
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Generation of Mathematical Programming Representation for Discrete Event Simulation Models of Timed Petri Nets /
Zhang, Mengyi; Alfieri, Arianna; Matta, Andrea. - In: DISCRETE EVENT DYNAMIC SYSTEMS. - ISSN 0924-6703. -
ELETTRONICO. - 34:(2024), pp. 1-19. [10.1007/s10626-023-00387-7]

Original

Generation of Mathematical Programming Representation for Discrete Event Simulation Models of
Timed Petri Nets

Publisher:

Published
DOI:10.1007/s10626-023-00387-7

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984675 since: 2023-12-22T10:49:49Z

Springer

Discrete Event Dynamic Systems
https://doi.org/10.1007/s10626-023-00387-7

Generation of mathematical programming representations
for discrete event simulation models of timed petri nets

Mengyi Zhang1 · Arianna Alfieri2 · Andrea Matta1

Received: 13 May 2021 / Accepted: 17 November 2023
© The Author(s) 2023

Abstract
This work proposes a mathematical programming (MP) representation of discrete event
simulation of timed Petri nets (TPN). Currently, mathematical programming techniques are
not widely applied to optimize discrete event systems due to the difficulty of formulating
models capable to correctly represent the system dynamics. This work connects the two
fruitful research fields, i.e., mathematical programming and Timed Petri Nets. In the MP
formalism, the decision variables of the model correspond to the transition firing times and
the markings of the TPN, whereas the constraints represent the state transition logic and
temporal sequences among events. The MP model and a simulation run of the TPN are
then totally equivalent, and this equivalence has been validated through an application in
the queuing network field. Using a TPN model as input, the MP model can be routinely
generated and used as a white box for further tasks such as sensitivity analysis, cut generation
in optimization procedures, and proof of formal properties.

Keywords Discrete event simulation · Mathematical programming · Timed Petri Nets ·
Discrete event systems

1 Introduction

Discrete event dynamic systems (DEVS) have wide applications in manufacturing and ser-
vice fields. Even though many theoretical and analytical studies on discrete event dynamic
systems have been developed, the performance of real systems with a high degree of com-
plexity can be, sometimes, only evaluated through discrete event simulation (DES). Hence,
simulation–optimization algorithms are widely usedwhen numerical performance evaluation
must be coupled with optimization, i.e., when the best system configuration, according to

B Andrea Matta
andrea.matta@polimi.it

Mengyi Zhang
mengyi.zhang@polimi.it

1 Department of Mechanical Engineering, Politecnico di Milano, via La Masa 1, 20156 Milano, Italy

2 Department of Management and Industrial Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-023-00387-7&domain=pdf
http://orcid.org/0000-0003-3902-2007

Discrete Event Dynamic Systems

some criteria, has to be chosen meanwhile guaranteeing a given value of some performance
measures (Fu 2015).

Most of the simulation–optimization studies consider DES as a black–box function. Under
the black–box setting, simulation and optimization modules are decoupled. The simulation
module provides the performance measure of a given solution generated by the optimization
module, which can help a further optimization round. However, the information given by
simulation in a black–box setting is quite limited. Hence, the optimization module is almost
blind and cannot be very effective, which leads to possibly many trials before a good solution
is reached. This is the main cause for large computational inefficiencies of the overall black–
box procedure.

A promising direction to improve the the efficiency of the black–box procedure is tomerge
the system dynamics into optimization, i.e., considering DES as white–box and modeling
system dynamics as part of the mathematical programming (MP) models. Several works
studying such issues can be found in the literature. To cite a few examples, an MPmodel was
proposed to minimize the makespan of single–server manufacturing systems in Di Marino
et al. (2020), the buffer allocation problem in multi-stage production flow lines with blocking
is addressed in Matta (2008), Weiss and Stolletz (2015) and Alfieri et al. (2020), the opti-
mization of multi-stage systems with complex blocking mechanisms are studied in Pedrielli
et al. (2015). Decomposition or linear approximation approaches are applied to solve the
MP models, which improves the efficiency of black–box algorithms, thus enhancing also the
probability to reach optimality (Weiss and Stolletz 2015; Alfieri et al. 2020).

However, white–box simulation–optimization approaches are not as widely–applied as
black–box ones. The reason is that developing a white–box algorithm requires to master
discrete event dynamic systems, simulation and mathematical programming, and these disci-
plines are not tightly connected. The above mentioned works are all tailored to specific cases,
and there is a lack of generalization to extend the approach they propose to other problems.
To fill this gap, this work proposes an approach to translate the simulation of a timed Petri
net (TPN) into MP models.

In the literature, a few works address similar problems, i.e., translating the behavior
of general discrete event dynamic systems into mathematical programming representation.
Bemporad and Morari (1999) proposed a mixed integer programming modeling framework
for hybrid systems, whose states are mixed integers, in discrete time. Differently, this work
deals with continuous–time discrete–state systems. Chan and Schruben (2008) proposed a
modeling framework to translate a DES model into an MP model starting from an Event
Relationship Graph (ERG) representation of the system dynamics. However, despite its gen-
erality, the ERG representation is not as commonly–used as TPNs. Indeed, developing an
ERGmodel is time-consuming and, as a consequence, their approach is not used often. On the
other hand, TPNs are well–known representations taught in most engineering study courses,
and software tools for easy creation of TPN models also exist.

The benefits of usingMPmodels to represent discrete event systems are many. As already
mentioned, when coupled with optimization, the MP-based algorithms can be faster and
reach a better solution than black-box optimization algorithms. Furthermore, black–box
approaches have limited capability in solving constrained optimization problems, whileMP–
based approaches can easily deal with them (Zhang and Matta 2020). The vast theoretical
and methodological results developed in the MP field can be introduced into the study of
DEVS through simulation. For instance, using sensitivity analysis of MP models, gradient
estimates can be easily derived as suggested in Chan and Schruben (2008). In fact, this paper
does not propose to totally replace simulation with MP but to enrich the toolbox for analyz-
ing and optimizing DEVS. Finally, the application of MP models of DEVS is not limited to

123

Discrete Event Dynamic Systems

optimization but also to show the formal properties of the system under study. For instance,
Basile et al. (2012) proposed the sufficient and necessary condition of K-diagnosability of
TPN based on MP analysis.

The major concern about the application of MP is the computational complexity, as the
solution procedure can be time–consuming or even unbearable. However, many approaches
from the optimization community are available to improve efficiency. Linear programming
approximation (Alfieri and Matta 2012), Benders decomposition (Weiss and Stolletz 2015),
row-column generation (Alfieri et al. 2020), have been studied to solve optimization problems
in real contexts based on mathematical programming representation of DEVS.

The contribution of this work is to propose the first framework for translating TPNs into
MP models. The translation procedure can be conveniently implemented in general–purpose
programming languages and turned into an automated procedure. Thiswork lays a foundation
for developing MP–based approaches that can be used to analyze and optimize TPNs, based
on the vast literature available in the mathematical programming field.

The rest of the paper is organized as follows. Section 2 briefly introduces the TPN and its
simulation algorithm. Section 3 describes the generation of the MP model from an existing
TPN model. Section 4 shows an example of application and validation of the equivalence
between simulation and the MP. Discussion and conclusion are reported in Section 5.

2 Timed Petri Nets

2.1 Basic definitions and notations

A TPN is a directed bipartite graph. The set of nodes in that graph is partitioned into a set
of places P and a set of transitions T . Places and transitions are connected with weighted
and directed edges. In the example shown on the right side of Fig. 1, places (i.e., p1, p2,
p3), transitions (i.e., t1, t2), and tokens are represented by white circles, rectangles, and small
black circles, respectively. Places hold tokens, and tokens are transferred through transition
firings, i.e., one transition firing absorbs tokens from some places and releases them to some
other places. Each transition t ∈ T can absorb tokens from all of its precedents, and the
number of tokens absorbed from place p ∈ P is equal to the weight of the edge connecting
p and t . The number of tokens in each place must be non–negative at any time; hence, a
firing of transition t is enabled if and only if the number of tokens in all its precedents p is
not smaller than the weight on edge (p, t). Each transition t ∈ T can release tokens to all
of its successors, and the number of tokens released to place p ∈ P is equal to the weight
of the edge connecting t and p. It is not necessary that the set of precedents and the set of
successors are mutually exclusive.

In a TPN, the duration between the moment of absorption and the moment of release is
not always negligible, and the duration is called firing time. This work considers firing time
that are non–negative and can follow arbitrary stochastic distributions.

Fig. 1 G/G/2 queue and its TPN model

123

Discrete Event Dynamic Systems

The distribution of tokens in the places is called marking. The initial state of the system,
i.e., the state at time zero, is represented by the initial marking.

Formally, a TPN can be defined as a 6–tuple N = (P, T , F, W , M0, τ), where P denotes
the set of places, T denotes the set of transitions, F ⊆ (P × T) ∪ (T × P) denotes the set
of edges, W : F → Z

+ denotes the weights on edges, M0 : P → N denotes the initial
marking, τ : T → random distribution denotes the firing time of transitions.

The illustrative example shown in Fig. 1 is a G/G/2 queue, in which customers arrive at the
queue following an arbitrary arrival process. For more information on queuing systems, the
reader is referred to the book of Cassandras and Lafortune (2009). One of the two identical
servers (or the idle one if only one is idle) processes customers in the queue one by one,
and the processing time is arbitrarily distributed. After processing, the customer will be
immediately released from the system, and the server becomes idle. On the right side of
Fig. 1, the TPN graph of the G/G/2 system is reported. A token in place p1 shows that it is
possible to schedule the arrival of the next customer, and the firing time of transition t1 is
equal to the inter-arrival time. At the finish of firing t1, a customer arrives, and it is possible
to schedule the next arrival, thus, it releases one token to p1. Furthermore, an arrival will
increase the length of the queue by one, which is represented by the number of tokens in
place p2. Two tokens in place p3 show that two servers are idle. The firing of transition t2
shows the processing of a customer, and it is enabled if and only if at least one server is idle
and there is a customer in the queue. Once the process of the customer finishes, i.e., the finish
of firing t2, a server is released, and a token is sent to place p3.

2.2 Simulation of Timed Petri Nets

The event-scheduling approach is the logic behind all the major DES software and used by
practitioners when developing simulation codes with general-purpose languages (Law 2014).
For the sake of completeness, the logic for simulating TPN is briefly described in this section.
This description will also be useful in the next section to better point out the consistency of
the generated MP models with the system dynamics.

Within the event scheduling worldview of discrete event simulation (Zeigler et al. 2018),
an event is first scheduled and occurs afterward. An event list stores all the scheduled events
that will occur in the future. The event with the earliest occurring time is polled to occur from
the event list, and the clock is advanced to its occurring time. The system state is changed
upon the event occurrence, and the new state enables the schedule of new events. A new
cycle starts from polling the earliest event. In a TPN, events, whose occurrence changes the
system state instantaneously, are either start or finish of transition firings since they are the
only moments when the marking is changed. Thus, an event in a simulation realization of
a TPN can be represented by a triple (t, t ype, time), where t is a transition, t ype is either
start or finish, and time is the occurring time.

Given a TPN N = (P, T , F, W , M0, τ), its simulation can be implemented as in Algo-
rithm 1. In Algorithm 1, the event list, clock time, and system state (i.e., the markings) are
initialized as empty, zero, and initial markings, respectively. Each iteration k is composed of
two steps, i.e., to start all the enabled transitions and to finish the firing in the event list with
the earliest finishing time. In the first step, if the firing of a certain transition t1 is enabled
by the current markings, the firing can be started and tokens are immediately removed from
precedent places of t . In the meantime, the finishing of the firing can be scheduled with a
delay equal to the firing time, which is a sample τ0 of random distribution τ(t1), and the

123

Discrete Event Dynamic Systems

Algorithm 1 Simulating a TPN.
Input:

Initial markings: M0.
1: Initialization:
2: EventList = {}; simulation clock: clock ← 0; current markings: M ← M0;
3: iteration counter: k ← 0.
4: while stopping condition is not true do
5: for each transition t1 ∈ T do
6: while current marking enables the firing of t1, i.e., M(p1) ≥ W (p1, t1), ∀(p1, t1) ∈ F do
7: Sample the firing time τ0 of random variable τ(t1)
8: for each precedent place p1 of t1 do
9: Remove W (p1, t1) tokens from p1: M(p1) ← M(p1) − W (p1, t1)
10: end for
11: Add event (t1, f inish, clock + τ0) to event list.
12: end while
13: end for
14: From EventList, take the event (t2, f inish, t ime) with the earliest time.
15: Advance the clock: clock ← time.
16: for each successive place p2 of t2 do
17: Add W (t2, p2) tokens to p2: M(p2) ← M(p2) + W (t2, p2).
18: end for
19: Update iteration counter: k = k + 1
20: end while

finishing of firing is added to the event list. It can be noticed that the event list contains only
finish–of–firing events, since all the start–of–firing events are executed immediately without
going into the list. In the second step, the firing with the earliest finishing time will be taken
from the event list, and the tokens are released to successive places. The iterative procedure
stops when a given condition is reached, which is usually a given number of iterations or a
value of the clock time.

3 Generation of mathematical programming representations

This section introduces the MP models translating the dynamics of the TPN described in
Algorithm 1. Such MP models are mathematical programming representations (MPR) of
the TPNs under study. Specifically, the time when transition firings start and finish as well
as the markings can all be seen as decision variables in the MP model. The time when
transition t starts to fire for the i-th time is denoted by et,s

i , and et, f
i denotes the time when

the fire finishes. Variables Ek denotes the simulation clock at the beginning of iteration k in
Algorithm 1. Variables et,s

i , et, f
i and Ek are all real–valued and non–negative. Variable m p

k is
used to denote the number of tokens in place p at the beginning of iteration k in Algorithm 1.
Some binary variables are also used in theMPR, and they will be introduced in the following,
during the explanation of the model.

3.1 Completion of transitions

The first group of mathematical relationships, denoted by group–A, are the constraints for
firing finishing as in lines 14 and 15 of Algorithm 1.

123

Discrete Event Dynamic Systems

First of all, setsK, T and It are used to indicate the set of iterations, the set of transitions,
and the set of firings of transition t , respectively. Binary variables wt

i,k are introduced to
represent that i-th firing of transition t finishes in iteration k. If wt

i,k is equal to one, variable

et, f
i is bounded to Ek , as shown in constraints (A1) and (A2). Constraints (A3) state that
each firing-finish event executes at most once. Constraints (A4) state that, in each iteration,
exactly one firing-finish event is executed. Constraints (A5) imply that the delay between the
start and finishing of firing transition t is equal to a sample from the random variable T t .
Constraints (A6) imply that the clock cannot be reversed from iteration k − 1 to iteration k.
Constraint (A7) implies that the simulation clock is initialized to zero. The value of L A in
constraints (A1) and (A2) can be set to a value that is larger than the simulation time span,
as it is needed to bind the finishing time of transitions.

et, f
i − Ek ≥ L A(wt

i,k − 1) ∀ t ∈ T, i ∈ I
t , k ∈ K (A1)

Ek − et, f
i ≥ L A(wt

i,k − 1) ∀ t ∈ T, i ∈ I
t , k ∈ K (A2)

∑

k∈K
wt

i,k ≤ 1 ∀ t ∈ T, i ∈ I
t (A3)

∑

t∈T

∑

i∈It

wt
i,k = 1 ∀ k ∈ K (A4)

et, f
i − et,s

i = τ t
i ∀t ∈ T, i ∈ I

t (A5)

Ek − Ek−1 ≥ 0 ∀ k ∈ K (A6)

E0 = 0 (A7)

3.2 Start of transitions

The second group of constraints, denoted by group–B, depicts the start of transition firing,
as in lines 5 to 13 in Algorithm 1. Binary variables xt

i,k represent that a fire of transition t
starts in iteration k if it is equal to one. Constraints (B1) and (B2) show that the start firing
time is equal to the simulation clock. Also in this case, the value of L B1 can be set to a value
that is larger than the simulation time span as it is used to bound the transition firing time.

et,s
i − Ek ≥ L B1(xt

i,k − 1) ∀ t ∈ T, k ∈ K, i ∈ I
t (B1)

Ek − et,s
i ≥ L B1(xt

i,k − 1) ∀ t ∈ T, k ∈ K, i ∈ I
t (B2)

The condition to start firing transition t is that the tokens in all the precedent places p are
above the required level W p,t . Binary variable zt

k equal to one represents that the condition
for transition t is true, as in constraints (B3). Moreover, a set of binary variables v

t,p
k is used

to verify if the number of tokens in precedent place p is smaller than W p,t , as in constraints
(B4). The value of L B2 can be chosen as the upper bound of marking of place p minus
(W p,t −1). Variable v

t,p
k is equal to 1 if marking in place p is smaller than W p,t . Constraints

(B5) assure that zt
k is equal to zero only if at least one precedent place does not contain

enough tokens. Constraints (B6) show that if zt
k is equal to one, transition t must start to fire

123

Discrete Event Dynamic Systems

in iteration k. Constraints (B7) state that at most one firing of any transition starts for each
transition.

m p
k − W p,t ≥ W p,t (zt

k − 1) ∀ t ∈ T, k ∈ K, p ∈ P (B3)

(W p,t − 1) − m p
k ≥ L B2(v

t,p
k − 1) ∀ t ∈ T, k ∈ K, p ∈ P (B4)

1 − zt
k ≤

∑

p∈P
v

p,t
k ∀ t ∈ T, k ∈ K (B5)

∑

i∈It

x t
i,k = zt

k ∀ t ∈ T, k ∈ K (B6)

∑

k∈K
xt

i,k ≤ 1 ∀ t ∈ T, i ∈ I
t (B7)

Constraints (B7) avoid that certain markings can enable firings of the same transition to
start multiple times. However, in multiple transition firings are probable, since the markings
in the precedent places might be more than twice of the required amount. If only one fire
is allowed, other firings must start in the next iterations, i.e., after some firings finish and
the clock may be advanced, and those firings may be delayed consequently. To deal with
such issue, modifications are made to the TPN model before the proposed MPR model
is applied. The modification is to expand the non–zero–firing-time transition t into two
transitions, denoted by t̃ and t̄ , respectively. Transition t̃ has zero firing time and maintains
all the precedent places, and their weights, of transition t , while transition t̄ maintains the
firing time, successive place, and their weights, of transition t . Transitions t̃ and t̄ are both
connected to an intermediate place pt , with one arc directed from t̃ to place pt and one arc
directed from pt to t̄ . An example is shown in Fig. 2. This expansion can freeze the simulation
clock before all the possible firings of transition t start.

3.3 Event sequencing

The index i of event et,s
i represents the sequence of firing start, i.e., if a firing starts in an

earlier iteration, then its index will be smaller. Moreover, a firing must finish after starting.
Group–C constraints force such sequences, which are relevant to all the events. Constraints
(C1) show that if the i–th firing of transition t does not start before simulation termination,
then the (i +1)–th firingwill not start. Constraints (C2) state that if the i–th firing of transition
t does not start before simulation termination, then it will not finish. Constraints (C3) state
that a firing cannot finish before starting unless it remains in the future event list at the end
of the simulation run. Constraints (C4) depict that the (i + 1)–th firing of transition t must
be scheduled after the i–th execution unless the (i + 1)–th execution is not scheduled before

Fig. 2 TPN expansion

123

Discrete Event Dynamic Systems

simulation termination. The value of LC in constraints (C3) and (C4) can be set to K , i.e.,
the total number of iterations.

∑

k∈K
xt

i+1,k −
∑

k∈K
xt

i,k ≤ 0 ∀ t ∈ T, i ∈ I
t (C1)

∑

k∈K
wt

i,k −
∑

k∈K
xt

i,k ≤ 0 ∀ t ∈ T, i ∈ I
t (C2)

∑

k∈K
kwt

i,k −
∑

k∈K
kxt

i,k ≥ LC (
∑

k∈K
wt

i,k − 1) ∀ t ∈ T, i ∈ I
t (C3)

∑

k∈K
kxt

i+1,k −
∑

k∈K
kxt

i,k ≥ 1 + LC (
∑

k∈K
xt

i+1,k − 1) ∀ t ∈ T, i ∈ I
t (C4)

3.4 State transitions

The tokens in place p are changed from m p
k to m p

k+1 in iteration k, as in constraints (D1) and
in lines 16 to 18 in Algorithm 1. The transitions t that start in firing in iteration k absorbs
Ap,t tokens from the precedent places p, and the firing that finishes in iteration k releases
tokens to the successive places.

m p
k+1 = m p

k −
∑

t∈T
W p,t

∑

i∈It

x t
i,k +

∑

t∈T
W t,p

∑

i∈It

wt
i,k ∀p ∈ P, k ∈ K (D1)

Equation (D1) can also be reformulated as (D2).

m p
k+1 = m p

0 −
∑

t∈T
W p,t

k∑

k′=0

∑

i∈It

x t
i,k′ +

∑

t∈T
W t,p

k∑

k′=0

∑

i∈It

wt
i,k′ ∀p ∈ P, k ∈ K (D2)

3.5 Objective function

The objective function can be any function of transition firing times, such as average system
time or average waiting time in queueing systems, i.e., et,s

i , et, f
i and Ek . Notice, however,

that multiple feasible solutions may appear in terms of binary variables since the sequence
of events with identical execution times is not uniquely defined.

The flexibility of the objective function definition is a relevant difference between the
formulation proposed by Chan and Schruben (2008) and the approach proposed in this work.
The objective function of MPR in (Chan and Schruben 2008) can be only the sum of all
the execution times, thus allowing only to generate simulation models and not optimization
models for decision-making. The uniqueness of the optimal solution and the flexibility of
the objective function formulation is particularly beneficial if one wants to make use of the
resulting MPR to solve an optimization problem related to the design or the operation of the
discrete event system (e.g., the capacity of the queue or the control policy of a manufacturing
system), since changing the objective function or adding new constraints to calculate the
system performance will not influence the equivalence between the MPR and a simulation
run.

123

Discrete Event Dynamic Systems

Fig. 3 TPN of G/G/2

4 Example of MPR generation from TPN

In this section, the G/G/m model is used as an example to generate MPR from TPN. Both
the proposed and the state-of-the-art formulations are presented. Finally, also an extended
model to optimize the G/G/m queue is stated.

4.1 MPR of the G/G/2 queue

A G/G/m queue is composed of m parallel identical servers (Cassandras and Lafortune
2009). We deal with the case in which the number of servers m is equal to 2. Customers
arrive at the queue following a general arrival process. Customers in the queue are served,
one by one, by one of the identical idle servers, and the processing time of each customer
is generally distributed. After being processed, the customer will be immediately released
from the system, and the server becomes idle again. In Fig. 3, the TPN of the G/G/2 system
is shown. A token in place parr shows that it is possible to schedule the arrival of the next
customer, and the firing time of transition tarr is equal to the inter-arrival time. At the end
of the firing of tarr , a customer arrives, and it is then possible to schedule the next arrival,
i.e., it releases one token to parr . Furthermore, each arrival will increase the length of the
queue by one unit, which is represented by the number of tokens in place pqueue. Two tokens
in place pidle show that two servers are idle. The firing of transition tprocess represents the
processing of a customer, and it is enabled if and only if at least one server is idle and there
is at least one customer in the queue. Once the process of the customer finishes, i.e., the end
of the firing of tprocess , the server is released, and a token is sent to place pidle.

Asmentioned in Section 3.2, the transitionswith non-zero firing times are expanded before
implementing the MPR generation. In the case of G/G/2 queue, transition tprocess needs to
be expanded to t̃ process , t̄ process and pprocess . Transition tarr does not need expansion since
it is self-limiting. The resulting expanded TPN is shown in Fig. 4.

The sets T, K, I
t are specified as follows. Set T is composed of three transitions

{tarr , t̃ process, t̄ process} as shown in Fig. 4. If n job arrivals, processing, and departures are

Fig. 4 TPN expansion of G/G/2

123

Discrete Event Dynamic Systems

simulated, each of the three transitions has to be fired n times, and the set It is equal to
{1, 2, ..., n}. There are 3n transition firings in the simulation execution and the setK is equal
to {0, 1, ..., 3n − 1}. The initial markings m parr

0 , m
pqueue
0 , m

pprocess
0 , m pidle are specified as 1,

0, 0, 2.
Once the TPNwith the initial markings and the simulation length are provided, constraints

from (A1) to (A7), from (B1) to (B7), from (C1) to (C4), and (D1) can be generated. This
generation can also be implemented automatically as shown in the pseudo-code described in
Algorithm 2.

T = {tarr , t̃ proc, t̄ proc}
K = {0, 1, ..., 3n − 1}

I
t = {1, 2, ..., n}

Algorithm 2 Implementation pseudo code.
Input:

Timed Petri Net: N = (P,T, F, W , M0, τ).
Number of firing of each transition t : I t and index set It

Total number of firings: K and index set K = {0, 1, ..., K − 1}
1: Expand TPN:
2: for transition t ∈ T: do
3: if t has non-zero firing time then
4: Expand t into t̃, pt , t̄ and update N .
5: end if
6: end for
7: for t ∈ T, i ∈ I

t , k ∈ K do
8: (A1), (A2), (B1), (B2)
9: end for
10: for t ∈ T, i ∈ I

t do
11: (A3),(A5),(B7),(C1),(C2),(C3),(C4)
12: end for
13: for k ∈ K do
14: (A4),(A6)
15: end for
16: for t ∈ T, k ∈ K, p ∈ P do
17: (B3),(B4)
18: end for
19: for t ∈ T, k ∈ K do
20: (B5),(B6)
21: end for
22: for p ∈ P, k ∈ K do
23: (D1),(D2)
24: end for

Table 1 shows the first ten iterations of a simulation run of the G/G/2 queue. The remainder
of this section describes this experiment to show how the decision variables take values
according to the imposed equations (i.e., to the constraints of the mathematical programming
model).

In iteration 0, the system is in its initial state with markings (1,0,0,2), and transition tarr

can be fired; equivalently, binary variables zarr
0 and xarr

1,0 are equal to 1 in the solution of the
MPR. The time to start firing transition tarr is equal to 0, and the variable earr ,s

1 takes value

0 in the MPR solution. The firing will finish at time 2.3, and variable earr , f
1 takes value 2.3

123

Discrete Event Dynamic Systems

Ta
bl
e
1

Si
m
ul
at
io
n
ru
n
an
d
M
PR

so
lu
tio

n
of

G
/G
/m

qu
eu
e

k
cl

oc
k

M
ar
ki
ng
s

St
ar
tfi

ri
ng
s

U
nfi

ni
sh
ed

fir
in
gs

Fi
ni
sh

Fi
ri
ng

0
0

(1
,
0,

0,
2)

tar
r

t a
rr

:2
.3

t a
rr

:2
.3

E 0
=

0
m
0

=
(1

,
0,

0,
2)

zar
r

0
=

1,
xar

r
1,
0

=
1,

ear
r,

s
1

=
0,

ear
r,

f
1

=
2.
3

w
ar

r
1,
0

=
1

1
2.
3

(1
,
1,
0,

2)
tar

r
,
t̃pr

oc
t̃ p

ro
c

:2
.3

,
tar

r
:1

1.
1

t̃ p
ro

c
:2

.3

E 1
=

2.
3

m
1

=
(1

,
1,
0,

2)
zar

r
1

=
1,

xar
r

2,
1

=
1,

ear
r,

s
2

=
2.
3,

ear
r,

f
2

=
11

.1
w

˜
pr

oc
1,
1

=
1

z
˜

pr
oc

1
=

1,
x

˜
pr

oc
1,
1

=
1,

e
˜

pr
oc

,s
1

=
2.
3,

e
˜

pr
oc

,
f

1
=

2.
3

2
2.
3

(0
,
0,

1,
1)

t̄ p
ro

c
t̄ p

ro
c

:6
,
tar

r
:1

1.
1

t̄ p
ro

c
:6

E 2
=

2.
3

m
2

=
(0

,
0,

1,
1)

z
¯

pr
oc

2
=

1,
x

¯
pr

oc
1,
2

=
1,

e
¯

pr
oc

,s
1

=
2.
3,

e
¯

pr
oc

,
f

1
=

6
w

¯
pr

oc
1,
2

=
1

3
6

(0
,
0,

0,
2)

tar
r

:1
1.
1

tar
r

:1
1.
1

E 3
=

6
m
3

=
(0

,
0,

0,
2)

w
ar

r
2,
3

=
1

4
11

.1
(1

,
1,
0,

2)
tar

r
,
t̃pr

oc
t̃pr

oc
:1

1.
1,

tar
r

:1
2.
1

t̃ p
ro

c
:1

1.
1

E 4
=

11
.1

m
4

=
(1

,
1,
0,

2)
zar

r
4

=
1,

xar
r

3,
4

=
1,

ear
r,

s
3

=
11

.1
,
ear

r,
f

3
=

12
.1

w
˜

pr
oc

2,
4

=
1,

z
˜

pr
oc

4
=

1,
x

˜
pr

oc
2,
4

=
1,

e
˜

pr
oc

,s
2

=
11

.1
,
e

˜
pr

oc
,

f
2

=
11

.1

5
11

.1
(0

,
0,

1,
1)

t̄ p
ro

c
tar

r
:1

2.
1,

t̄ p
ro

c
:1

6.
9

tar
r

:1
2.
1

123

Discrete Event Dynamic Systems

Ta
bl
e
1

co
nt
in
ue
d

k
cl

oc
k

M
ar
ki
ng
s

St
ar
tfi

ri
ng
s

U
nfi

ni
sh
ed

fir
in
gs

Fi
ni
sh

Fi
ri
ng

E 5
=

11
.1

m
5

=
(0

,
0,

1,
1)

z
¯

pr
oc

5
=

1,
x

¯
pr

oc
2,
5

=
1,

e
¯

pr
oc

,s
2

=
11

.1
,
e

¯
pr

oc
,

f
2

=
16

.9
w

ar
r

3,
5

=
1

6
12

.1
(1

,
1,
0,

1)
tar

r
,
t̃pr

oc
t̃pr

oc
:1

2.
1,

tar
r

:1
5.
2,

t̄ p
ro

c
:1

6.
9

t̃pr
oc

:1
2.
1

E 6
=

12
.1

m
6

=
(1

,
1,
0,

1)
zar

r
6

=
1,

xar
r

4,
6

=
1,

ear
r,

s
4

=
12

.1
,
ear

r,
f

4
=

15
.2

w
˜

pr
oc

3,
6

=
1

z
˜

pr
oc

6
=

1,
x

˜
pr

oc
3,
6

=
1,

e
˜

pr
oc

,s
3

=
12

.1
,
e

˜
pr

oc
,

f
3

=
12

.1

7
12

.1
(0

,
0,

1,
0)

t̄pr
oc

tar
r

:1
5.
2,

t̄pr
oc

:1
6.
9,

t̄pr
oc

:2
0.
1

tar
r

:1
5.
2

E 7
=

12
.1

m
7

=
(0

,
0,

1,
0)

z
¯

pr
oc

7
=

1,
x

¯
pr

oc
3,
7

=
1,

e
¯

pr
oc

,s
3

=
12

.1
,
e

¯
pr

oc
,

f
3

=
20

.1
w

ar
r

4,
7

=
1

8
15

.2
(1

,
1,
0,

0)
tar

r
t̄pr

oc
:1

6.
9,

tar
r

:1
7.
8,

t̄pr
oc

:2
0.
1

t̄pr
oc

:1
6.
9

E 8
=

15
.2

m
8

=
(1

,
1,
0,

0)
zar

r
8

=
1,

xar
r

5,
8

=
1,

ear
r,

s
5

=
15

.2
,
ear

r,
f

5
=

17
.8

w
t̄pr

oc

2,
8

=
1

9
16

.9
(0

,
1,
0,

1)
t̃pr

oc
t̃pr

oc
:1

6.
9,

tar
r

:1
7.
8,

t̄pr
oc

:2
0.
1

t̃pr
oc

:1
6.
9

E 9
=

16
.9

m
9

=
(0

,
1,
0,

1)
z

˜
pr

oc
9

=
1,

x
˜

pr
oc

4,
9

=
1,

e
˜

pr
oc

,s
4

=
16

.9
,
e

˜
pr

oc
,

f
4

=
16

.9
w

˜
pr

oc
4,
9

=
1

10
16

.9
(0

,
0,

1,
0)

t̄pr
oc

tar
r

:1
7.
8,

t̄pr
oc

:2
0.
1,

t̄pr
oc

:2
5.
5

tar
r

:1
7.
8

E 1
0

=
16

.9
m
10

=
(0

,
0,

1,
0)

z
¯

pr
oc

10
=

1,
x

¯
pr

oc
4,
10

=
1,

e
¯

pr
oc

,s
4

=
16

.9
,
e

¯
pr

oc
,

f
4

=
25

.5
w

ar
r

5,
10

=
1

123

Discrete Event Dynamic Systems

Table 2 Computation time (s) to solve the MPR of the G/G/2 system using Cplex

Replication max{k} = 10 max{k} = 20 max{k} = 30 max{k} = 40

1 0.033 0.706 64.155 > 3600

2 0.083 0.714 29.273 > 3600

3 0.044 2.951 37.804 > 3600

4 0.152 3.733 27.086 > 3600

5 0.03 0.692 39.425 > 3600

equivalently. As that firing finished in the current iteration, warr
1,0 is equal to 1. After that, the

markings are changed to (1,1,0,2), and the current iteration ends.
At the beginning of iteration 1, the simulation clock is advanced to the time when the

firing has finished in iteration 0, i.e., 2.3. In the MPR solution, the variable E1 is then equal to
2.3. With markings (1,1,0,2), it is possible to fire tarr and t̃ proc, and variables zarr

1 and z ˜proc
1

are equal to 1. These firings are the second and first firing of tarr and t̃ proc, respectively, and
variables xarr

2,1 and x ˜proc
1,1 take value 1 in theMPR solution. The starting time of the transitions

tarr and t̃ proc are equal to the clock time, and variables earr ,s
2 and e ˜proc,s

1 are equal to 2.3.
With a sample from the arrival process, the next customer will arrive at time 11.1, i.e., the
finishing time of transition tarr is equal to 11.1, which is the value of variable earr , f

2 . Since
transition t̃ proc is zero-firing-time, the firing will finish at time 2.3, which is the value of
variable e ˜proc, f

1 . There are two firings to be finished in the queue, and that of t̃ proc has an
earlier time, so it will be the firing that will be finished in this iteration and, hence, variable
w

˜proc
1,1 is equal to 1. After that, the markings are changed to (0, 0, 1, 1) and the iteration ends.
Similarly, for iterations 2 to 10, the values of the MPR variables in the solution and the

simulation realizations, which are reported in Table 1, can be explained as done for iterations
0 and 1.

The MP model of the G/G/2 system has been solved by Cplex on an Intel(R) Core(TM)
i5-10600KF CPU@ 4.10GHz and RAM equal to 32GB as hardware. Both inter-arrival time
and service times follow the uniform distribution UNIF(0,2). By varying the seed of random
number generation, the experiment is replicated 5 times, and the results are shown in Table 2.
When the number of iterations, i.e., max{k}, is up to 40, the model cannot be solved within
1 hour.

These results are expected due to the density of the MP models. However, the mapping
between DES and MP is important as a tool to create models that can be solved by ad-hoc
algorithms. For example, the duality of the approximate LP and the system monotonicity of
TPN satisfying specific conditions have been studied in (Zhang 2021) and used to design
efficient solution algorithms.

4.2 Comparison with state-of-the-art model

In (Chan and Schruben 2008), an MPR of DEVS simulation based on ERG is presented.
The ERG of the G/G/2 queue is shown in Fig. 5. In the ERG, nodes, and arcs represent the
events and the triggering relationships, respectively. The simulation of the G/G/2 queue is
composed of three events, which are arrival, starting process, and f inishing process,
respectively. The three events are presented by nodes Arr , Start proc, and Fin proc in the

123

Discrete Event Dynamic Systems

Fig. 5 ERG of G/G/2

ERG. The node Run indicates the launch of the simulation. There are two state variables for
G/G/2 queue, queue and idle, representing the number of jobs in the queue and the number
of idle servers, respectively. The equations below each node state how the state variables
are changed upon the execution of the events. For instance, when event Arr occurs, one job
enters the system and queue is incremented by one. When there is an arc connecting two
nodes, it means that it is possible to execute the destination event only after the source event
is executed. The execution of an event can also be subject to certain conditions, reported as
labels on the connecting arc. The conditions can be a time delay or a logic expression. The
arc pointing from Arr to Arr is accompanied by a time delay τ(arr), indicating that the next
job will arrive with a time delay equal to the inter-arrival time from the previous one. The arc
pointing from Arr to Start proc is labeled with the logic expression idle ≥ 1, indicating
that after a job has arrived, it can start to be served only if there is at least one idle server.

The MPR derived from the ERG in Fig. 5 is as follows:

min
∑n

i=1(e
Arr
i + eStart proc

i + eFinish proc
i) (1)

eArr
i+1 − eArr

i ≥ τ Arr
i ∀i = 1, ..., n − 1 (2)

eStart proc
i − eArr

i ≥ 0 ∀i = 1, ..., n (3)

eFin proc

i ′ − eStart proc
i ≥ τ

proc
i + M(δ

Start proc,Fin proc

i,i ′ − 1) ∀i = 1, ..., n (4)
∑n

i=1 δ
Start proc,Fin proc

i,i ′ = 1 ∀i
′ = 1, ..., n (5)

∑n
i ′=1

δ
Start proc,Fin proc

i,i ′ = 1 ∀i = 1, ..., n (6)

eStart proc
i+2 − eFin proc

i ≥ 0 ∀i = 1, ..., n − 2 (7)

eStart proc
i+1 − eStart proc

i ≥ 0 ∀i = 1, ..., n − 1 (8)

eFin proc
i+1 − eFin proc

i ≥ 0 ∀i = 1, ..., n − 1 (9)

eArr
i ≥ 0, eStart proc

i ≥ 0, eFin proc
i ≥ 0 ∀i = 1, ..., n (10)

δ
Startproc,Finproc

i,i ′ ∈ {0, 1} (11)

The objective function Eq. 1 is the minimization of the execution time of all the events.
Constraints Eqs. 2 to 7 are derived from the arcs in the ERG, and indicate the event triggering
relationships. The arc pointing from Arr to Arr generates constraints Eq. 2, which represent
the inter-arrival time between two adjacent arrivals. The arc pointing from Arr to Start proc
generates constraints Eq. 3, representing that a job can be processed only after it arrives. The
arc pointing from Start proc to Fin proc generates the constraints Eqs. 4 to 6, representing
that a job can be finished only after the process starts and a certain processing time is elapsed.
Since the processing time is generated from probability distributions, it can take different
values for different jobs. A job started later can be finished before an earlier started one,

123

Discrete Event Dynamic Systems

i.e., the ranking of the i-th started job in the finishing sequence can be different from i .
Therefore, binary variables δ

Start proc,Fin proc

i,i ′ are introduced, and the i-th started job is the

i
′
-th to finish if and only if δStart proc,Fin proc

i,i ′ is equal to one. The arc pointing from Fin proc

to Start proc generates the constraints Eq. 7 and represents that a job can be started only
when there is an idle server. The subscripts i of variables eStart proc

i and eFin proc
i indicate

the occurrence sequence of the events, as in constraints Eqs. 8 and 9.
This MPR model is different from the one proposed in this work in the following aspects.

First, the system states, which are the decision variables in the model proposed in this work,
are not explicitly modeled in Chan and Schruben’s model. Second, in Chan and Schruben’s
model, the objective is to minimize all the event execution times. Instead, the formulation
of the objective function can be more flexible in the model proposed in this work, since
executing events as soon as possible is already assured by the constraints. This makes Chan
and Schruben’s model perfectly capable to simulate a system but it creates difficulties when
optimization issues have to be included, as it will be discussed in the next section. Third, Chan
and Schruben (2008) only proposed the descriptive procedure to generate an MPR, without
well-formulated mapping from ERG to MPR, which makes the implementation difficult. In
this work, instead, the proposed method is well-formulated, and the only required input is
the Timed Petri Net.

Chan and Schruben’smodel has also been solvedwithCplex using the same computer as in
Section 4.1.1. The results are shown in Table 3. Themodel can be solved up to 150 simulation
iterationswithin 1 hour, and the computational times are smaller than those reported in Table 2
for the MP model based on TPN.

By comparing Tables 2 and 3, it is clear that the ERG-based model is superior to the TPN-
based model in the computation aspect when a state-of-the-art solver as Cplex is used. This is
due to the sparsity of the constraint systems of the ERG-based model. However, the solvable
size of the model is still not large enough to address realistic size problems in the simulation-
optimization context. As previously discussed, the proposed TPN-based modeling method is
meant to provide a newperspective of understanding and analyzingDES, rather than replacing
simulation with mathematical programming. The same is valid for Chan and Schruben’s
ERG-based modeling. The advantages of the proposed TPN-based modeling with respect to
Chan and Schruben’s modeling is in its increased flexibility, as previously mentioned and as
it will be discussed in Section 4.3 specifically for the simulation-optimization context.

Table 3 Computation time (s) to solve the ERG-based MPR of the G/G/2 system using Cplex

Replication max{k} = 50 max{k} = 100 max{k} = 150 max{k} = 200

1 0.057 0.937 27.625 > 3600

2 0.057 0.607 18.649 > 3600

3 0.055 1.048 37.0 > 3600

4 0.167 1.136 17.97 > 3600

5 0.064 4.097 179.882 > 3600

123

Discrete Event Dynamic Systems

4.3 MPR optimizing the server number of G/G/m queue

An MP model optimizing the server number in a G/G/m queue, based on the MPR proposed
in Section 4.1, can be formulated as follows. As known, the larger the number of servers, the
smaller the waiting time. However, servers have a cost, and this is why their number should be
minimized. The objective function Eq. 12 is then the minimization of the number of servers,
which is the initial marking in place pidle, i.e., variable midle

0 . However, constraints must
be set on the maximum allowed average waiting time, otherwise, the obvious solution of a
number of servers equal to 1 is the one reached by the MPR solution.

minmidle
0 (12)

∑n
i=1(e

˜proc, f
i − earr , f

i) ≤ wt · n

(A1) − (A7), (B1) − (B7), (C1) − (C4), (D1) (13)

Constraint Eq. 13 indicates that the average waiting time does not have to exceed a target
value wt . Constraints (A1) - (A7), (B1) - (B7), (C1) - (C4), (D1) are the same as presented
in Section 4.1.

The solution of the model gives the minimum number of servers that allows an average
waiting time not larger than wt . Algorithms developed in the mathematical programming
field can be used to efficiently solve the proposed model.

Notice that if the same optimization has to be done using Chan and Schruben’s model
presented in the previous section, modeling should not be that easy as the number of servers
is not explicitly considered in their model. In fact, the model is formulated for two servers
and the +1 and +2 in the subscripts of the model are meant to represent this. If the number
of servers has to be minimized respecting a maximum value of the average waiting time:
1) the model has to be solved for each value from 1 till when the maximum desired value
of waiting time is not reached, or 2) other variables and constraints, explicitly representing
the number of servers and the maximum value of the waiting time, have to be added, thus
modifying and making more complex the Chan and Schruben’s model.

5 Conclusion

The generation of formal models for the analysis and optimization of discrete event systems
is a fundamental problem especially when complex systems are under study. This work
proposes a well-formulated framework to translate general TPNs into MP models. The MP
models generated by the proposed procedure capture the systemdynamics by linking, through
equations, events with system design variables, and this allows a rigorous study of the system
under investigation. MP models will be useful for a variety of applications such as obtaining
formal proofs of structural properties (e.g., monotonicity or convexity of some performance
measures), providing sensitivity analysis of system performance, speeding up the search for
the optimum in the case of a proper objective function is also defined into the MP model.

The proposed approach is quite general and easy to adopt in practice as it is founded on the
initial TPN description of the system that the user of the proposed procedure has to define.
The type of TPN described in this work also represents the types of discrete event systems
that the proposed approach can deal with; in simpler words, the considered TPN also defines
the boundaries of this research.

This work lays a common foundation for developing MP–based approaches that can be
used to analyze and optimize TPNs based on the vast literature available in the mathemat-

123

Discrete Event Dynamic Systems

ical programming field. The possibility of using the mathematics describing discrete event
systems allows the development of new optimization algorithms customized to specific sys-
tem dynamics. Indeed, the generated MP models do not necessarily need to be solved as
is. Instead, they can be part of more general simulation-optimization approaches in which
discrete event simulation is used to study the system under a certain scenario whereas theMP
model is used to guide the search for the optimum (or good solution) through the effective-
ness of the captured system dynamics. To cite a few examples, optimization and feasibility
cuts can be ad-hoc generated after a simulation experiment to reduce the searching space
under decomposition frameworks such as Benders or LP shaped (Zhang 2021). Branch and
bound algorithms can make use of bounds easily generated from linear approximations of
MP models. Sensitivities analysis can be used as a technique for perturbation analysis.

In conclusion, the ability to easily generate MP models from TPNs will enrich the set of
tools in the hands of system engineers by adding algorithms and approaches from discrete
optimization theory.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Declarations

Conflicts of interest The authors have no conflict of interest to declare that are relevant to this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alfieri A, Matta A (2012) Mathematical programming formulations for approximate simulation of multistage
production systems. Eur J Oper Res 219(3):773–783

Alfieri A, Matta A, Pastore E (2020) The time buffer approximated buffer allocation problem: A row-column
generation approach. Comput Oper Res 115:104835

Basile F, Chiacchio P, De Tommasi G (2012) On k-diagnosability of petri nets via integer linear programming.
Automatica 48(9):2047–2058

Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica
35(3):407–427

Cassandras C, Lafortune S (2009) Introduction to discrete event systems. Springer, US
ChanWK, Schruben L (2008) Optimization models of discrete-event system dynamics. Oper Res 56(5):1218–

1237
Di Marino E, Su R, Basile F (2020) Makespan optimization using timed petri nets and mixed integer linear

programming problem. IFAC-PapersOnLine 53(4):129–135
Fu M (ed) (2015) Handbook of simulation optimization. Springer
Law AM (2014) Simulation modeling and analysis (vol 5) McGraw-Hill New York
Matta A (2008) Simulation optimization with mathematical programming representation of discrete event

systems. In Proceedings of the 2008 Winter Simulation Conference (pp 1393–1400)
Pedrielli G, Alfieri A, Matta A (2015) Integrated simulation-optimisation of pull control systems. Int J Prod

Res 53(14):4317–4336
Weiss S, Stolletz R (2015) Buffer allocation in stochastic flow lines via sample-based optimization with initial

bounds. OR Spectrum 37(4):869–902

123

http://creativecommons.org/licenses/by/4.0/

Discrete Event Dynamic Systems

Zeigler BP, Muzy A, Kofman E (2018) Theory of modeling and simulation: discrete event & iterative system
computational foundations. Academic press

Zhang M (2021) Resource allocation problems in manufacturing systems using white-box- simulation-based
cut generation approach (Unpublished doctoral dissertation)

Zhang M, Matta A (2020) Models and algorithms for throughput improvement problem of serial production
lines via downtime reduction. IISE Transactions 52(11):1189–1203

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mengyi Zhang Dr. Mengyi Zhang received her Doctoral degree of
mechanical engineering, specializing in production systems from
Politecnico di Milano in 2021. Her areas of research include simula-
tion optimization of manufacturing systems application.

Arianna Alfieri Arianna Alfieri is a full professor at Politecnico di
Torino (Turin, Italy), where she currently teaches production planning
and control, system simulation, and analysis and management of pro-
duction systems. Her research area includes optimization, simulation,
scheduling and supply chain management.

123

Discrete Event Dynamic Systems

Andrea Matta Andrea Matta is Professor of Manufacturing at Politec-
nico di Milano, where he currently teaches integrated manufactur-
ing systems and manufacturing. His research area includes analysis,
design, and control of manufacturing and health care systems. He is
Editor in Chief of the Flexible Services and Manufacturing Journal.

123

	Generation of mathematical programming representations for discrete event simulation models of timed petri nets
	Abstract
	1 Introduction
	2 Timed Petri Nets
	2.1 Basic definitions and notations
	2.2 Simulation of Timed Petri Nets

	3 Generation of mathematical programming representations
	3.1 Completion of transitions
	3.2 Start of transitions
	3.3 Event sequencing
	3.4 State transitions
	3.5 Objective function

	4 Example of MPR generation from TPN
	4.1 MPR of the G/G/2 queue
	4.2 Comparison with state-of-the-art model
	4.3 MPR optimizing the server number of G/G/m queue

	5 Conclusion
	References

