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Multivariate	control	charts	for	monitoring	internal	camera	parameters	in	digital	

photogrammetry	for	LSDM	(Large‐Scale	Dimensional	Metrology)	applications		

Fiorenzo	Franceschini,	Maurizio	Galetto,	Gianfranco	Genta	

Politecnico	di	Torino,	DIGEP	‐	Department	of	Management	and	Production	Engineering,	Corso	Duca	degli	Abruzzi	

24,	10129	Torino,	Italy	

Abstract	

Industrial	non‐contact	dimensional	measurements	using	photogrammetry	rely	critically	upon	stability	in	time	

of	camera	calibration.	This	is	particularly	relevant	for	multi‐camera	systems	employed	for	continuous	and/or	

long	 term	 monitoring	 of	 some	 dimensional	 process,	 e.g.	 dimensional	 checks	 of	 the	 same	 manufactured	

component	as	it	comes	off	the	production	line.	In	most	of	these	cases,	camera	calibration	is	updated	regularly	

to	ensure	optimal	accuracy.	Specifically,	the	use	of	photogrammetric	systems	requires	the	knowledge	of	both	

internal	 and	 external	 camera	 parameters	 estimated	 by	 calibration,	 and	 constancy	 of	 both	 sets	 is	 required	

during	use.	Internal	parameters,	pertaining	to	camera‐specific	properties,	require	stability	over	the	operational	

lifespan	of	 the	system,	while	external	parameters,	 concerning	 location	and	orientation,	may	change	between	

calibrations.	 A	 diagnostic	method	 for	 internal	 parameters	 based	 on	multivariate	 control	 charts	 is	 proposed;	

this	method	 is	 aimed	 to	 a	 comprehensive	 stability	 control	over	all	 the	performed	calibrations,	 especially	 for	

those	systems	used	 for	 regular	monitoring	of	production	 lines.	By	 integrating	chart	building	 into	calibration	

software,	 it	 is	 not	 required	 any	 additional	 steps	 to	 the	 operator's	 workload	 for	 the	 calibration	 process.	 A	

practical	application	of	the	described	methodology	is	presented	at	the	end	of	the	paper.	
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1.	Introduction	

Use	 of	 optical	 methods	 for	 dimensional	 measurements	 in	 industry	 is	 becoming	 widespread,	 with	

photogrammetry	playing	a	key	role	in	Large‐Scale	Dimensional	Metrology	[Estler	et	al.,	2002;	Schwenke	et	al.,	

2002;	Peggs	et	al.,	2009;	Franceschini	et	al.,	2011;	Aicon,	2014;	Mapvision,	2014;	Optitrack,	2014;	Vicon,	2014].	

Applications	range	 from	monitoring	of	buildings	and	monuments	 to	control	of	 large	mechanical	components	

such	 as	 aircraft	 wings	 and	 fuselages,	 ship	 hulls,	 etc.;	 they	 concern	 both	 occasional	 dimensional	 checks	 of	

finished	products	and	 for	regular	monitoring	on	production	 lines	 [Weckenmann	et	al.,	2009;	Muelaner	et	al.,	

2010;	Goch	et	al.,	2012;	Stiros,	2012;	Lu	et	al.,	2013].		

Multi‐camera	photogrammetric	systems	may	be	positioned	around	the	object	of	interest	within	an	extensive	

measurement	 space	 where	 monitoring	 of	 dynamic	 objects	 is	 also	 possible.	 Change	 of	 measurement	
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configuration	entails	a	new	calibration;	this	need	represents	a	critical	point	for	the	use	of	the	system	[Mikhail	

et	al.,	2001;	Luhmann	et	al.,	2006;	Galetto	et	al.,	2011].		

Calibration	 optimizes	 the	 values	 for	 external	 and	 internal	 parameters	 given	 the	 operational	 constraints	

[Mikhail	 et	 al.,	 2001;	 Luhmann	 et	 al.,	 2006].	 External	 parameters	 describe	 the	 spatial	 configuration	 of	 the	

system,	 i.e.	 position	 and	 orientation	 of	 the	 cameras	 in	 the	 measurement	 space.	 These	 parameters	 change	

whenever	cameras	are	moved.	On	the	other	hand,	internal	parameters	describe	the	technical	characteristics	of	

the	cameras.	These	parameters	change	when	camera‐specific	elements	are	altered,	such	as	lenses	or	settings,	

or	if	drift/damage	occurs.	Several	different	procedures	for	calibration	are	described	in	literature,	e.g.	based	on	

the	use	of	calibrated	artefacts,	implementation	of	specific	procedures,	or	a	combination	of	both		[Fraser,	1997;	

Zhang,	2000;	Mikhail	et	al.,	2001;	Svoboda	et	al.,	2005;	Luhmann	et	al.,	2006;	Franceschini	et	al.,	2011;	Bouguet,	

2013].	

For	those	situations	that	need	a	continuous	and/or	long‐term	monitoring	of	some	dimensional	process,	such	

as	production	lines,	calibration	parameters	are	updated	regularly	in	order	to	ensure	optimal	performance.	In	

these	 cases,	 current	 approaches	 incorporate	 calibration	 into	 the	 measurement	 process	 with	 no	 additional	

hardware	 effort.	 These	 procedures	may	 guarantee	 reliable	 and	 accurate	 results,	 limiting	 the	 regular	 use	 of	

external	 artefacts.	 See,	 for	 example,	 commercial	 photogrammetric	 systems	 Quality	 Gate	 by	 Mapvision	 or	

TubeInspect	by	Aicon	[Aicon,	2014;	Mapvision,	2014].	

The	 correctness	 of	 calibration	may	 be	 checked	 using	 reference	 artefacts,	 a	 proven,	 reliable	 approach,	 the	

implementation	 of	 which	 may,	 however,	 be	 difficult,	 expensive	 and	 time	 consuming	 [Mikhail	 et	 al.,	 2001;	

Luhmann	et	al.,	2006].	An	alternative	approach	may	be	based	on	the	monitoring	of	internal	parameters	after	

each	calibration,	thereby	relying	on	control	of	the	stability	(VIM	4.19	[JCGM,	2012])	of	camera	parameters	in	

order	 to	 check	 correctness	 of	 calibration.	 Unless	 otherwise	 stated,	 the	 term	 stability	 used	 in	 this	 document	

refers	 specifically	 to	 VIM	 definition.	 The	 alternative	 approach	 is	 particularly	 helpful	 and	 effective	 for	 those	

photogrammetric	 systems	used	 in	production	 lines,	 for	which	 calibration	 is	performed	 frequently	 at	 regular	

time	intervals.	

Despite	 the	 problem	 of	 testing	 camera	 internal	 parameters	 stability	 is	 a	 topic	 widely	 investigated	 in	 the	

scientific	 literature,	 its	 solution	 remains	 the	 subject	 of	 ongoing	 investigation	 within	 the	 photogrammetric	

community	 [Lichti	 et	 al.	 2009].	 Most	 approaches	 are	 based	 on	 the	 use	 of	 reference	 artefacts	 or	 simulation	

methods	[Läbe	and	Förstner,	2004;	Chandler	et	al.,	2005;	Habbit	and	Morgan,	2005;	Habbit	et	al.,	2006;	Shortis	

et	al.,	2006;	Wackrow	et	al.,	2007].	

The	use	of	multivariate	control	charts	for	monitoring	internal	parameter	stability	is	proposed	in	this	paper.	In	

general,	 multivariate	 control	 charts	 are	 used	 whenever	 simultaneous	 control	 of	 two	 or	 more	 quality	

characteristics	is	required	[Hotelling,	1947;	Montgomery,	2008].	The	proposed	approach	applies	multivariate	

control	 charts	 as	 diagnostic	 tools	 for	 evaluating	 the	 stability	 of	 internal	 parameters	 after	 each	 calibration;	

calibration	 results	 are	 directly	 used	 for	 the	 diagnosis.	 The	 procedure	may	 be	 automated	 by	 embedding	 the	

relevant	routines	in	calibration	software,	without	requiring	any	additional	operation.	
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After	each	calibration	a	check	 is	performed	on	measured	values	of	 the	 internal	parameters	using	a	specific	

multivariate	 control	 chart.	 Hence,	 troubles,	 such	 as	 faulty	 calibration	 procedure	 or	 damage/drift	 of	 camera	

which	produce	significant	variations	of	internal	parameters,	will	be	detected	and	deemed	out‐of‐control	in	the	

control	chart,	thereby	requiring	specific	investigation.	

The	proposed	approach	covers:	

(i) definition	of	internal	parameters	to	be	monitored;	

(ii) construction	of	control	chart;	

(iii) acquisition	of	calibration	data	and	implementation	of	calibration	algorithm;	

(iv) verification	via	control	charts	whether	the	set	of	internal	parameters	is	acceptable	(no	out‐of‐control	

data);	

(v) otherwise,	causes	are	identified	and	remedial	action	is	taken.	

A	 short	 description	 of	 the	 basic	 principles	 of	 photogrammetry	 follows,	 introducing	 equations	 relating	

external	and	internal	parameters	to	point	 location.	The	concepts	of	multivariate	control	charts	are	described	

along	with	 their	 associated	 theoretical	 justification.	 A	 practical	 application	 to	 a	 real	multi‐camera	 system	 is	

then	presented	in	order	to	show	the	potentialities	of	the	method.	

2.	Basics	of	photogrammetry		

Photogrammetry	typically	uses	a	distributed	network	of	cameras,	properly	placed	within	the	measurement	

volume	in	order	to	estimate	3D	coordinates	of	one	or	more	optical	markers	(or	visually	discernible	features)	

positioned	in	the	“field‐of‐view”	of	every	camera	(see	Figure	1).	Generally,	data	processing	is	performed	by	an	

external	DPU	(Data	Processing	Unit),	which	is	connected	either	wirelessly	or	by	cable.	

	

Camera	4Camera	3Camera	2Camera	1	

DPU	

Camera	network

X

Y	

Z	

Marker	B
(xB,	yB,	zB)	

	

Marker	A
(xA,	yA,	zA)	

	

	

Figure	 1.	 Example	 of	 camera	 network	 configuration	 in	 a	 photogrammetric	 system	 with	 DPU	 Bluetooth	

connection	[Franceschini	et	al.,	2011].	
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The	3D	coordinates	of	a	certain	optical	marker	 M j can	be	related	to	the	2D	coordinates	of	the	corresponding	

image	 point	 ,Pi j  in	 the	 ‐thi 	 camera	 projection	 plane	 in	 terms	 of	 camera	 technical	 parameters,	 position	 and	

orientation,	 through	 the	 collinearity	 equations	 using	 homogenous	 coordinates	 (see	 Figure	 2)	 [Mikhail	 et	 al.,	

2001;	Luhmann	et	al.,	2006]:	
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where	( Ci
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z )	are	the	coordinates	of	the	projection	center	 Ci 	in	the	local	camera	reference	frame	FCCS,	

and	 3,3
iRR  is	 the	 rotation	matrix,	 which	 relates	 the	world	 coordinate	 reference	 frame	 FWCS	 and	 the	 local	
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The	matrix	 3,4
i RP , obtained from (1), is	called	camera	projection	matrix.	

The	ideal	model	reported	in	equation	(1)	provides	only	an	approximation,	since	imaging	errors	are	liable	to	

substantially	 affect	 accuracy	 of	 localization	 of	 optical	 markers.	 Corrections	 are	 applied	 to	 the	 image	

coordinates	 in	 order	 to	 reduce	 as	much	 as	 possible	 lens	 distortion	 errors.	 Radial,	 tangential,	 and	 skewness	

distortion	have	been	identified	by	previous	authors	as	being	the	primary	types	of	imaging	errors	[Mikhail	et	al.,	

2001;	Luhmann	et	al.,	2006].	

	

	

Figure	2.	Setup	of	a	generic,	camera‐based	localization	problem	in	3D	space	(adapted	from	[Franceschini	et	al.,	

2011],	with	permission).	

	

These	 error	 components	 are	 usually	 evaluated	 using	 polynomial	 models,	 the	 coefficients	 of	 which	 are	

denoted	 as	 distortion	 coefficients.	 The	 total	 lens	 distortion	 correction,	 as	 introduced	 in	 the	 collinearity	

equations,	can	be	expressed	as	[Mikhail	et	al.,	2001;	Luhmann	et	al.,	2006]:	
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where	
,i jRu 	and	

,i jRv 	represent	the	radial	distortion:	
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,i jTu 	and	
,i jTv 	are	the	components	related	to	the	tangential	distortion:	
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and	
,i jSu 	is	related	to	the	skewness	distortion:	

	

, ,i jS i i ju v   		 (8)	

	

Localization	consists	of	determining	the	3D	coordinates	of	a	marker	 Mj 	from	its	2D	image	coordinates	from	

several	cameras.	According	to	equations	(1)	and	(4),	in	the	case	that	only	one	camera	view	is	available,	only	the	

direction	 to	 the	 point	 Mj 	 can	 be	 determined.	 Therefore,	 complete	 localization	 entails	 observing	 the	 point	

marker	 from	at	 least	 two	different	camera	positions.	The	 identification	of	marker	coordinates	 is	achieved	by	

finding	the	intersection	of	two	or	more	direction	vectors.	The	general	rule	is	three	points	of	overlap:	two	as	the	

minimum	 requirement	 and	 one	 for	 redundancy.	 The	 localization	 procedure	 then	 follows	 according	 to	

fundamentals	of	digital	photogrammetry	[Mikhail	et	al.,	2001;	Luhmann	et	al.,	2006].	

3.	Estimation	of	camera	parameters	

According	to	Section	2,	each	camera	is	characterized	by	a	set	of	 internal	parameters	( 0 0, , ,
i i i if fu v u v ),	which	

represents	 its	 technical	 features,	 a	 set	 of	 correction	 parameters	 ( 1 2 3 4 5, , , , ,
i i i i iC C C C C ik k k k k  )	 related	 to	

distortion	effects,	and	a	set	of	external	parameters	( C C C, , , , ,
i i i i i ix y z    ),	pertaining	to	position	and	orientation	

with	 respect	 to	 a	 coordinate	 reference	 frame.	 Hence,	 network	 calibration	 consists	 of	 defining	 these	 16	

parameters	for	each	camera	of	the	system.	

The	 multi‐camera	 calibration	 problem	 is	 generally	 approached	 using	 a	 fully‐automatic	 single‐point	 self‐

calibration	technique	[Svoboda	et	al.,	2005;	Optitrack,	2014;	Vicon,	2014],	requiring	at	least	three	cameras	and	

a	reference	artefact	for	aligning	and	scaling	the	reference	system.	A	single	reflective	marker,	placed	in	several	

randomly‐selected	 positions	 within	 the	 working	 volume,	 is	 tracked	 by	 the	 cameras.	 Image	 acquisition	 and	

processing	 provide	 pixel	 coordinates	 in	 the	 camera	 view	 plane	 corresponding	 to	 different	 optical	 marker	

positions	(see	Figure	3).	
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Figure	3.	Schematic	illustration	of	self‐calibration	of	multi‐camera	system	according	to	the	algorithm	proposed	

by	Svoboda	et	al.	(Ci 	is	the	projection	center	of	camera	 i ,	 ,ui j  is	the	projection	point	of	 X j  on	the	view	plane	of	

camera	 i ) 	[Goch	et	al.,	2012]	

	

The	 calibration	 algorithm	 performs	 a	 preliminary	 procedure	 aimed	 at	 discarding	 outliers	 [Barbato	 et	 al.,	

2012],	due	to	parasitic	reflections	in	the	working	environment	or	measurement	errors	of	the	tracking	engine.	

False	 points	 are	 removed	 from	 the	 list	 of	 visible	 points	 of	 the	 cameras	 according	 to	 an	 iterative	 pairwise	

analysis	and	a	2D	reprojection	error‐based	strategy	 [Svoboda	et	 al.,	 2005].	Point‐to‐point	 correspondence	 is	

analyzed	according	to	epipolar	geometry	constraints	[Hartley	et	al.,	2004]	and	applying	a	RANSAC	(RANdom	

SAmple	Consensus)	‐based	technique	[Fischler	et	al.,	1981]	for	discarding	outliers.	

After	outlier	filtering,	the	calibration	algorithm	implements	an	iterative	procedure	to	compute	the	projective	

structure	(i.e.	the	projection	matrix	in	equation	(1)	and	the	re‐constructed	cloud	of	3D	points)	and	estimate	the	

correction	 parameters	 for	 camera	 lens	 distortion, also	 known	 as	 the	 lens	 distortion	model	 [Svoboda	 et	 al.,	

2005].	 	Since	external	camera	parameters	are	provided	in	a	conventional	reference	frame,	with	conventional	

origin	 and	 scale,	 a	 further	 step	 for	 aligning	 and	 scaling	 the	 coordinate	 system	 is	 performed.	 For	 this	 step,	 a	

calibrated	scale‐bar	is	typically	used	as	reference	artefact	[Franceschini	et	al.,	2011].	

In	 particular,	 the	 goal	 of	 the	 calibration	 is	 to	 estimate	 for	 each	 camera	 the	 scale	 parameter	 i 	 and	 the	

projection	matrix	 iP  (see	equation	1).	

According	to	Svoboda’s	approach	[Svoboda	et	al.,	2005],	given	 n 	points	(marker	positions)	and	m 	cameras,	

the	estimates	can	be	obtained	starting	from	the	following	expression:	
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where	 1
T

j j j jx y z   X (with	 1...j n ).	

Equation	(9)	may	be	rewritten	in	the	following	compact	form:	

	

Q PX 	 (10)	

	

where	  1

T

m P P P and	  1 n X X X .	

Q 	is	called	the	scaled	measurement	matrix,	 P 	and	 X 	are	respectively	referred	as	the	projective	motion	and	

the	projective	shape.	If	enough	noiseless	points	 , , , 1
T

i j i j i ju v   u 	(with	 1...i m 	and	 1...j n )	are	collected	and	

all	scale	parameters	 i 	are	known,	then	Q 	has	rank	4	and	can	be	factorized	into	 P 	and	 X .	It	should	be	noted	

that	the	only	input	is	the	collected	set	of	points	 , , , 1
T

i j i j i ju v   u .	

However,	 scale	parameters	 i 	 are	not	known	 in	advance.	Moreover,	 some	of	 the	points	 , , , 1
T

i j i j i ju v   u

may	be	missing	because	of	shadowing	or	simply	misdetections.	In	order	to	compute	the	scale	parameters	 i ,	

the	missing	points	are	filled	in	by	applying	rank‐4	constraint	[Shashua	et	al.,	1996].	

The	factorization	of	equation	(10)	recovers	the	motion	and	the	shape	up	to	a	4x4	projective	transformation	

H :	

	

  1 ˆ ˆQ PX PHH X PX 	 (11)	

	

where	 P̂ PH 	 and	  1X̂ H X .	 Any	 non‐singular	 4x4	 matrix	 may	 be	 inserted	 between	 P 	 and	 X 	 to	 get	

another	compatible	motion	and	shape	pair	( P̂ , X̂ ).	The	self‐calibration	process	computes	such	a	matrix	 H 	so	

that P̂ 	and X̂ become	Euclidean;	in	the	scientific	literature,	this	process	is	often	called	Euclidean	stratification	

[Hartley	et	al.,	2004].	The	task	of	finding	the	appropriate	 H 	can	be	achieved	by	imposing	specific	geometrical	

constraints.	 The	 most	 general	 constraint	 is	 the	 assumption	 that	 rows	 and	 columns	 of	 camera	 chips	 are	
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orthogonal.	Alternatively,	it	can	be	assumed	that	some	internal	parameters	of	the	cameras	are	the	same,	which	

is	more	useful	for	a	monocular	camera	sequence.	

The	practical	 implementation	of	 the	procedure	 is	 based	on	 two	 steps:	 (I)	 reconstruction	of	 the	 calibration	

points	 by	 using	 the	 linear	 parameters	 and	 then	 (II)	 feed	 of	 these	 3D‐2D	 correspondences	 into	 a	 standard	

method	 for	 estimation	of	 the	nonlinear	distortion	and	 repetition	of	 the	 self‐calibration	with	 the	undistorted	

points.	 This	 estimate‐and‐refine	 cycle	 is	 repeated	 until	 the	 required	 precision	 is	 achieved.	 This	 coupled	

iterative	approach	typically	yields	an	average	re‐projection	error	lower	than	1/4	pixel	[Svoboda	et	al.,	2005].	

As	 a	 result,	 the	 calibration	 procedure	 yields,	 for	 each	 camera	 of	 the	 system,	 the	 four	 internal	 and	 the	 six	

external	 parameters	described	 above,	 and	 the	 six	 correction	parameters.	Whenever	 camera	position	 and/or	

orientation	are	altered,	e.g.	due	to	changes	in	network	configuration,	a	new	calibration	procedure	is	required.	

While	 every	 new	 calibration	 produces	 different	 external	 parameters,	 related	 to	 the	 new	 positions	 and	

orientations	 of	 cameras,	 internal	 and	 correction	 parameters	 remain	 unchanged	 unless	 some	 functional	 or	

structural	modifications	of	cameras	occur.	

In	 the	 scientific	 literature	 and	 in	 common	 practice,	 other	 calibration	 procedures	 are	 proposed.	 Special	

interest	has	been	directed	 towards	 the	methodology	proposed	by	Zhang	 (2000),	which	 involves	 the	use	of	a	

calibrated	 reference	 artefact,	 i.e.	 a	 planar	 grid	 pattern	 with	 known	 geometry,	 which	 usually	 consists	 of	

alternating	square	blocks	 in	black	and	white	 including	reference	markers	 for	plane	position	and	orientation.	

Even	if	this	approach	could	produce	appreciable	results,	it	has	not	been	included	in	the	present	study	because	

it	 considers	 each	 camera	 individually.	 The	 case	 study	 reported	 in	 this	work	 entails	 calibration	 of	 the	whole	

camera	system	using	a	comprehensive	method,	typically	called	multi‐camera	calibration	procedure	[Svoboda	et	

al.,	2005;	Luhmann	et	al.,	2006].	Furthermore,	the	quality	and	the	planarity	of	the	reference	pattern	have	a	non‐

negligible	 impact	 on	 the	 result	 of	 the	 calibration,	 so	 its	 geometry	would	 need	 to	 be	 accurately	 calibrated	a	

priori	[Luhmann	et	al.,	2006;	Bouguet,	2013].	

4.	Multivariate	control	charts	

4.1	General	background	

The	problem	of	monitoring	internal	camera	parameters	can	be	solved	as	a	process	monitoring	problem	in	the	

Statistical	Process	Control	 framework.	Univariate	control	charts	could	be	 formulated	 for	each	single	variable	

[Montgomery,	 2008],	 with	 the	 drawback,	 however,	 of	 misleading	 results	 should	 variables	 turn	 out	 to	 be	

correlated.	 Furthermore,	 monitoring	 of	 internal	 camera	 parameters	 refers	 to	 individual	 observations,	 one	

value	only	for	each	parameter	being	obtained	at	each	calibration.	Therefore,	specific	values	of	the	control	limits	

should	be	considered	for	the	selected	charts.	Considering	these	aspects	of	using	univariate	control	charts,	it	is	

instead	preferable	to	apply	multivariate	methodologies.	

Univariate	 control	 of	 mean	 and	 scatter	 is	 typically	 performed	 using	 X bar and	 S 	 control	 charts	

[Montgomery,	2008].	The	multivariate	extension	of	 X bar 	and	 S 	control	charts	are	respectively	Hotelling	

2T 	 and	 Generalized	 Variance	 control	 charts	 [Hotelling,	 1947;	Montgomery	 et	 al.,	 1972].	 These	multivariate	
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control	 charts	work	well	when	 the	number	 of	 process	 variables	 is	 not	 so	 high,	 i.e.	 10	 or	 less	 [Montgomery,	

2008;	NIST/SEMATECH,	2014].	Furthermore,	even	if	the	use	of	Hotelling	 2T 	and	Generalized	Variance	control	

charts	is	based	on	the	assumption	that	each	of	the	component	variables	can	be	modelled	as	following	a	normal	

distribution,	it	has	been	verified	that	these	charts	are	robust	in	the	presence	of	significant	deviations	from	this	

assumption.		

In	general,	the	implementation	of	control	charts	typically	entails	two	phases.	They	are	Phase	I,	in	which	charts	

are	 used	 to	 test	whether	 the	 process	 is	 in‐control	 and	 collected	 data	 are	 used	 for	 the	 estimation	 of	 control	

limits,	 and	Phase	 II,	 in	which	 charts	 are	used	 to	 test	whether	 the	process	 stays	 in‐control	when	 subsequent	

subgroups	are	drawn	using	the	estimated	control	limits	obtained	in	Phase	I	[Woodall,	2000].		

4.2	Hotelling	 2T 	control	chart	

The	Hotelling	 2T 	distance	is	a	measure	which	accounts	for	the	covariance	structure	of	a	multivariate	normal	

distribution	 [Hotelling,	 1947;	 NIST/SEMATECH,	 2014].	 It	 represents	 the	 multivariate	 counterpart	 of	 the	

Student's	 t 	statistic.		

The	formula	for	computing	 2T ,	in	case	of	individual	observations,	is	[Montgomery,	2008]:	

	

   2 1= 																				 1,...,
T

i i iT i k  V V S V V 	 (12)	

	

where	 k 	 is	 the	 number	 of	 samples	 used	 for	 chart	 construction	 in	 Phase	 I,	 iV 	 is	 the	 vector	 of	 observations	

(namely,	 0 0 1 2 3 4 5i i i i i i i i i

T

i f f C C C C C iu v u v k k k k k    V ),	
1

1 k

i
ik 

 V V 	 is	 the	 vector	 of	 the	

corresponding	mean	values	and	 S 	is	a	special	estimator	of	the	covariance	matrix	[Holmes	et	al.,	1993;	Sullivan	

et	al.,	1996],	obtained	as	

	

 
1

2 1
T

k


 
S E E 	 (13)	

	

where	 1 2 1

TT T T
k   E e e e ,	and	 le 	are	the	differences	between	successive	observations:	

	

1 																				 1,..., 1l l l l k   e V V 	 (14)	

	

In	general,	the	higher	the	 2T 	value,	the	more	distant	is	the	observation	from	the	mean.		

In	Phase	I,	the	Hotelling	 2T 	statistics,	in	case	of	individual	observations,	may	be	approximated	using	a	Beta	

distribution	with	parameters	
2
p
	and	

1
2

f p 
	[Scholz	et	al.,	1994;	Timm,	1996]:	
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 22 1 1
~ ,

2 2

k p f p
T Beta

k

     
 

		 (15)	

	

with	

	

 22 1

3 4

k
f

k

 


 
		 (16)	

	

where	 p 	is	the	number	of	process	variables	(namely,	in	the	present	case,	the	number	of	estimated	internal	

and	correction	parameters).	Therefore,	the	lower	control	limit	( LCL )	and	the	upper	control	limit	(UCL)	are	the	

values	 of	 2T 	 statistics	 in	 equation	 (15)	 corresponding	 to	 a	 cumulative	 probability	 of	 0.135%	and	99.865%;	

however,	 LCL 	is	typically	set	to	zero	because	any	shift	in	the	mean	results	in	an	increase	in	 2T .	

It	 is	 important	 to	 note	 that	 the	 distribution	 in	 equation	 (15)	 is	 correct	 only	 when	 individual	 values	 iV 	

collected	 in	this	Phase	are	checked	to	see	whether	they	fall	within	the	control	 limits.	 In	contrast,	 in	Phase	II,	

when	observations	are	taken	and	checked	against	the	control	limits	calculated	in	Phase	I,	the	statistics	that	are	

formed	are	independent	of	V 	and	 S  and follow an exact Fisher	distribution	[Tracy	et	al.,	1992].	

By	using	 the	 special	 estimator	of	 the	 covariance	matrix	 S 	 in	equation	 (13),	 the	Hotelling	 2T 	control	 chart	

proves	to	be	effective	in	detecting	shifts	in	the	mean	vector	[Holmes	et	al.,	1993].	The	statistical	performance	of	

the	control	chart	may	be	measured	through	the	Average	Run	Length	( ARL ),	which	is	the	expected	number	of	

samples	taken	before	a	specific	shift	in	the	mean	vector	is	detected	[Montgomery,	2008].	Let	 dARL 	be	the	 ARL  

of	the	 2T 	chart	when	the	mean	vector	has	shifted	from	V 	to	 1V .	This	shift	may	be	expressed	in	terms	of	the	

Mahalanobis	distanced ,	i.e.		

	

    1
1 1=

T
d V V S V V 	 (17)	

	

It	is	assumed	that	the	covariance	matrix	 S  remains	constant	when	the	shift	on	the	mean	vector	is	applied.	

The	 dARL can	be	found	by	

	

 2

1
																				 1, ...,d

d i

ARL i k
P T UCL

 
  1V V

		 (18)	
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where	  2
d iP T UCL  1V V is	 the	probability	 that	 2

iT UCL  when	the	mean	vector	has	shifted	 from	 V 	 to	 1V 	

[Mahadik,	2012].	

The	 Mahalanobis	 distance	 includes	 in	 a	 single	 value	 all	 the	 possible	 variations	 of	 the	 averages	 of	 the	

distributions	of	each	of	the	 pparameters;	therefore,	 for	a	certain	value	of	 d ,	 there	are	an	infinite	number	of	

combinations	 of	 the	 averages	 of	 the	 distribution	 of	 the	 parameters.	 Consequently,	 the	 dARL 	 may	 only	 be	

estimated	once	defined	the	distributions	of	each	of	the	 pparameters.	

The	use	of	 the	Beta	distribution	 in	equation	(15)	to	approximate	the	Hotelling	 2T 	statistics	 is	valid	only	 in	

Phase	 I.	 In	contrast,	 in	Phase	II,	 the	statistics	 that	are	 formed	are	 independent	of	 V 	 and	 S ; hence, it can	be	

demonstrated	 that	 the	Hotelling	 2T 	 statistics	has	 a	Fisher	distribution	 (times	 a	 constant)	with	 p 	 and	 k p  

degrees	of	freedom	[Tracy	et	al.,	1992]:	

	

     2
2

1 1
~ ,
p k k

T F p k p
k k p

   
 

 
	 (19)	

	

Therefore,	UCL 	is	now	the	value	of	 2T 	statistic	in	equation	(19)	corresponding	to	a	cumulative	probability	of	

99.865%	and	 LCL 	is,	again,	set	to	zero. 

4.3	Generalized	Variance	chart	

In	general,	when	data	are	collected	 in	subsequent	samples,	 the	Generalized	Variance	statistic	 is	 S ,	 i.e.	 the	

determinant	of	 the	sample	covariance	matrix	 [Montgomery,	2008].	 In	case	of	 individual	observations,	all	 the	

conventional	formulas	for	the	Generalized	Variance	chart	do	not	work	[NIST/SEMATECH,	2014].	Therefore,	it	

is	necessary	to	provide	an	ad‐hoc	procedure	[Montgomery,	2008;	Minitab®,	2013].	All	individual	observations	

are	standardized	by	subtracting	the	relevant	column	mean	and	then	dividing	by	the	square	root	of	the	relevant	

variance	( ,j jS )	taken	from	the	special	covariance	matrix	(see	equation	(13))	[Holmes	et	al.,	1993]:	

	

     *

,

																				 1, ..., , 										 1, ...,i i
i

j j

V j V j
V j i k j p

S


   	 (20)	

	

where	  iV j 	and	  iV j 	are	the	 ‐thj 	elements	respectively	of	 iV 	and	 iV 	vectors.	

Once	 the	 standardized	 values	 have	 been	 obtained,	 a	 traditional	 S 	 control	 chart	 is	 adopted	 in	which	 each	

subgroup	corresponds	to	the	components	of	each	 *
iV 	vector.		

The	values	reported	on	the	Generalized	Variance	chart,	in	the	case	of	individual	observations,	correspond	to	

the	standard	deviations	of	the	vectors	 *
iV 	components:	
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  2* *

1* 																				 1, ...,
1

p

i i
j

i

V j V
S i k

p



 




	 (21)	

	

where	
 *

1*

p

i
j

i

V j
V

p



	is	the	mean	of	the	 p 	components	of	 ‐thi 	vector.	

General	Variance	control	limits	are:	

	
* *

* 2 * 2
4 4

4 4

3 1 															 3 1
S S

LCL S c UCL S c
c c

          		 (22)	

	

where	

*

* 1

k

i
i

S
S

k



	is	the	average	over	the	 k  observations	of	the	standard	deviations	of	each	vector	 *
iV 	and	

4c 	is	the	bias	correction	of	the	standard	deviation	estimate	[Montgomery,	2008].	A	central	line	corresponding	

to	 *S 	is	typically	shown	in	the	Generalized	Variance	chart.		

For	the	Generalized	Variance	charts,	the	calculation	of	control	limits	in	Phase	I	and	Phase	II	is	the	same.	

5.	Case	study	

The	previously‐described	procedure	was	implemented	and	tested	on	a	number	of	different	configurations	of	

a	 commercial	 multi‐camera	 system	 Optitrack	 Flex	 13	 and	 some	 laboratory	 prototypes	 at	 the	 Quality	

Engineering	 Laboratory	 of	 DIGEP	 ‐	 Politecnico	 di	 Torino,	 showing	 good	 results	 in	 terms	 of	 reliability	 and	

robustness	[Franceschini	et	al.,	2011;	Galetto	et	al.,	2011].	A	practical	application	to	a	custom‐made	assembled	

system	is	presented	below	as	an	example	with	the	aim	of	highlighting	the	potentialities	of	the	method.	

5.1	Experimental	system	configuration	

The	 custom‐made	multi‐camera	 system	 assembled	 at	DIGEP	 ‐	 Politecnico	 di	 Torino	was	made	 up	 of	 three	

Hitachi	KP‐FD140GV	RGB	color	cameras	with	a	resolution	of	1280x960	pixels,	acquisition	rate	of	30	frames	per	

second	and	nominal	flange	focal	distance	of	17.5	mm	[Franceschini	et	al.,	2011;	Galetto	et	al.,	2011].	

Several	camera	configurations	covering	a	measuring	volume	of	about	2x2x2	m3	were	calibrated	and	tested,	

implementing	the	procedure	on	a	40	mm	diameter	spherical	marker.	

A	set	of	30	preliminary	calibrations	showed	that	the	parameters	 3Ck ,	 4Ck ,	 5Ck 	and	 may	be	considered	non‐

significant.	 In	 fact,	 the	 corresponding	 variation	 coefficients	 assume	 values	 higher	 than	 50%,	 as	 shown	 in	

Table	1	[Montgomery,	2008].	
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Table	1.	Summary	statistics	relevant	to	a	set	of	30	preliminary	calibrations.	

 0u 	 0v 	 fu 	 fv 	 1Ck 	 2Ck 	 3Ck 	 4Ck 	 5Ck 	  	

mean	 7.03·102	 5.09·102	 1.10·103	 1.10·103	 ‐1.23·10‐1	 2.02·10‐1	 1.47·10‐3	 9.83·10‐4	 ‐7.33·10‐5	 1.44·10‐3	

standard	

deviation	
7.4·100	 1.3·101	 1.1·101	 1.2·101	 1.3·10‐2	 9.2·10‐2	 1.3·10‐3	 1.8·10‐3	 9.6·10‐5	 1.7·10‐3	

variation	

coefficient	
1%	 3%	 1%	 1%	 11%	 46%	 90%	 >100%	 >100%	 >100%	

	

Therefore,	 for	 each	 of	 the	 three	 cameras,	 six	 parameters	 only	 (4	 internal	 and	 2	 correction)	 required	

monitoring.		

5.2	Construction	of	Hotelling	 2T 	and	General	Variance	control	Charts	

Multivariate	control	charts	have	been	used	to	monitor	internal	camera	parameters	and	correction	parameters	

of	 the	 three‐camera	 system	described	 in	 the	 previous	 Section;	 therefore,	 for	 each	 camera	 6p  	 parameters	

have	been	monitored	(namely,	 0 0 1 2, , , , 	and	
i i i i i if f C Cu v u v k k ).	As	mentioned	previously,	the	number	of	process	

variables	is	adequate	for	the	application	of	Hotelling	 2T 	and	Generalized	Variance	control	charts	(see	Figures	4	

and	5).	

In	 Phase	 I,	 30k  calibrations	 were	 performed	 to	 create	 a	 historical	 dataset,	 a	 number	 chosen	 based	 on	

previous	 studies	 that	 suggested	 to	 consider	 at	 least	 twenty	 calibrations	 [Lowry	 et	 al.,	 1995],	 and	 on	 time	

constraints.	In	order	to	model	in‐control	process	performance,	further	calibrations	were	performed	to	remove	

assignable	causes	of	variation	and	to	substitute	out‐of‐control	data,	as	shown	e.g.	in	Figures	4	and	5.		

By	 way	 of	 example,	 the	 construction	 of	 the	 multivariate	 charts	 represented	 in	 Figures	 4(a)	 and	 5(a)	 is	

respectively	described	in	Appendix	A.1	and	A.2.	  Hotelling	 2T 	charts	control	 limits,	depending	only	on	 6p  	

variables	and	 30k  	replicates,	are	unaffected	by	replacement	of	data	(see	equation	(15)).	On	the	other	hand,	

the	limits	of	the	Generalized	Variance	control	charts	are	liable	to	vary	after	replacement	of	out‐of‐control	data,	

as	these	limits	are	directly	affected	by	actual	data.	

In	Phase	II,	control	charts	are	then	used	in	order	to	monitor	the	process.	
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(a)	

(b)	

	

Figure	4.	Hotelling	 2T 	 charts	 for	 camera	1:	 initial	 (a)	 and	 final	 (b)	 sets	 of	 calibrations,	 i.e.	 before	 and	 after	

removing	assignable	causes	of	variations.	

 

 

(a)	

(b)	

	

Figure	5.	Generalized	Variance	charts	for	camera	1:	initial	(a)	and	final	(b)	sets	of	calibrations,	i.e.	before	and	

after	removing	assignable	causes	of	variations.	
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5.3	Performance	evaluation	of	the	applied	control	charts	

The	 performance	 of	 the	 2T 	 control	 chart	 has	 been	 evaluated	 by	 calculating	 dARL  for	 Phase	 I	 through	

simulation	 for	 different	 values	 of	Mahalanobis	 distance	 d 	 [Mahadik,	 2012].	 It	 has	 been	 assumed	 that	 all	 p 	

parameters	have	a	normal	distribution	and,	 given	a	 specific	 value	of	 d ,	 all	 their	 averages	vary	by	 the	 same	

percentage	W 	(see	equations	(17)	and	(18)).		

The	obtained	results	are	shown	in	Table	2.	

	

Table	2.	 dARL 	of	the	 2T 	chart	for	different	values	of	the	Mahalanobis	distance	 d 	obtained	by	assuming	that		

all	the	 p 	parameters	have	a	normal	distribution	and	all	their	averages	vary	of	the	same	percentage	W .		

d 	 0.75	 1	 2	 3	 4	 5	 6	

W  0.45%	 0.6%	 1.2%	 1.8%	 2.4%	 3.0%	 3.6%	

dARL 	 386.1	 242.3	 33.8	 6.5	 2.2	 1.3	 1.0	

	

By	applying	the	same	procedure	for	Phase	II,	similar	results	are	obtained.	

Similarly,	 performance	 of	 the	 Generalized	 Variance	 chart	 has	 been	 evaluated	 through	 simulation	 by	

considering	a	distortion	of	amplitude	 q 	of	 the	distribution	of	 the	standard	deviation	 *
iS .	 In	particular,	 it	has	

been	 assumed	 that	 the	 distorted	 standard	 deviation	 * 'iS 	 has	 a	 distribution	 that	 can	 be	 approximated	 by	 a	

normal	 distribution	 with	 mean	 *q S 	 and	 standard	 deviation	
*

2
4

4

1
q S

c
c


  ,	 with	 1q  .	 This	 normal	

approximation	is	admissible	for	a	sample	size	 30k  	[Kenney	et	al.,	1951].	

It	is	obtained:	

*
* * * * 2

4
4

1

' or ' '~ , 1
q

q i i i

ARL
q S

P S LCL S UCL S N q S c
c


  

         

		 (23)	

where	
*

* * * * 2
4

4

' or ' '~ , 1q i i i

q S
P S LCL S UCL S N q S c

c

  
         

	 is	 the	 probability	 that	 * *' or 'i iS LCL S UCL   

when	a	distortion	of	amplitude	q 	occurred	to	the	distribution	of	the	standard	deviation	 *
iS .	

By	varying	the	value	 q , the	results	shown	in	Table	3	are	obtained.	
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Table	3.	 qARL 	of	the	Generalized	Variance	chart	for	different	values	of	the	amplitude	 q of	the	distortion	of	the	

distribution	of	the	standard	deviation	 *
iS .	

q 	 1.0	 1.2	 1.4	 1.6	 1.8	 2.0	

qARL 	 370.4	 40.2	 9.5	 4.2	 2.6	 1.9	

	

6.	Conclusions	

Photogrammetric	techniques	are	widely	used	in	industrial	applications	of	Large‐Scale	Dimensional	Metrology	

because	 flexible,	 low‐cost	 solutions	 are	 offered	 by	multi‐camera	 systems.	 These	 critically	 rely	 upon	 camera	

calibration,	covering	estimation	of	both	internal	and	external	parameters.	The	former	require	mainly	stability,	

while	the	latter	are	affected	by	camera	position	and	orientation.	

Specific	procedures	and	artefacts	are	usually	employed	for	periodic	or	systematic	calibrations	after	changes	

in	 the	 spatial	 configuration	 of	 the	 system.	 In	 particular,	 when	 photogrammetric	 systems	 are	 used	 for	 the	

regular	 monitoring	 on	 production	 lines,	 camera	 calibration	 parameters	 are	 updated	 regularly	 in	 order	 to	

ensure	 the	 correct	metrological	behaviour	of	 the	 system.	Especially	 for	 these	 cases,	 a	 diagnostic	method	 for	

detecting	 variations	 of	 internal	 parameters	 is	 proposed;	 its	 main	 innovative	 aspect	 concerns	 use	 of	

multivariate	control	charts,	Hotelling	 2T 	for	mean	and	Generalized	Variance	for	variability.	

This	approach,	relying	only	upon	data	acquired	during	calibration	phase,	enables	quick	and	comprehensive	

stability	control	at	each	calibration.	Furthermore,	it	can	be	easily	integrated	into	calibration	software	without	

the	need	of	additional	procedures	or	artefacts.	

The	robustness	and	reliability	of	 the	method	have	been	proved	by	tests	performed	on	a	commercial	multi‐

camera	system	and	a	laboratory	prototype	assembled	at	Quality	Engineering	Laboratory	of	DIGEP	‐	Politecnico	

di	Torino.	
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Appendix	

A.1	Hotelling	 2T 	control	chart	application	to	the	proposed	case	study	

The	 statistics	 represented	 in	 Figure	 4(a)	 may	 be	 obtained	 through	 the	 following	 procedure.	 Values	

0 0 1 2i i i i i i

T

i f f C Cu v u v k k   V relevant	to	the	initial	set	of	calibrations	are	shown	in	Table	4.	

	

Table	4.	Values	 iV 	relevant	to	the	initial	set	of	calibrations.	

i  0i
u 	 0i

v 	
if

u 	
if

v 	 1iCk 	 2iCk 	

1	 693.97	 514.51 1109.00 1108.64 ‐0.11 0.17	
2	 706.67	 480.36 1077.95 1074.30 ‐0.10 0.12	
3	 691.70	 503.33 1104.50 1104.34 ‐0.15 0.56	
4	 690.29	 510.51 1106.32 1106.07 ‐0.15 0.35	
5	 692.92	 511.30 1091.80 1092.31 ‐0.13 0.23	
6	 674.68	 461.70 1096.12 1097.69 ‐0.11 0.17	
7	 694.59	 499.58 1102.47 1102.59 ‐0.14 0.24	
8	 694.41	 497.48 1095.30 1095.27 ‐0.12 0.19	
9	 688.88	 521.38 1082.16 1082.08 ‐0.11 0.15	
10	 698.81	 501.84 1086.82 1086.30 ‐0.12 0.15	
11	 684.62	 514.43 1102.35 1102.41 ‐0.14 0.35	
12	 683.62	 503.96 1092.02 1091.30 ‐0.11 0.15	
13	 682.52	 521.90 1100.40 1100.30 ‐0.15 0.18	
14	 665.50	 526.55 1092.55 1092.72 ‐0.15 0.28	
15	 693.13	 525.79 1092.25 1092.52 ‐0.13 0.21	
16	 686.04	 514.15 1089.72 1089.85 ‐0.11 0.12	
17	 676.77	 531.37 1096.12 1096.34 ‐0.11 0.16	
18	 688.72	 519.59 1101.80 1101.53 ‐0.12 0.14	
19	 691.15	 497.40 1082.48 1081.42 ‐0.04 0.11	
20	 689.77	 551.22 1036.64 1035.64 ‐0.11 0.18	
21	 670.75	 537.87 1059.66 1058.44 ‐0.06 ‐0.01	
22	 691.93	 522.50 1087.62 1087.85 ‐0.13 0.24	
23	 695.57	 526.28 1089.19 1089.17 ‐0.13 0.20	
24	 678.82	 526.83 1089.21 1089.69 ‐0.13 0.25	
25	 696.68	 515.99 1095.19 1095.12 ‐0.12 0.17	
26	 697.41	 511.62 1091.95 1092.10 ‐0.12 0.16	
27	 686.84	 537.32 1098.15 1096.07 ‐0.17 0.22	
28	 705.65	 508.23 1089.23 1089.61 ‐0.13 0.20	
29	 681.83	 506.95 1102.56 1102.47 ‐0.13 0.21	
30	 695.94	 519.75 1097.41 1098.07 ‐0.13 0.17	

	

The	vector	of	 the	mean	values	 is	  689.01 514.06 1091.30 1091.07 ‐0.12 0.20
T

V .	On	 the	other	

hand,	 values	 e l ,	 i.e.	 differences	 between	 successive	 observations	 defined	 in	 equation	 (14),	 are	 shown	 in	

Table	5.	
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Table	5	Values	 e l 	relevant	to	the	initial	set	of	calibrations.	

l  1l
e 	 2l

e 3l
e 4l

e 5l
e 6l

e 	

1	 12.70	 ‐34.15 ‐31.05 ‐34.34 0.01 ‐0.05	
2	 ‐14.97	 22.97 26.55 30.04 ‐0.05 0.44	
3	 ‐1.42	 7.18 1.82 1.73 0.00 ‐0.21	
4	 2.63	 0.79 ‐14.52 ‐13.76 0.02 ‐0.11	
5	 ‐18.24	 ‐49.59 4.32 5.38 0.02 ‐0.06	
6	 19.92	 37.87 6.35 4.89 ‐0.03 0.06	
7	 ‐0.19	 ‐2.10 ‐7.17 ‐7.32 0.01 ‐0.05	
8	 ‐5.53	 23.90 ‐13.14 ‐13.19 0.01 ‐0.04	
9	 9.94	 ‐19.54 4.66 4.22 0.00 0.00	
10	 ‐14.20	 12.59 15.53 16.11 ‐0.02 0.20	
11	 ‐1.00	 ‐10.48 ‐10.33 ‐11.11 0.02 ‐0.20	
12	 ‐1.10	 17.94 8.37 9.00 ‐0.03 0.04	
13	 ‐17.01	 4.65 ‐7.85 ‐7.58 0.00 0.09	
14	 27.63	 ‐0.76 ‐0.30 ‐0.20 0.01 ‐0.07	
15	 ‐7.09	 ‐11.65 ‐2.53 ‐2.67 0.02 ‐0.09	
16	 ‐9.27	 17.22 6.41 6.48 0.00 0.04	
17	 11.95	 ‐11.78 5.67 5.20 ‐0.01 ‐0.02	
18	 2.43	 ‐22.19 ‐19.32 ‐20.12 0.07 ‐0.03	
19	 ‐1.38	 53.82 ‐45.84 ‐45.78 ‐0.06 0.06	
20	 ‐19.02	 ‐13.35 23.02 22.80 0.05 ‐0.18	
21	 21.18	 ‐15.38 27.97 29.41 ‐0.07 0.24	
22	 3.64	 3.78 1.57 1.32 0.00 ‐0.04	
23	 ‐16.74	 0.55 0.01 0.52 0.00 0.05	
24	 17.85	 ‐10.84 5.99 5.44 0.01 ‐0.09	
25	 0.73	 ‐4.36 ‐3.24 ‐3.02 0.00 ‐0.01	
26	 ‐10.57	 25.70 6.20 3.97 ‐0.04 0.06	
27	 18.81	 ‐29.09 ‐8.92 ‐6.47 0.04 ‐0.02	
28	 ‐23.82	 ‐1.28 13.33 12.87 ‐0.01 0.01	
29	 14.11	 12.80 ‐5.14 ‐4.41 0.01 ‐0.03	

	

According	to	equation	(13),	the	special	covariance	matrix	is:	

	

1 1 1 1 ‐3 ‐1

1 2 1 1 ‐1 ‐1

1 1 2 2 ‐2 ‐1

1 1 2 2

	9.40 10 ‐1.65 10 ‐1.86 10 ‐1.95 10 ‐6.45 10 ‐1.15 10

‐1.65 10 2.31 10 ‐1.19 10 ‐1.16 10 ‐1.99 10 4.76 10

‐1.86 10 ‐1.19 10 1.19 10 1.22 10 ‐6.07 10 3.67 10

‐1.95 10 ‐1.16 10 1.22 10 1.27 10 ‐

     

     

     


   
S

‐2 ‐1

‐3 ‐1 ‐2 ‐2 ‐4 ‐3

‐1 ‐1 ‐1 ‐1 ‐3 ‐3

6.41 10 4.03 10

‐6.45 10 ‐1.99 10 ‐6.07 10 ‐6.41 10 4.83 10 ‐1.35 10

‐1.15 10 4.76 10 3.67 10 4.03 10 ‐1.35 10 8.38 10

 
 
 
 
 
  
 

      
        

 	

	

and	the	corresponding	inverse	is:	
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‐2 ‐3 ‐3 ‐3 0 ‐1

‐3 ‐3 ‐3 ‐3 0 ‐2

‐3 ‐3 0 0 1 0
1

‐3 ‐3 0 0

1.20 10 2.26 10 3.64 10 ‐1.29 10 2.18 10 2.90 10

2.26 10 7.71 10 1.16 10 1.62 10 3.74 10 6.58 10

3.64 10 1.16 10 1.89 10 ‐1.85 10 1.87 10 9.20 10

‐1.29 10 1.62 10 ‐1.85 10 1.82 10 ‐1


     

     

     


   
S

1 0

0 0 1 1 3 2

‐1 ‐2 0 0 2 2

.68 10 ‐9.40 10

2.18 10 3.74 10 1.87 10 ‐1.68 10 5.84 10 7.48 10

2.90 10 6.58 10 9.20 10 ‐9.40 10 7.48 10 2.89 10

 
 
 
 
 
  
 

      
        

	

	

According	to	equation	(12),	the	distances	reported	on	the	Hotelling	 2T 	control	chart	are	shown	in	Table	6.	

	

Table	6.	Values	of	 2T 	distances	relevant	to	the	initial	set	of	calibrations.	

i	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

2
iT 	 6.31	 26.52	 28.06	 5.70	 1.73	 27.00 3.67	 2.02	 1.71	 1.79	 3.86	 1.39	 4.48	 8.13	 1.56	

i 	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

2
iT 	 2.06	 6.56	 3.12	 21.64	 33.61	 27.44 1.18	 1.63	 2.50	 1.42	 1.64	 11.42	 4.19	 3.10	 3.72	

	

From	equations	 (15)	 and	 (16),	 since	 6p  and	 30k  ,	 it	 results	 19.56f   and	  2~		28.03 3, 6.28T Beta .	

Therefore,	the	limit	 21.96UCL  shown	on	the	chart	is	the	value	of		the	latter	 2T 	statistics	corresponding	to	a	

cumulative	 probability	 of	 99.865%,	while	 LCL 	 is	 set	 to	 zero.	 Table	 6	 shows	 five	 calibrations	 out	 of	 control	

(shown	in	boldface)	over	the UCL .	

A.2	Generalized	Variance	control	chart	application	to	the	proposed	case	study	

The	statistics	represented	 in	Figure	5(a)	may	be	obtained	through	the	 following	procedure.	Values	 iV and	 e l

relevant	to	the	initial	set	of	calibrations	are	shown	in	the	Tables	4	and	5;	 the	vector	of	the	mean	values	 V is	

also	reported	in	the	section	A.1.	

The	 variance	 vector,	 i.e.	 the	 diagonal	 of	 the	 covariance	 matrix	 S  reported	 in	 equation	 (13),	 is	

  1 2 2 2 ‐4 ‐39.40 10 2.31 10 1.19 10 1.27 10 4.83 10 8.38 10
T

        Diag S .	

Standardized	 values	 * * * * * * *
0 0 1 2i i i i i i

T

i f f C Cu v u v k k   V 	 defined	 in	 equation	 (20)	 are	 shown	 in	 Table	 7	

together	with	the	corresponding	standard	deviations	 *
iS .			

	



24	
 

Table	7.	Values	 *
iV 	and	 *

iS relevant	to	the	initial	set	of	calibrations.	

i  
*
0i
u 	 *

0i
v 	 *

if
u 	 *

if
v 	 *

1iCk 	 *
2iCk 	 *

iS 	

1	 0.51	 0.03	 1.62 1.56 0.54 ‐0.36 0.803	
2	 1.82	 ‐2.22	 ‐1.22 ‐1.49 1.14 ‐0.89 1.593	
3	 0.28	 ‐0.71	 1.21 1.18 ‐1.25 3.94 1.838	
4	 0.13	 ‐0.23	 1.38 1.33 ‐1.45 1.61 1.199	
5	 0.40	 ‐0.18	 0.05 0.11 ‐0.60 0.37 0.375	
6	 ‐1.48	 ‐3.44	 0.44 0.59 0.52 ‐0.29 1.593	
7	 0.58	 ‐0.95	 1.02 1.02 ‐0.66 0.39 0.848	
8	 0.56	 ‐1.09	 0.37 0.37 0.02 ‐0.11 0.597	
9	 ‐0.01	 0.48	 ‐0.84 ‐0.80 0.42 ‐0.58 0.599	
10	 1.01	 ‐0.80	 ‐0.41 ‐0.42 0.29 ‐0.60 0.680	
11	 ‐0.45	 0.02	 1.01 1.01 ‐0.61 1.60 0.903	
12	 ‐0.56	 ‐0.66	 0.07 0.02 0.39 ‐0.56 0.434	
13	 ‐0.67	 0.52	 0.83 0.82 ‐1.09 ‐0.17 0.812	
14	 ‐2.42	 0.82	 0.11 0.15 ‐1.12 0.83 1.272	
15	 0.43	 0.77	 0.09 0.13 ‐0.46 0.09 0.409	
16	 ‐0.31	 0.01	 ‐0.15 ‐0.11 0.63 ‐0.86 0.482	
17	 ‐1.26	 1.14	 0.44 0.47 0.70 ‐0.44 0.872	
18	 ‐0.03	 0.36	 0.96 0.93 0.25 ‐0.64 0.606	
19	 0.22	 ‐1.10	 ‐0.81 ‐0.86 3.58 ‐0.96 1.808	
20	 0.08	 2.44	 ‐5.01 ‐4.93 0.72 ‐0.26 3.094	
21	 ‐1.88	 1.57	 ‐2.90 ‐2.90 2.78 ‐2.25 2.468	
22	 0.30	 0.56	 ‐0.34 ‐0.29 ‐0.58 0.41 0.470	
23	 0.68	 0.80	 ‐0.19 ‐0.17 ‐0.60 0.00 0.545	
24	 ‐1.05	 0.84	 ‐0.19 ‐0.12 ‐0.37 0.58 0.682	
25	 0.79	 0.13	 0.36 0.36 ‐0.10 ‐0.35 0.398	
26	 0.87	 ‐0.16	 0.06 0.09 0.02 ‐0.41 0.430	
27	 ‐0.22	 1.53	 0.63 0.44 ‐2.00 0.22 1.180	
28	 1.72	 ‐0.38	 ‐0.19 ‐0.13 ‐0.32 ‐0.05 0.798	
29	 ‐0.74	 ‐0.47	 1.03 1.01 ‐0.56 0.06 0.794	
30	 0.72	 0.37	 0.56 0.62 ‐0.23 ‐0.31 0.448	

	

The	average	over	the	 30k   standard	deviations	 *
iS 	 is	 * 0.968	S  	 (central	 line	of	 the	Generalized	Variance	

chart),	while	the	value	 4c 	with	 6p  is	0.952.	According	to	equation	(22),	the	control	limits	shown	on	the	chart	

are	 0.029LCL  	and	 	 1.906UCL .  

Since	 *
20S 	and	 *

21S 	(shown	in	boldface	in	Table	7)	are	greater	than UCL ,	the	20th	and	21st	calibration	are	out	of	

control	and	need	to	be	replaced	after	removing	the	assignable	causes	from	the	process. 


