
16 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Designing a Smart City Internet of Things Platform with Microservice Architecture / Krylovskiy, Alexandr; Jahn, Marco;
Patti, Edoardo. - (2015), pp. 25-30. (Intervento presentato al convegno The 3rd International Conference on Future
Internet of Things and Cloud (FiCloud) tenutosi a Rome, Italy nel 24-26 August 2015) [10.1109/FiCloud.2015.55].

Original

Designing a Smart City Internet of Things Platform with Microservice Architecture

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/FiCloud.2015.55

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2616206 since: 2018-03-02T15:16:38Z

IEEE

Designing a Smart City Internet of Things Platform
with Microservice Architecture

Alexandr Krylovskiy∗, Marco Jahn∗, Edoardo Patti†,
∗Fraunhofer FIT, Sankt Augustin, Germany †Dept. of Control and Computer Engineering, Politecnico di Torino, Italy

Emails: {alexandr.krylovskiy, marco.jahn}@fit.fraunhofer.de, edoardo.patti@polito.it

Abstract—The Internet of Things (IoT) is being adopted in
different application domains and is recognized as one of the
key enablers of the Smart City vision. Despite the standard-
ization efforts and wide adoption of Web standards and cloud
computing technologies, however, building large-scale Smart City
IoT platforms in practice remains challenging. The dynamically
changing IoT environment requires these systems to be able
to scale and evolve over time adopting new technologies and
requirements. In response to the similar challenges in building
large-scale distributed applications and platforms on the Web,
microservice architecture style has emerged and gained a lot of
popularity in the industry in recent years. In this work, we share
our early experience of applying the microservice architecture
style to design a Smart City IoT platform. Our experience
suggests significant benefits provided by this architectural style
compared to the more generic Service-Oriented Architecture
(SOA) approaches, as well as highlights some of the challenges
it introduces.

I. INTRODUCTION

One of the many challenges imposed by the Internet of
Things (IoT) is building software systems and platforms that
enable support for cross-domain applications, such as Smart
City platforms. Many research and standardization efforts has
been put into dealing with the heterogeneity of IoT devices
and communication protocols [1], [2], as well as service
interoperability layers and frameworks [3], [4]. Despite the
significant achievements in many of these areas, however,
building large-scale IoT systems and platforms capable of
evolving and adopting new standards and applications over
time remains challenging.

As IoT has become an industry trend supported by large
software and hardware vendors like Cisco and IBM, a new
wave of start-ups and medium companies offering commercial
platforms for building IoT systems emerged [5]. Entering this
new and dynamic market, companies adopt the ubiquitous
experience of creating large-scale distributed systems on the
Web. Fostered by the wide adoption of cloud computing,
the contemporary large-scale Web applications and platforms
leverage the power of the commodity computing model it
provides. The ever changing technology and market require
new approaches to build robust architectures that are highly
available, scale on demand, and evolve over time. The re-
quirement of decreasing the time to market resulted in the
wide adoption of the Agile development practices [6]. The
quick release iterations introduced by this adoption created
new challenges to operations, which in turn gave birth to the
DevOps culture [7] and microservice architecture [8].

Similarly to the way agile software development and
DevOps practices have emerged as a reaction to the new

challenges in software development and operations, the mi-
croservice architecture has appeared from the industry needs to
scalability, evolvability, and maintainability of large-scale dis-
tributed systems built applying those practices [9]. Microser-
vices have received a wide adoption in the industry among
companies building large-scale applications like Amazon and
Netflix, as well as Platform-as-a-Service (PaaS) providers like
Pivotal [10].

In this work, we share our early experience in applying
microservice architectural style to build a Smart City IoT
platform for a variety of applications involving different stake-
holders to increase the energy efficiency of a city at the district
level. We describe the apparent benefits that the microservice
architecture provides and new challenges it poses compared
to the more traditional Service Oriented Architecture (SOA)
approaches for the task of building a service platform for cross-
domain applications by an interdisciplinary international team.

The rest of the paper is structured as follows: Section
II provides an overview of the related work, Section III
introduces the challenges of building Smart City platforms and
the microservice architecture. Section IV provides the main
contribution describing our experience of designing a Smart
City IoT platform applying microservice architecture pattern,
and Section V summarizes that experience and future work.

II. RELATED WORK

There are several ongoing research and industry efforts
aiming at developing standards and best practices for design-
ing Internet of Things systems and platforms. Due to the
great diversity of IoT application domains, there is a high
demand in the correspondingly diverse standards capturing the
requirements of individual applications at different layers of
the protocol stack. In the recent years, a number of standards
for the physical, network, and transport layers, as well as secu-
rity mechanisms tailored to resource-constrained IoT devices
have been introduced. The recently standardized CoAP[1] and
MQTT[2] protocols together with HTTP finalize the protocol
stack by building an application layer. Several industrial al-
liances and research projects are working on integrating these
and new standards in different application domains, enabling
interoperability among hardware and software vendors, and
defining best practices for building large-scale IoT platforms
and applications.

The efforts focusing on interoperability across different
application domains include IoT-A [4], OneM2M [3], and
FI-WARE [11]. IoT-A is a research project developing an
Architectural Reference Model for IoT solutions. It promotes

common understanding of the problem space by providing
an IoT Reference Model, describes essential building blocks
of an IoT solution by defining a Reference Architecture,
and guides architects in designing IoT solutions by providing
Guidelines. It does not cover implementation aspects or define
new interoperability standards, instead providing a conceptual
framework and best practices for designing IoT solutions
supporting interoperability.

OneM2M [3] is a global telecom initiative for interoper-
ability of M2M (Machine-to-Machine) and IoT devices and ap-
plications. Its main goal is to develop a common specification
of a Service Layer Platform that builds on the existing IoT and
Web standards, defining specifications of protocols and service
APIs. Providing high-level APIs of services, OneM2M defines
a specification for interoperability of IoT platforms at the
service layer. However, while providing detailed description
of functionality, protocols, and APIs of platform services, it
leaves open many implementation details. For example, it does
not cover the scalability, availability, and deployment aspects
of the IoT platforms implementing these services.

FI-WARE [11] is a research project aiming at building a
platform for the Future Internet that would provide a novel
service infrastructure built of reusable components (Generic
Enablers). The vision is that to build an IoT service platform
for the application domain at hand, one would select existing
Generic Enablers from the FI-WARE catalog and complement
them by implementing additional Specific Enablers. FI-WARE
is an ongoing project and many of the Generic Enablers
constituting the core platform are under development. Several
systems for specific use cases have been developed by the
partners of the FI-WARE project so far [12], [13], and it
remains to be seen whether it will receive adoption in the
wider community. In [14], authors show that the level of
generalization provided by the FI-WARE platform may lead
to overly complex architecture in simple applications.

The experience shared in [14] highlights one of the main
problems inherent to standardization efforts like FI-WARE
that result in a high level of generalization. The excessive
generalization in standards for systems and service platforms
poses limitations on both the flexibility of their implementation
and their use by applications. The experience of the Web
and the success of distributed systems built using its basic
principles [15] encourages simple standards and flexibility in
their implementation.

Using Web standards and experience is recognized as a
common approach to building IoT platforms. E.g., the urban
IoT system described in [16] is built using RESTful Web
services approach to design the service platform part of the
system. Successfully applying this approach to designing an
interoperable Smart City platform, authors highlight its ben-
efits in enabling cross-domain applications while reusing the
existing development experience of the Web. The Web-based
approach is also recommended by the IoT-A and has been
successfully adopted in other projects to build Smart City
platforms, e.g., SmartSantander [17] and ALMANAC [18].

Building on the previous experience of adopting Web-based
approach to designing IoT platforms, in this work we focus
on several practical aspects of it following the microservices
architectural principle. This includes the high-level platform

design and its componentization into services, interaction of
services with each other and consuming applications, as well
as the platform deployment and operational aspects. In addition
to that, we discuss how services using IoT-specific protocols
can be integrated in the service platform preserving its design
and operational principles.

III. DESIGNING SMART CITY IOT PLATFORM

A. Challenges

The Smart City vision is to make a better use of the public
resources, increasing the quality of the services offered to the
citizens while reducing the operational costs of the public
administrations [16]. Realizing this vision involves building
a large-scale urban IoT system and a service platform on top
of it that would provide access to the IoT data and Smart City
services. The latter is represented by a large variety of services
with varying requirements to the platform infrastructure [16].
Considering the early stage of the IoT development and its
progressive adoption, the Smart City IoT platforms designed
today need to be able to support new standards and services
in the future.

Designing large-scale distributed systems that evolve as
the underlying technology and requirements change is one
of the challenges addressed by the modern Web and cloud
applications. The simplicity of interfaces and loose coupling
of individual components promoted by the REST architectural
principles coupled with the commodity computing model and
elasticity provided by the cloud build the foundation of modern
distributed Web applications.

The success of commercial platforms in the growing IoT
field [5] shows the successful adoption of the architectural
principles of the Web and the experience of building large-
scale distributed applications in the cloud. The apparent bene-
fits of the IoT and cloud integration [19] motivates the adoption
of the broader cloud experience in building and provisioning
large-scale distributed systems that are designed to scale and
evolve over time for building IoT platforms.

B. Microservice Architecture

One of the recent trends in the practices of building
distributed Web applications is microservice architecture.
Emerged as a pattern from the real-world experience of
building distributed applications, it does not have a formal
definition. Informally, it can be defined as an approach to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms [8]. These services are small, highly
decoupled and focus on doing a small task [20].

Services are the building blocks comprising the systems
built with microservice architecture. They define the main
characteristics and competitive advantages of these systems,
as well as differentiate this architectural approach from others
falling under the Service Oriented Architecture (SOA) um-
brella. The key characteristics of the microservice architecture
relevant in the context of this work are described below.

Componentization via Services. Componentization or
modularity are considered as a generally good practice in
software engineering, yet achieving it often deems challenging.

With microservice architecture, componentization is achieved
via breaking systems down into services, which are indepen-
dently replaceable, upgradeable, and deployable. Instead of
using in-memory function calls, components in microservice
architecture are interacting via service interfaces, which puts
restrictions on introducing undesirable tight coupling between
components and leaking of functionality from one component
into another.

Organization around Business Capabilities. Organiza-
tion is known to have a significant impact on the systems
design [21], and organizations employing microservice archi-
tecture tend to practice similar organization of technical teams.
More specifically, microservice architecture motivates organi-
zation around business capabilities instead of the traditional
way of building teams based on the technology layers. This
results in cross-functional teams, where each team has the full
range of skills required for a specific business area and prevents
the ”logic everywhere” siloed architectures [8].

Smart endpoints and dump pipes. Microservices com-
monly use lightweight communication protocols to exchange
messages with services keeping their domain logic internal.
Compared to the Enterprise Service Bus (ESB) and similar
approaches where the communication mechanism provides
sophisticated functionality for message transformation and
choreography, microservices use the communication medium
to barely exchange messages. Whether it is HTTP request-
response or a lightweight message bus for asynchronous com-
munication with routing, the business logic in microservice
architecture always remains in the endpoints – the services.

Decentralized Governance. Because microservice archi-
tecture relies on independently deployable components, the
centralized governance of standards and technology platforms
can be relaxed. Each service in a system built with mi-
croservice architecture can use its own technology that is
most suitable for the job. This flexibility in the choice of
implementation technology provides the benefits of choosing
the best tools and platforms considering their trade-offs, as
well as allows to gradually adopt new technologies.

Decentralized Data Management. The microservices ar-
chitecture enables decentralized data management, implying
decentralization in both the conceptual models and the storage
backends used by services. The decentralization in conceptual
models means that different components (services) have dif-
ferent conceptual models of the world, e.g., by operating with
different attributes of the same entities. The decentralization
in the storage backend means that every service has its own,
independent, storage subsystem that is isolated from other
services.

Evolutionary Design. Related to several characteristics
described above, evolutionary design is a typical characteristic
of microservice architecture where services decomposition is
used as a driving force to enable frequent and controlled
changes in the system. On the one hand, limited functionality
of single components emerging from their focus on small tasks
limits the efforts required to introduce changes in individual
services. On the other hand, independently deployable and re-
placeable components together with decentralized governance
allow the services to be re-implemented from scratch, possibly
using another technology, without affecting the rest of the

system.

Exhibiting the described characteristics, systems built with
microservice architecture are typically associated with the
following benefits [20]:

• Technology heterogeneity, also known as polyglot
programming and persistence [22], is enabled by the
decentralized governance and data management that
allows coexistence of different technologies used by
different components in the system.

• Resilience and ease of deployment are enabled by
decomposition via services that provides components
with clear boundaries, allowing to isolate failures and
gradually degrade the system functionality, as well as
update and deploy individual services independently.

• Scaling with microservices can be achieved in all of
the three axis of the scaling cube [23]. In addition
to the typical scaling by horizontal duplication (X-
axis) and data partitioning (Z-axis), microservices also
enable scaling by functional decomposition (Y-axis).

• Organizational alignment is enabled by organization
around business capabilities and motivates smaller
focused teams working on components with smaller
code-bases.

• Composability follows from the fine-grained compo-
nentization via services, enabling creating new system
capabilities by composing and re-using existing ser-
vices. As HTTP protocol and REST APIs are com-
monly used for communication, microservices also
encourage the serendipitous reuse [24].

Despite the described benefits of the microservice architec-
ture, successfully implementing it in practice might be chal-
lenging [25]. Decomposing distributed systems into indepen-
dent granular components, microservices bring the complexity
of distributed systems and a great deal of operational overhead.
The growing popularity of DevOps culture and the infrastruc-
ture automation tools, as well as the accumulated experience in
dealing with problems of distributed systems address many of
these challenges. Therefore, when designing software systems
with microservices, deployment and operational aspects of the
resulting systems need to be considered carefully.

IV. DIMMER PLATFORM

The goal of the DIMMER Smart City project [26] is to
build a service platform (further referred to as the DIMMER
platform) and a number of applications aiming at involving
different stakeholders to increase the energy efficiency of a
city at the district level. In this section, we describe the
current status of the platform design progress highlighting
the identified issues and how we address them using the
microservice architecture.

The principle architecture of the DIMMER platform is
shown in Figure 1. At the conceptual level, it includes
heterogeneous Sensor Technologies and District Information
Models integrated in the Service Platform that is used by
Smart City Applications. The Service Platform encompasses
IoT services gathering and processing data from heterogeneous

Sensor Technologies

Monitoring
Systems WSN SCADA

Service Platform

Semantic Web
Clients

Mobile

Smart City Applications

Web

Desktop

BIM

District Information Models

GIS SIM

Middleware Services

Service Catalog Historical Datastore

Resource Catalog Semantic Datastore

Message Broker …

Smart City Services

Energy Data
Simulator BIM Service

Energy Efficiency
Engine GIS Service

Context Awareness
Framework SIM Service

Fig. 1. The principal architecture of the DIMMER platform.

sensor systems (Middleware Services), as well as a number
of platform services for Smart City applications (Smart City
Services).

Applications using the platform represent a large variety
of Web, desktop, and mobile applications for city admin-
istration, energy professionals and citizens. In addition to
that, the platform can be used by third-party systems and
applications, including Semantic Web Clients, to access the
data from integrated sensor systems and information models.
Such heterogeneity of applications covering diverse use cases
and interaction patterns results in a large number of require-
ments to the platform and its services. In the next sections,
we describe these services and their design considerations
addressing several specific requirements in more detail.

A. Middleware Services

Middleware is one of the key elements of the IoT platforms
as it integrates heterogeneous IoT devices and ICT systems
in the platform. The tasks of the middleware include the
following: (i) providing modeling abstractions of real-world
IoT devices and sensor systems, (ii) enabling search and
discovery of these devices and their resources by applica-
tions and services, (iii) providing unified APIs and protocols
for historical and (near) real-time sensor data access. The
DIMMER middleware is based on the LinkSmart OpenSource
Middleware [27], extended and complemented by additional
components tailored to the requirements of the DIMMER
platform.

One of such requirements from DIMMER applications is
the support of search and discovery of IoT devices through
both lightweight queries over HTTP by mobile applications
and SPARQL queries by Semantic Web clients. This simple
requirement often cannot be fulfilled due to the internal
management of device meta-data in the middleware. Striving
to achieve a high level of interoperability and generalization,
many middleware systems use Semantic Web to describe and
store the device meta-data providing a SPARQL endpoint
to query it by the clients [28], [29]. While this might not
only be impractical for mobile clients due to the bandwidth
limitations, SPARQL also has known limitations in scalability
and availability [30].

Triple-
store Semanic Datastore Semantic Web

Client

Mobile Application
Document

DB Resource Catalog
REST

SPARQL

Fig. 2. Accessing IoT meta-data by different clients.

In the DIMMER platform, we use the decentralized data
management approach of microservices to manage the IoT
devices meta-data in the system. Services in the DIMMER
platform use their own views or concepts of the IoT devices
(conceptual decentralization) as well as storage backends to
store their meta-data (decentralized data storage), building a
hierarchical abstraction model. The Resource Catalog service
of the middleware provides basic information about the devices
configuration, deployment, and supported communication pro-
tocols. The Semantic Datastore service provides a higher-
level abstraction, describing the same devices with additional
attributes and relations to other entities and platform services
using the Semantic Web technologies. Both microservices
maintain their bounded contexts and are used by different
consumers as shown in Figure 2.

In addition to that, middleware provides Historical Data-
store service for storage of sensor data, Message Broker
for Publish/Subscribe communication [31] of sensor data,
and Service Catalog for service discovery. These services
use different, domain-specific storage back-ends: Historical
Datastore service uses timeseries database as it allows to
efficiently store and query large amounts of timeseries data
(sensor measurements), Service Catalog uses a document-
based storage as it manages service registrations represented by
JSON documents. They also use different protocols: Message
Broker uses Message Queue Telemetry Transport (MQTT)
– the de-facto standard for publish/subscribe communication
protocol for the IoT, whereas other services rely on HTTP for
request/response communication. As independently deployable
microservices, all of them can be scaled and updated separately
depending on the particular deployment of the DIMMER
platform and its use.

Another important aspect of managing operational (mea-
surements) and meta-data of IoT devices and systems in the
middleware is to provide a holistic view of it to the applications
and services. Managing meta-data together with the sensor
measurements brings the convenience of ubiquitous access to
it by consumers via a unified interface that can be implemented
by a single service. However, considering the vast amount of
data generated by the IoT devices, the resulting network traffic
and requirements to the storage and processing infrastructure,
storing operational and meta-data together comes at a great
cost. Managing them separately, on the other hand, allows to
use the infrastructure more efficiently by employing appropri-
ate technologies for these tasks, but introduces complexities
to the consumers. Applications and services accessing the
IoT data stored separately need to perform several queries
to different services, which leads to a more complex client
implementation and chatty communication.

Using the Application Gateway [20] pattern of microser-

Document
DB Resource Catalog

Time
Series Historical Datastore

Triple-
store Semanic Datastore

Mobile
Application

Semantic Web
Client

Web
Application

 IoT Data
Gateway

Fig. 3. API Gateway for annotated IoT operational data.

vice architecture, we can implement an IoT Data Gateway
service that provides convenient high-level APIs for different
kinds of consumers as shown in Figure 3. Built on top of the
fine-granular APIs of the underlying microservices, the gate-
way provides a convenient interface to the IoT data requested
by the clients by fanning out client requests to the platform
services and returning them in the most convenient form to the
corresponding consumers. Depending on the requirements of
different consumers and the load generated by them, the API
gateway functionality can be implemented in a single service
using, e.g., HTTP content negotiation to differentiate between
the consumers, or as a set of independent services. The latter
would provide more flexible scalability as additional gateways
can be deployed to serve only specific kinds of consumers
(Z-axis scaling).

B. Smart City Services

Smart City services build on top of the IoT middleware and
implement the core functionality of the platform. The Smart
City services of DIMMER platform include, among others, the
following:

• Services exposing District Information Models are
managing various information models that can be used
by Smart City applications. These domain-specific
models include data models of Geographic Infor-
mation Systems (GIS), Building Information Models
(BIM), and System Information Models (SIM).

• Energy Efficiency Engine is a service providing
optimization algorithms and strategies that can be
configured and called by the applications using the
platform, e.g., applications for analysis and optimiza-
tion of the district energy consumption at different
levels.

• Energy Data Simulator is a sensor data simulator
used by the applications and other services of the
DIMMER platform, e.g., by the Energy Efficiency
Engine.

• Context Awareness Framework is a set of services
providing context awareness features to the applica-
tions. Using the Context Awareness Framework, ap-
plications can model real-world situations by defining
a set of properties as contexts, and get notified when
those contexts are matched or their states change.

The services exposing District Information Models are
easily modeled as separate components, as they have naturally

Document
DB Resource Catalog

Triple-
store Semanic DatastoreBlob

Storage BIM Service

RDBMS GIS Service

Document
DB SIM Service

Vocab

Metadata
Crawler

Semantic Web
Client

Fig. 4. Semantic Web interoperability for District Information Models.

defined context boundaries: every service independently man-
ages its own set of models, using a storage back-end suitable
for their data format. Linking different models together, e.g.,
referencing BIM models of individual buildings in the GIS
model, is more challenging, as this is not typically covered by
the domain-specific standards. To achieve such interoperability,
one could consider defining new standards and data formats,
e.g., by using Semantic Web technologies. Professional GIS
and BIM tools, however, are working with the well-established
data formats in the corresponding domains, and the users
of the DIMMER platform working with such tools expect
it to export such models in their native formats. Mobile
and web applications, on the other hand, may use simplified
versions of these models for visualization, which requires their
transformation in the appropriate data formats.

Providing for such diversity of use cases poses significant
challenges on the architecture of the individual services and
the whole platform, especially considering that the require-
ments may change in the future and new use cases appear.
Aiming at the evolutionary design, it is important to keep the
functionality of individual components within their boundaries
while keeping the overall system loosely coupled. In the case
of managing District Information Models in the platform, we
keep the functionality of individual services managing domain-
specific models limited to basic operations on those models,
while leveraging Semantic Web and Linked Data technologies
for linking different data models to achieve higher-level inter-
operability.

The interoperability layer is transparent to the domain-
specific services and can be implemented as shown in Figure
4. The Metadata Crawler is a Linked Data-enabled tool that
works similarly to the web crawlers of search engines: it
queries available services, annotates the results of these queries
using a predefined vocabulary, and exports the annotated
data in the Semantic Datastore. The latter can be then used
by Semantic Web clients to discover the relations between
entities represented by domain-specific models and managed
by individual services. In this way, the domain-specific services
are not concerned with the interoperability layer and can
retain their simple implementation, while new interoperability
functionalities can be added by modifying the crawler and its
vocabulary. This comes at the price of eventual consistency
as changes are not immediately propagated throughout the
system, but we consider this as a reasonable trade-off in this
scenario.

V. CONCLUSION AND FUTURE WORK

While the platform development is at its early stages, our
early experience highlights the benefits of using microservice
architecture in several aspects, as well as demonstrates some
of the challenges that need to be addressed in the future.

First of all, due to the interdisciplinary (software engineers,
electrical engineers, architects, energy experts) and interna-
tional (11 partners from 4 countries) team, using the microser-
vices approach to organization around business capabilities
allows us to work highly independently. Together with the
decentralized governance and data management, this allows
each partner to concentrate on their work while maintaining
the overall system compatibility. Agreeing on the service
interfaces, every partner is free to choose any technology to
implement the platform services of their expertise and work in-
dependently from the others. Furthermore, the lack of complex
middleware technologies and use of simple communication
protocols and APIs instead significantly reduces the amount
of coordination work involved.

Standardization of the platform deployment and provision-
ing infrastructure imposed by the lack of centralized gover-
nance and independent implementation technologies provides
additional long-term benefits that are apparent even at the early
implementation stage. As the DIMMER Platform needs to be
deployed in multiple pilot cities, there is a clear need of the
standardization on the deployment strategies. With the ubiquity
of OpenSource DevOps tools available due to the popularity
of microservice architectures in industry, there is a large set
of available technologies and tools for us to choose from
Moreover, as these tools are designed to work with popular
cloud infrastructures, by using them DIMMER Platform can
be easily adopted and deployed by teams outside of the project
consortium.

Using microservices simplifies the design and implementa-
tion of individual services, but comes at the cost of increased
complexity of distributed systems. At the current stage, we
consider eventual consistency and other compromises made
due to the fine-granular service decomposition to be reasonable
trade-offs for the gained benefits. However, as more platform
services and applications will be developed, a more thorough
evaluation needs to be carried out to draw more objective
conclusions.

ACKNOWLEDGMENT

This research is funded by EU FP7 SMARTCITIES 2013
District Information Modelling and Management for Energy
Reduction – DIMMER.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann. (2014) The
Constrained Application Protocol (CoAP). [Online]. Available:
http://coap.technology/

[2] Message Queue Telemetry Transport (MQTT). [Online]. Available:
http://mqtt.org

[3] OneM2M Alliance. [Online]. Available: ”http://onem2m.org”
[4] A. Nettstraeter, “Architectural reference model for IoT,” EC FP7 IoT-A

(257521) D, vol. 1, p. 2, 2012.
[5] Postcapes. Internet of Things Platform. [Online]. Available:

”http://postscapes.com/internet-of-things-platforms”

[6] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[7] M. Huettermann, DevOps for developers. Apress, 2012.
[8] M. Fowler and J. Lewis. (2014) Microservices. [Online]. Available:

”http://martinfowler.com/articles/microservices.html”
[9] J. Turnbull, ”The Docker Book: Containerization is the new virtualiza-

tion”. James Turnbul, 2015.
[10] M. S. Fred Melo. (2014) Developing Microservices for

PaaS with Spring and Cloud Foundry. [Online]. Avail-
able: ”http://www.infoq.com/presentations/microservices-pass-spring-
cloud-foundry”

[11] FI-WARE project. [Online]. Available: ”http://fi-ware.org”
[12] D. Havlik, J. Soriano, C. Granell, S. E. Middleton, H. van der Schaaf,

A. Berre, and J. Pielorz, “Future Internet enablers for VGI applications,”
2013.

[13] T. Usländer, A. J. Berre, C. Granell, D. Havlik, J. Lorenzo, Z. Sabeur,
and S. Modafferi, “The future internet enablement of the environment
information space,” in Environmental Software Systems. Fostering In-
formation Sharing. Springer, 2013, pp. 109–120.

[14] D. Namiot and M. Sneps-Sneppe, “On software standards for smart
cities: API or DPI,” in ITU Kaleidoscope Academic Conference, Pro-
ceedings of the 2014, June 2014, pp. 169–174.

[15] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[16] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet of Things Journal,
2014.

[17] E. Theodoridis, G. Mylonas, and I. Chatzigiannakis, “Developing an
iot smart city framework,” in Information, Intelligence, Systems and
Applications (IISA), 2013 Fourth International Conference on, July
2013, pp. 1–6.

[18] ALMANAC project Web site. [Online]. Available: ”www.almanac-
project.eu/”

[19] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “On the integration
of cloud computing and internet of things,” in Proceedings of the
2nd International Conference on Future Internet of Things and Cloud
(FiCloud-2014), 2014, pp. 27–29.

[20] S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.
[21] M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,

pp. 28–31, 1968.
[22] M. Fowler. (2011) PolyglotPersistence. [Online]. Available:

”http://martinfowler.com/bliki/PolyglotPersistence.html”
[23] M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web

architecture, processes, and organizations for the modern enterprise.
Pearson Education, 2009.

[24] S. Vinoski, “Serendipitous reuse,” IEEE Internet Computing, vol. 12,
no. 1, pp. 84–87, Jan. 2008.

[25] B. Wootton. (2014) Microservices - Not A Free Lunch! [Online].
Available: ”http://highscalability.com/blog/2014/4/8/microservices-not-
a-free-lunch.html”

[26] DIMMER Project. [Online]. Available: ”http://dimmer.polito.it”
[27] LinkSmart Middleware. [Online]. Available: ”http://linksmart.eu/”
[28] J. Kim and J.-W. Lee, “OpenIoT: An open service framework for the

Internet of Things,” in Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 2014, pp. 89–93.

[29] P. Kostelnik, M. Sarnovsk, and K. Furdik, “The semantic middleware
for networked embedded systems applied in the internet of things
and services domain,” Scalable Computing: Practice and Experience,
vol. 12, no. 3, 2011.

[30] D. Rogers. (2013). [Online]. Available:
”https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-
the-sparql-endpoint/”

[31] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

