the correct data value. For that, the falling edge must
occur sufficiently late for the critical paths to complete under
worst-case conditions. Therefore, the delay d3 is the one that
determines the amount of timing speculation.

The Error detection block (ED) consists of a comparator
for each FF (XNOR gate) and an OR-tree to gather the error
conditions from all main FFs. The output of this OR-tree is
captured by the error-detecting FF after a delay determined
by d5. When an error is detected, the two muxes in the
architecture are switched to select the Err inputs:

• The mux in the storage block “connects” the internal data
of the combinational logic with the shadow latches.

• The mux in the ring oscillator block grants an extra delay
(d4) to the clock period that allows data to correctly
propagate in the datapath.

Note that if metastability also occurs, the error detection
and correction are simply delayed until metastability has
been resolved. Please note that our scheme takes care of

7

metastability both due to better-than-worst-case design within
a SafeRazor module, and due to the unrelated local clocks in
the GALS architecture. We are assuming that the initial design
was properly set up to work in a functionally correct manner
using a GALS architecture. This means that some mechanism
must be provided at the functional level in the various GALS
blocks, to ensure that they correctly exchange data.

If meta-stability occurs due to unrelated clocks in different
modules, then, as discussed at the end of Section III-A, the
safely latched version stored in the shadow D latch is used
for inter-module communication. Hence these other modules
never see meta-stable or incorrect data, but always wait until
meta-stability has resolved, like in Q-modules.

IV. TIMING AND PERFORMANCE ANALYSIS

A. Timing constraints
For simplicity, and without loss of generality, we assume

that all the muxes, flip-flops, latches and single gates appearing
in Fig. 7 have zero delay. The actual delays of these com-
ponents can always be included in the delays of the other
components.

The timing constraints will be represented as inequalities
involving two paths in the circuit, e.g., path1 < path2. In
a real synthesis/analysis flow, these constraints must account
for the variability of the components, either using statistical
information or derating (dr) factors, e.g.,

dr1 · path1 < dr2 · path2, with dr2 ≤ 1 ≤ dr1.

The derating factors dr1 and dr2 represent the effect of
on-chip variation (OCV). They are much smaller than the
deviation of the best and worst case delays with respect
to the nominal case, since process, voltage and temperature
variations for (closely placed) logic on a chip are much smaller
than across chips and across operating conditions. Reasonable
values for a modern technology such as 45nm could be 0.95
and 1.05.

For the combinational logic (COMB), we will distinguish
two delays: COMBmax and COMBmin. They represent the
longest and shortest path in the combinational logic.

B. Normal mode of operation
In this mode of operation, we will assume that the cycle

period starts with correct data in the main FFs and needs to
guarantee correct data in the shadow latch by the end of the
period.
Setup constraint: Two paths start at the root of the clock
tree (R) and end at the EN and D inputs of the shadow
latch. The launching path goes through the main FF and
the combinational logic. The capturing path goes along the
ring oscillator (d2 and d1) and the delay that determines the
speculation time and the falling edge that closes the shadow
latch (d3). The constraint is as follows:�

�
�
�CT + COMBmax < d2 + d1 + d3 + CT. (1)

Hold constraint: This constraint prevents data overrun in the
shadow latch by the incoming data from the next cycle. Again,
the two competing paths start at the root of the clock tree (R).
The launching path goes through the main FF and the shortest

path of the combinational logic, whereas the capturing path
goes to the EN signal of the shadow latch through d3. In this
case, the capturing path should be shorter than the launching
path:�

�
�
�d3 + CT < CT + COMBmin. (2)

This constraint is similar to the short-path constraint in
Razor-like circuits. It basically indicates that the speculation
time will have to be protected by the min delay of the
combinational logic to avoid data overruns. It can be removed
with a higher flip-flop cost by using a Safe version the two-
phase Bubble Razor approach, but this extension is left to
future work.

Note that CT appears on both sides of inequalities (1)
and (2). This term cannot be canceled out since (1) it refers to
different branches of the tree, and (2) it is affected by different
derating factors.

C. Operation with metastability

In case some main FF enters a metastable state, the MD
logic stretches the cycle period by closing the MD latch
until metastability is resolved. For a correct timing, a setup
constraint on the MD latch is required to guarantee that the
input of the MD latch arrives later than the EN signal when
metastability occurs.

This constraint involves two paths that start at R: one path
arrives at the D input of the MD latch through d2 while the
other path traverses the clock tree and the MD block:�

�
�
�d2 > CT + MD. (3)

It is important to realize that the previous constraint only
requires the min delay of the MD block, which is bounded.

D. Error detection

The error detection logic has to honor some timing con-
straints for a correct operation. The error signal generated at
the error detecting FF is selecting one of the delays in the
mux of the ring oscillator (“Err” or “No Err”). This signal
must arrive before the inputs.

The two competing paths start at the output of the MD-latch
(M). One path goes through d5, the pulse generator and the
error detecting FF. The other path goes through d1:�

�
�
�d5 < d1. (4)

Another constraint involves the error detecting FF. In this
case, the D input of the latch must arrive before the clock edge.
The launching and capturing paths start at R. The launching
path crosses d3, the clock tree, the shadow latch, and the ED
block, since the latest signal at the ED block is the one that
comes from the shadow latch. The capturing path crosses d2,
d5 and the pulse generator.�

�
�
�d2 + d5 > d3 + CT + ED. (5)

E. Error correction

In case an error is produced, the cycle period must be
stretched to allow the combinational logic to use the data

8

stored in the shadow latches during the next cycle. The error
correction requires an extra delay (d4).

The competing paths start at the output of the MD latch
(M). The launching path goes through d5, the error detecting
FF, the buffering tree of the mux select signal (sel tree), the
mux of the storage block and the combinational logic. The
capturing path generates the next pulse for the main FF and
goes through d1, d4 and the clock tree.�

�
�
�d5 + ST + COMBmax < d1 + d4 + CT. (6)

F. Performance analysis: putting all together

The set of constraints (1)-(6) is a linear programming model
that can be solved to maximize performance (i.e. minimize the
cycle period).

The cycle period C in SafeRazor can be expressed as
follows:

C = d1 + d2 + perr · d4 + dmeta

where perr is the probability of error and dmeta is a random
variable that represents the extra delay of the cycle period
that is added when metastability occurs.

Unfortunately, the cost function is not linear since perr
depends on the timing speculation of SafeRazor (d3), i.e.,
the larger the speculation, the larger the probability of error.
Additionally, dmeta is a value with a non-trivial distribution
function. However, we can make realistic assumptions on these
values. First of all, perr should be kept small by the overall
speculation control loop (whose design is beyond the scope
of this paper), hence it can be considered negligible. We will
see in Section V that as soon as it becomes non-negligible, the
effective clock cycle starts increasing. For the same reason, we
can assume that the average value of dmeta is negligible, since
metastability occurs very rarely and the average resolution
time is short.

With these assumptions, we can rewrite C as

C = d1 + d2 + λ · d4

where λ is a small constant that simply prevents d4 from
growing without bounds.

Finally, to guarantee that perr is small, it is required that d3 is
bounded. Let us assume that we get, e.g. from the simulations
reported in the next section, an upper bound on d3, called
Specmax that guarantees the desired probability of error. The
linear programming model can then be augmented with a new
constraint:�

�
�
�d3 < Specmax (7)

Now, we can define a linear programming model for SafeR-
azor as follows:

min : C = d1 + d2 + λ · d4

subject to (1)− (7)

G. Performance: an intuitive analysis

In order to get some insight about the best usage scenarios
for SafeRazor, we propose to do a simplified analysis with

some assumptions, while the linear program above can be used
to obtain the exact results.

• Let us assume that the common terms on the right and
left hand side of the inequalities can be canceled out,
i.e. we assume that OCV is zero.

• Let us assume that the inequalities can be satisfied with
tight values (≤ instead of <).

• Let us assume that constraints (3) and (4) are satisfied
without slack, i.e., d2 = CT + MD and d1 = d5.

• Let us call C = d1 + d2 the cycle period in normal
operation mode.

With the previous assumptions, the timing constraints can
be simplified and rewritten as follows:

C + d3 > COMBmax (C1)
COMBmin > d3 (C2)

C > d3 + CT + ED (C3)
d4 + CT > ST + COMBmax (C4)

(C1) is the constraint that guarantees the correctness of
the values of the shadow latch. It also shows how the cycle
period C can be shortened by the speculation time (d3).
(C2) represents the short-path constraint of Razor-like systems
and shows how the combinational logic must have a min
delay longer than the speculation time. This constraint can
be expensive to meet at the logic level, since it may require a
lot of delay buffers in short paths. It also can be removed by
using a two-phase Safe Bubble Razor approach.

(C3) is an important constraint on the cycle period. In simple
words: the cycle period must be longer than the error detection
period that goes from the ring oscillator to the storage block
and back to the ring oscillator. This cycle includes the specu-
lation time and the clock tree. For this reason, the SafeRazor
scheme is appropriate for systems with local clocks in which
the clock latency can be locally controlled.

Finally, (C4) is a constraint that guarantees the correctness
of the correction cycle. Given the low probability of error, the
impact of this constraint on performance is negligible.

We can easily estimate the speedup that SafeRazor can have
with regard to a conventional circuit:

Speedup =
C + d3

C
= 1 +

d3

C
The previous equation is only valid for the cases in which

constraint (C3) has still some slack and for those values of d3

that produce low probability errors. Satisfying all these timing
constraints proved to be very challenging in physical design,
because current tools cannot satisfy relative timing constraints.
Hence for each such constraint, we had to pick an absolute
value, and replace it with two absolute constraints (i.e. a<b
had to be replaced with a<K and K<b for some constant time
K). Iterating this process to convergence was lengthy, but we
believe that extending physical design tools to properly handle
these constraints would be perfectly feasible.

V. RESULTS

In this section we discuss the results of implementing a
SafeRazor circuit with 3 GALS islands, each containing a
pipelined multiplier with 4 stages, as shown in Figure 9.

9

Fig. 9. GALS design including 3 pipelined clock islands

The figure also shows a simulation of several clock cycles,
illustrating that the three clocks are very different, especially
when errors occur. In the simulated case, stages 2 and 3 had a
very high error rate because their clock frequency was about
400MHz, while that of stage 1 was lower. Note also how errors
occur in stage 3 only when worst-case paths are activated due
to non-zero data inputs.

The design was synthesized with Synopsys Design Com-
piler using a 90 nm standard cell library. Then we performed
the physical layout of the netlist using Cadence Encounter,
while satisfying the timing constraints described in Section IV.
The simulation, from which we extracted error rate and
performance of the system, was done with back-annotated
delays extracted from the physical layout, including wiring.
This is essentially the same level of sign-off accuracy that is
required for timing-critical portions of industrial designs.

The synchronous clock period for the synchronous circuit
was 5.19ns which corresponds to a clock frequency of about
200MHz.

Metastability was modeled digitally as follows:
• The flip-flop always becomes metastable if the interval

between the data input and clock transitions is between 0
and Tw (this is a rather conservative approximation, since
the actual probability to enter meta-stability depends on
that interval).

• The probability to leave metastability, if the flip-flop
enters it, depends on the interval ∆t between the data
input and clock transitions:

f(∆t) = Tw ∗ e
−∆t
τ

Tw is a parameter which depends on the rise/fall time of the
gates in the selected technology. We estimated τ , as suggested
in [2], as half the delay of a fanout-of-four smallest inverter.

In order to test the correct operation of SafeRazor, several
simulations were carried out, each with a different clock fre-

Fig. 10. Error rate and average effective clock period

TABLE I
AREA COMPARISON BETWEEN TRADITIONAL, RAZOR AND SAFERAZOR

quency, by reducing the clock period given by the C = d1+d2

delay.
The left chart in Figure 10 shows how the error rate is

0 with a frequency from 200MHz to 280MHz. At 330MHz
the error rate is 25% and at 400MHZ (double the frequency
of the synchronous design) the error rate is 100%. Note that
this increase in the error rate is due to the activation of
paths of different lengths with different probabilities, not to
the occurrence of on-chip variation, which was not modeled
in our setup. Hence the only practical significance of these
simulations is to show that the control loop that is in charge
of tuning the d1 and d2 delays at runtime should keep the error
rate to a low value in order to ensure the best performance.

The right chart in Figure 10 shows the effect of the
speculative execution on the average effective clock period
(computed as the total simulation time divided by the number
of successful computations executed in the pipeline) of the
SafeRazor architecture.

Performance speeds up linearly with the frequency as long
as the error rate is close to 0. Then the clock period increases
due to the increases of the error rate. At 330MHz, performance
is still 15% better than the synchronous design while at
400MHz performance is only 7% worse than the synchronous
design. This is an important result compared to the classical
Razor design, which requires an extra clock cycle any time an
error is detected, and hence would halve the effective clock
frequency if the error rate is 100%.

Table I shows the area estimates for various block sizes,
from approximately 30 to 2 ∗ 109 flip-flops and from 8 ∗ 103

to 6 ∗ 1011 cell units respectively in the combinational logic,
for: (i) a standard synchronous circuit, (ii) Razor (as described
in [5]), and (iii) SafeRazor. One can see that, compared to
a synchronous circuit (i), the total area overhead for Razor
(ii) is always 27.7%, while in SafeRazor (iii) the overhead is
increased due to the ring oscillator by 15% in the case with
30 flip-flops (which obviously is too fine-grained) and by a
negligible amount in all other cases.

10

VI. CONCLUSIONS

The SafeRazor architecture presented in this paper allows
one to implement the nearly-critical clocking approach pro-
posed by the Razor architecture to any logic block, not just
to microprocessors with a restartable pipeline. It does so by
introducing the idea that GALS or asynchronous local clocks
can be safely stopped while metastability is resolved. This
removes the need for expensive check-pointing logic and
totally eliminates metastability failures, which still affect the
classical Razor approach if the metastability detection logic
itself (which in that case was synchronous, while in our case
it is asynchronous) goes metastable.

In this paper we focused on a GALS implementation of
SafeRazor, but also handshaking-based versions could be
implemented, based on the same idea. We plan to look into
those in the future. Similarly we could adapt our approach
to work with the Bubble Razor architecture, and reduce the
impact of hold constraints and short paths, which made our
methodology difficult to apply in practice. A detailed analysis
of this solution is also left to future work.

REFERENCES

[1] S. Beer, J. Cox, T. Chaney, and D. Zar. MTBF bounds for multistage
synchronizers. Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 19:158–165, 2013.

[2] S. Beer, R. Ginosar, M. Priel, R. R. Dobkin, and A. Kolodny. The
devolution of synchronizers. In IEEE Async Symp., pages 94–103, 2010.

[3] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson,
S. Lu, T. Karnik, and V. De. Energy-efficient and metastability-immune
timing-error detection and instruction-replay-based recovery circuits for
dynamic-variation tolerance. In IEEE ISSCC, pages 402–403, 2008.

[4] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D. Blaauw, T. Austin,
K. Flautner, and T. T. Mudge. A self-tuning DVS processor using delay-
error detection and correction. Solid-State Circuits, IEEE, 41:792–804,
2006.

[5] D. Ernst, S. Nam Sung Kim, Das, S. Pant, R. Rao, Toan Pham,
C. Zieslera, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a
low-power pipeline based on circuit-level timing speculation. In IEEE
Int. Symp. Microarchitecture (MICRO-36), pages 7–18, 2003.

[6] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D.M. Harris., D. Blaauw,
and D. Sylvester. Bubble razor: Eliminating timing margins in an ARM
Cortex-M3 processor in 45 nm CMOS using architecturally independent
error detection and correction. Journal of Solid-State Circuits, IEEE,
48:66–81, 2013.

[7] R. Ginosar. Metastability and synchronizers: A tutorial. Design Test of
Computers, IEEE, 28:23–35, 2011.

[8] J.Zhou, D.Kinniment, G.Russell, and A. Yakovlev. Adapting synchroniz-
ers to the effects of on chip variability. In IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), 2008.

[9] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji,
E. Nowak, D. Pearson, and N.J Rohrer. High performance CMOS
variability in the 65nm regime and beyond. Electron Devices Meeting,
IEEE International, 10:569–571, 2007.

[10] F.U. Rosenberger, C.E. Molnar, T.J. Chaney, and T.-P.; Fang. Q-modules:
internally clocked delay-insensitive modules. In IEEE Trans. on Comp.,
pages 1005–1018, 1988.

[11] S.Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D.M.
Bull, and D.T. Blaauw. RazorII: In situ error detection and correction for
PVT and SER tolerance. In IEEE J. Solid-State Circuits, pages 32–48,
2009.

Marco Cannizzaro received the Bachelor’s and
Master’s degrees in Computer Engineering from
Universitá di Palermo and Politecnico di Torino,
Italy, in 2006 and 2010, respectively. He received the
Ph.D. in Electronics Engineering from Politecnico di
Torino in 2014. He has worked as research assistant
at Columbia University in the City of New York in
2009 and 2013. His main area of research interest
involves asynchronous circuits for data communica-
tion and adaptive clocking in resilient circuits.

Salomon Beer received the B.Sc degree in electrical
engineering and B.A in Physics from the Technion
- Israel Institute of Technology, Haifa in 2004. He
is currently pursuing the Ph.D. degree in computer
engineering at the same institute where he is a Haso-
Plattner-institut (HPI) fellow. During 2005 to 2011
he held engineering and algorithmic development
positions in Freescale Semiconductor and authored
several publications and patents in the field of
computer architecture, VLSI systems and computer
vision algorithms.

Jordi Cortadella (S’88) received the M.S. and
Ph.D. degrees in Computer Science from the Uni-
versitat Politècnica de Catalunya, Barcelona, in 1985
and 1987, respectively. He is a Professor in the
Department of Computer Science of the same uni-
versity. In 1988, he was a Visiting Scholar at the
University of California, Berkeley. His research in-
terests include formal methods and computer-aided
design of VLSI systems with special emphasis on
asynchronous circuits, concurrent systems and logic
synthesis. He has co-authored numerous research

papers and has been invited to present tutorials at various conferences.
Dr. Cortadella has served on the technical committees of several interna-

tional conferences in the field of Design Automation and Concurrent Systems.
He received best paper awards at the Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems (2004), the Design Automation Confer-
ence (2004) and the Int. Conf. on Application of Concurrency to System
Design (2009). In 2003, he was the recipient of a Distinction for the Promotion
of the University Research by the Generalitat de Catalunya. He is member of
the Academia Europaea.

Ran Ginosar , PhD, Head of the VLSI Systems
Research Center and Associate Professor, Electrical
Engineering and Computer Science departments at
the Technion-Israel Institute of Technology.

Professor Ginosar has been a visiting Associate
Professor with the University of Utah and co-
initiated the Asynchronous Architecture Research
Project at Intel, where he worked on Intel’s asyn-
chronous test chip. He has co-founded a number
of companies: i Sight, Ltd., an electronic imaging
company, UltraGuide, Ltd., an electronic medical

device company, Mobilian Corporation, a wireless fabless chip company that
developed VLSI chip sets for wireless modems, Trig Medical, an electronic
medical device company, AI Semi, a medical processor company, Plurality
Ltd., a multi-processor core company, NeuroVibes, a brain-computer interface
chips company, and Ramon Chips, a rad-hard integrated circuits company.

Professor Ginosar has published numerous papers and his inventions have
resulted in a large number of patents. His research interests include VLSI
architecture, asynchronous logic and synchronization, electronic imaging,
networks-on-chip, manycore architecture and bio-chips. He is presently en-
gaged in research of multiple aspects of synchronization, partly in collab-
oration with industry. He has taught a number of industrial courses on
synchronization, on-chip interconnect and multiple clock domain SoC since
2003.

Luciano Lavagno (S ’06) received his Ph.D. in
Electrical Engineering and Computer Science from
the University of California at Berkeley in 1992.
He has been the architect of the POLIS project,
developing a complete hardware/software co-design
environment for control-dominated embedded sys-
tems, and an architect of the CtoSilicon high-level
synthesis system from Cadence Design Systems. He
is a co-author of two books on asynchronous circuit
design, of a book on hardware/software co-design
of embedded systems, and has published over 200

journal and conference papers.
He is currently a full professor with the Department of Electronics and

Telecommunication Engineering of Politecnico di Torino. He has been an
associate editor of IEEE TCAS and ACM TECS. His research interests include
the synthesis of asynchronous and low-power circuits, the concurrent design of
mixed hardware and software embedded systems, and the high-level synthesis
of hardware modules from algorithmic specifications.

