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Abstract—Recently, many computationally efficient models
have been introduced to accurately define the static and dynamic
Vertical Cavity Surface Emitting Laser (VCSEL) behaviors.
However, in these models, many physical parameters must be
appropriately set to reproduce existing laser sources’ behavior
accurately. The extraction of these unknown physical parameters
from experimental curves is generally time-consuming and relies
mainly on trial and error approaches or regression analysis,
requiring extra effort. In this scenario, we propose a machine
learning-based solution to the problem, which can effectively
extract the required VCSEL parameters from experimental data
in real-time. The proposed approach predicts the parameters
exploiting the light-current curve and small-signal modulation
responses with two steps at constant and variable temperature,
respectively. Promising results are achieved in terms of relative
prediction error.

Index Terms—Vertical Cavity Surface Emitting Lasers, Ma-
chine Learning, Parameters extraction, Circuit-level models,
Deep Neural Network.

I. INTRODUCTION

Nowadays, lasers are used for a significant number of
applications like information transmission, marking, cutting,
drilling, additive manufacturing, etc. [1]–[6]. This unique num-
ber of applications is mainly due to the substantial flexibility
of different tuning parameters, such as length of pulse, power,
wavelength, and beam width. Nevertheless, this flexibility
comes at the cost of a long set-up time and a considerable
effort to locate the optimal parameters for each individual
application. For instance, if you need to vary k parameters
with N steps each, that corresponds to Nk tests. Additionally,
the non-linear relationships among its parameters demand a
generic systematic investigation of all possible combinations
of the parametric space to pinpoint the optimal combination
among them. However, this procedure is time-consuming,
taking days or weeks, and unfocused, wasting energy, time,
and money. In parallel, once this time-consuming procedure
finds the optimal parametric combination, slight variations can
change the optimal working point and hence demands another
set of experimental trials to find a new combination of optimal
parameters. In this scenario, a model is needed that identifies
optimal parameters in real-time for different applications.

Typically, two broad classes of models are available for laser
modeling; analytical and numerical treatment [7]. Analytical
modeling generally centers around a single specific property of
interest and related assumptions. In contrast, numerical mod-
eling methodologies provide a general broad solution through
approximation, but they are computationally expensive. This
makes laser modeling extremely challenging for accurate and
real-time characterization, thus putting the demand for alter-
native modeling solutions. In this context, Machine Learning
(ML) has recently demonstrated itself as a potential substitute,
having the ability to define an experimental model directly
from experimental data. The ML-based models work in a
complete agnostic way and only need a significant amount
of data to model the lasers of different families, which are
involved in various and diverse applications.

In the past few decades, different laser families have been
introduced; VCSELs are among them, which are more com-
plex due to their thermal and spatial characteristics. Recently,
many computationally efficient models have been introduced
to accurately define the static and dynamic VCSEL behaviors.
These models play a fundamental role in understanding the
VCSEL physical properties, allowing further optimizations of
these devices. Along with this, they are also an essential
resource for performing a realistic simulation of VCSEL
sources as part of larger optoelectronic systems. Indeed,
so-called ”circuit-level models” of VCSEL are available in
simulation tools such as Synopsys OptSim circuit simulation
environment [8]. However, in these models, many physical
parameters must be appropriately set to accurately reproduce
the behavior of existing laser sources, which is a necessary
step to obtain correct results from the numerical simulation of
the whole photonic system. The extraction of these unknown
physical parameters from experimental curves is generally
time-consuming and relies on trial and error approaches or
regression analysis. In this scenario, we propose an ML-based
solution already applied for parametric extraction and inverse
design problems of the laser [9]. The proposed ML-based
solution to the problem enables the extraction of the required
VCSEL parameters from experimental data effectively and
has the potential to define the parameters in real-time. The



Parameter spaceObjective 
Parameters 
(features)

Machine Learning

Training

Testing

VCSEL
Desired Parameters 

space (Label)

VCSEL

Prediction

VCSEL
Desired Parameters 

Prediction

Fig. 1. ML assisted VCSEL parameters extraction.

proposed solution is implemented in two steps, requiring
training two ML agents on two different datasets. The first
dataset is generated at a constant temperature, while the second
dataset is generated at varying temperatures.

The rest of the article is divided into the following sections.
Sec. II reports the description of the VCSEL model, while
Sec. III illustrates how the datasets are generated for training
the two ML agents. Sec. IV describes the detailed architecture
of the proposed two ML agents. Finally, Sec. V reports the
obtained promising results, followed by a brief conclusion.

II. VERTICAL CAVITY SURFACE EMITTING LASERS
MODEL

The basic VCSEL block implemented inside OptSim con-
tains a specific set of rate equations that take into consideration
the thermal dependency of the gain and carrier leakage. Along
with this, these equations also consider the spatial dependence
of the carrier distribution and self-heating [10]. Furthermore,
the VCESL building block implemented within OptSim also
includes expressions for the cavity Current-Voltage (I-V) re-
lationship and electrical parasitics.

The current work considered the VCSEL model accessible
as a standard OptSim block. This implemented block is the
extension of the model firstly proposed in [11] to incorporate
the temporal evolution of the field phase [12]. In cylindrical
geometry, the carrier number is expanded in the Bessel series,
and the first two terms N0 and N1 are considered [13].
Assuming spatially independent rate equations, Eq.s 1-4 can
be introduced for the temporal evolution of the carriers N0

and N1, the photons number S and the phase ϕ, with I
injected current, q electron charge, I l leakage current, ϕ100 and
ϕ101 overlap coefficient, β spontaneous emission coefficient,
α linewidth enhancement factor. In order to model the de-
pendence of the VCSEL behavior with respect to temperature
T , a phenomenological representation of the gain G and the
carrier transparency number Nt is introduced based on fitting
parameters, as shown in Eq.s 5-6 [11]. Other parameters
introduced in Eq.s (1-6), objective of the ML study and are
finally defined in Tab. I and Tab. II.

∂N0

∂t
=

ηiI

q
− N0

τ n
− G [γ00(N0 −N t)− γ01N1]

1 + εS
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q
(1)
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∂ϕ
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(
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2
)
/
(
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2
)
(5)

N t(T ) = N tr
(
cn0 + cn1T + cn2T

2
)

(6)

III. DATASET GENERATION USING L-I AND S21 CURVES

The initial dataset of 10 000 simulations is generated at the
constant temperature of 25 °C, varying the values of param-
eters reported in Tab. I and keeping all the other parameters
fixed. During this dataset generation stage, all the parameters
stated in Tab. II are set at their central value of the proposed
ranges. In contrast, the remaining parameters are configured
with the default values specified by OptSim. For each set of
parameters, the dataset is filled with 16 samples of the calcu-
lated Light-Current (L-I) curve, generated for linearly spaced
injected currents I ranging from 1 mA to 25 mA, an interval
compatible with the considered parameter ranges. Also, small-
signal modulation responses are calculated at 6 mA, 12 mA,
18 mA, and 24 mA; for each curve 16 samples are saved,
for frequencies logarithmically spaced between 10 kHz and
50 GHz. An example of results used to fill the first dataset
is shown in Fig. 2. Fig. 2 shows S-parameter small-signal
modulation response (S21) at different bias currents and fixed
temperatures at 25 °C. These curves are numerically simulated
switching on the device, waiting until stationary conditions
are reached and then applying a 1% current amplitude step; a
proper processing of the Fourier Transform of the output field
[14] allows a simple estimation of the S21 curves.

The second dataset of 10 000 simulations is generated, using
the data from four L-I curves calculated at 10 °C, 25 °C, 40 °C,
and 55 °C; for each L-I curve 16 samples are stored shown in
Fig. 3. Fig. 3 shows various curves at different temperatures,
which generally let the modeling of the threshold current’s
temperature sensitivity and thermal rollover.

Table I. Parameters investigated and variation ranges for generating 1st dataset
at 25 °C. Last columns values are selected for generating 2nd dataset.

Parameter Range Value
Current injection efficiency ηi 0.4 to 1 0.8

Photons lifetime τ p 1.5 ps to 3.5 ps 2.5 ps
Carrier lifetime τ n 1.5 ns to 3.5 ns 2.5 ns
Gain coefficient g0 25 000 s−1 to 75 000 s−1 50 000 s−1

Carrier transparency number ntr 0.5×106 to 1.5×106 1×106

Gain saturation factor ε 3×10−7 to 6×10−7 5×10−7

Overlap coeff. (N0 – S) γ00 0.75 to 1 1
Overlap coeff. (N0 – S) γ01 0.2 to 0.5 0.38

Diffusion parameter hdiff 7.5 to 22.5 15
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IV. MACHINE LEARNING MODEL

The analysis proposed in this article mainly considers the
extraction of 18 parameters listed in Tab. I and Tab.II. The
extraction of 18 parameters using a single ML model is quite
complex due to the difference between the characteristics of
the two datasets, so the analysis is performed by simulating
it in a two-step, which requires the training of two smaller
ML agents mainly based on a Deep neural network (DNN)
architecture having different numbers of hidden layers with
ten neurons per layer [15]. The proposed DNN model used
ReLU as an activation function and Mean square error (MSE)

Table II. Parameters investigated and variation ranges for generating the 2nd

dataset.

Parameter Range
Gain coeff. parameter ag0 −0.6 to −0.2
Gain coeff. parameter ag1 1×10−3 K−1 to 3×10−3 K−1

Gain coeff. parameter ag2 3×10−7 K−2 to 3×10−8 K−2

Gain coeff. parameter bg0 0.5 to 3
Gain coeff. parameter bg1 −5×10−3 K−1 to −2×10−3 K−1

Gain coeff. parameter bg2 1×10−5 K−2 to 3×10−5 K−2

Transparency number param. cn0 −0.5 to −2
Transparency number param. cn1 4×10−3 K−1 to 1.2×10−2 K−1

Transparency number param. cn2 3×10−6 K−2 to 1.2×10−5 K−2
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Fig. 4. Parallel architecture of a deep neural network

as a loss function. The DNN model is configured for 1000
training steps with a default learning rate of 0.01. The training
and test set proportion is 70% and 30% of the total dataset.
The proposed DNN is developed by using a Deep Learning
ToolboxTM of Matlab® platform. To improve the prediction
efficiency, we propose a parallel architecture of the DNN for
both the agents as shown in Fig. 4 [16]. For every VCSEL
parameter, a single DNN unit is proposed to predict that
specific parameter. To support this parallel DNN concept, a
detailed analysis has been performed, which shows the MSE
against the training steps keeping the number of neurons
constant and varying the hidden layer size from 1 to 5 (see
Fig. 5, Fig. 6). The Fig. 5, Fig. 6 show the first and the second
agent MSE vs. training steps; it is pretty much visible that
each of the DNN units proposed for predicting the given
VCSEL parameters has different MSE values against the
various configuration of hidden layer size. The hidden layer
size that provides the minimum MSE is selected to get the
superior predicting performance (represented by the dotted
lines in Fig. 5 and Fig. 6). The first DNN agent is trained
using a portion of data generated at a constant temperature
(see Tab. I), and the other part of the same dataset is used



0 20 40 60 80 100
Training Steps 

10 6

10 4

10 2

100

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

i
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 21

10 20

10 19

10 18

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

p
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 21

10 20

10 19

10 18

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

n
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

104

105

106

107

108

109

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

g0
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

108

109

1010

1011

1012

1013

1014

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

Ntr
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 16

10 15

10 14

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 6

10 5

10 4

10 3

10 2

10 1

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

00
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 5

10 4

10 3

10 2

10 1

100

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

01
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

0 20 40 60 80 100
Training Steps 

10 1

100

101

102

Me
an

 S
qu

ar
e E

rro
r (

lo
g)

hdiff
 One hidden layer
 Two hidden layer
 Three hidden layer
 Four hidden layer
 Five hidden layer

Fig. 5. Mean Square Error of Ist agent for the 9 considered parameters.
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to test the ML to extract these experimental data parameters
reported in Tab. I while the second DNN agent is trained on
a subset of another dataset of 10 000 simulations which are
generated against varying temperature 10 °C, 25 °C, 40 °C, and
55 °C for each L-I curve. The other part of this second dataset
is used to test the ML to extract the parameters reported in
Tab. II

V. RESULTS

The predicting performance of each DNN unit is measured
by the relative prediction error (∆) of each considered param-
eter in the first and second test sets (see Eq. 7). The results
related to first ML agent and second ML agent are presented
in Fig. 7 and Fig. 8, respectively. Fig. 7 and Fig. 8 show the
histogram of relative error of the considered parameters along
with the relative error standard deviation. Along with this, for
all the evaluated parameters, the corresponding MSE at the
end of the training is less than 0.1.

∆ =
Predicted V alue−Actual V alue

Actual V alue
(7)

Generally, high-level accuracy is obtained for the 9 parameters
of the first dataset related to the first ML agent. In contrast,
the prediction accuracy is decreased for the second dataset
associated with the second ML agent; this is mainly because
some of the parameters introduce the temperature dependence,
such as ag2 and cn2. However, the later coefficients introduce
a second-order dependence with temperature, which causes
limited effects over the considered temperature range, and
are therefore difficult to estimate. The proposed model can
quickly obtain an accurate set of VCSEL parameters through
a fully automatized and agnostic process. The total simulation
requires approximately a few hours of computation to generate
the datasets and train the ML agents, running on the latest
workstations. Moreover, in a more complex application, the
proposed model can be easily scaled up with a good level of
accuracy for a larger number of parameters (with respect to
the current 18 analyzed in this work) because of its parallel
architecture that has the capability to be swiftly expanded
without affecting the accuracy, which empowers the proposed
architecture to be positively adapted for studying other laser
classes.

VI. CONCLUSION

In the current era, lasers are used for many applications
in industries and academia. This massive usage of lasers is
mainly due to the flexibility of different tuning parameters that
enable them to adapt to various applications quickly. However,
this flexibility is achieved at the cost of a long time and a
considerable effort paid to find the optimal parameters for each
particular application. In this scenario, we proposed a machine
learning-based framework which can effectively extract the
required VCSEL parameters from experimental data. The
proposed approach can extract an accurate set of 18 VCSEL
parameters in real-time through a fully automated way. Besides
this, the presented method can be easily expanded to a larger

number of parameters in more complex models and can be
definitely adapted for characterizing other laser families.
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