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We study the low-energy single-electron transport across a junction of two magnetic Weyl semimetals, in
which the anisotropy axes are tilted one respect to the other. Using a two-band model with a potential step, we
compute the transmission factor for normal and Klein tunneling and the refraction properties of the interface as
a function of the tilt angle. We show that the interface acts as a beam splitter, separating electrons with different
chiralities. We also characterize interface states, only appearing for finite tilt angle, which connect the projection
of the Fermi surfaces on the two sides of the junction, and we discuss transport effects due to their interplay with
Fermi arcs.

DOI: 10.1103/PhysRevB.106.045413

I. INTRODUCTION

Weyl semimetals are three-dimensional materials, in which
the valence and conduction bands are well separated every-
where in the Brillouin zone, except at a finite number of
isolated points, dubbed Weyl nodes. Here, two nondegen-
erate, approximately linear, bands cross, which make the
sample behave as a semimetal when the chemical poten-
tial is approximately at the band crossing and originate the
characteristic topological magneto-electric response [1–5]. In
many ways, this class of materials can be thought of as the
three-dimensional analog of graphene, but the extra dimension
provides robustness against time-reversal breaking perturba-
tions and a very large magnetic field is necessary in order to
gap out the electronic spectrum [6,7]. In addition, the topo-
logical protection of the band crossings provides robustness
against moderate disorder [8].

One way for nondegenerate band crossings to appear in
the spectrum is to break the time-reversal symmetry: Weyl
semimetals of this family are dubbed magnetic and exhibit
partial or full magnetization of the carriers at the Fermi
level. They provide an excellent playground for theorists
and experimentalists due to the richness of exotic features,
and are currently object of widespread attention because
their bulk Berry curvature potentially allows extensive ma-
nipulation of electronic currents [9–11]. They host surface
states in the form of Fermi arcs, which are connected to
nontrivial Hall response, magnetoconductance, and thermal
transport phenomena [12–14]. Compounds in the pyrochlore
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iridates family and the ferromagnet HgCr2Se4 were the first
candidate Weyl semimetals [15,16], followed by various
layered materials [17], such as Co3Sn2S2 [18–21] and the
antiferromagnets Mn3X (X = Sn, Ge) [22], in which the
Weyl nodes were identified. Magnetic Heusler alloys also
provide excellent candidates for time-reversal-broken Weyl
semimetals [9,17,23], with various experimental confirma-
tions, including Ti2MnAl [24–26], Co2TiX (X = Si, Ge, Sn),
GdSI [27], and Co2MnGa [28]. See also [29] for a recent
review.

The mounting number of experiments and the high degree
of manipulation available on the samples prompts theoretical
efforts to investigate systems with more complicated geome-
tries. In this paper, we address electronic transport at an
interface between two magnetic Weyl semimetals, which are
tilted one with respect to the other. The relativistic spectrum
is at the origin of intriguing transport properties, such as
Klein tunneling [30,31]. The helicity of the quasiparticles near
the Weyl nodes, together with the spin texture of the Fermi
arcs, also originates nontrivial physics at the interface with a
normal metal [32] or with a superconductor [33]. A common
instance of an interface may be created by imperfections in the
sample, in the form of irregular surfaces or adjacent extended
regions with misaligned lattice structures. Moreover, when
a crystalline sample is abruptly cooled down, small cracks
in the material can be generated, so that the lattice vectors
are not perfectly aligned anymore on the two sides of the
defect. Finally, a sharp domain wall between two regions with
different magnetization [34,35] can be described within our
formalism [36]. In these situations, translation invariance in
the direction perpendicular to the interface is broken. As a
result of the displacement of the crystal axes, the dispersion
of the electron changes across the interface, resulting in the
refraction of an incident electron beam [37]. A junction of two
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FIG. 1. Two identical Weyl semimetals, with anisotropy axes
rotated in the yz plane by a tilt angle θ , share a common interface
at x = 0. The system is infinite in the y and z directions.

different noncentrosymmetric Weyl semimetals of the same
family has been considered in [38]: following the idea of
Veselago lensing in graphene [39–41], the authors proposed
application to scanning tunneling microscopy and to fine con-
trol of electron transport using a square potential barrier.

We focus in this paper on a single interface and char-
acterize its transmission properties as a function of the tilt
angle, see Fig. 1, and their impact on electric transport and
thermoelectric properties of the sample. We also consider the
possibility of different doping levels on the two sides of the
sample, hence, the possibility of Klein tunneling, and compute
how the interface affects the direction of a transmitted electron
or hole. In addition, we address the question of electronic
states localized at the interface. For finite tilt, the projections
of the Weyl nodes from the two sides do not coincide, which
suggests the necessity of interface states joining the discon-
nected parts of the Fermi surface. A transfer matrix formalism
has previously been applied in [42] to investigate how Fermi
arcs on different sides of an interface can connect. The fate of
surface states when two Weyl semimetals are tunnel-coupled
has been further studied in [43], see also [36,44] for the effect
of a twist. In our paper, we consider the transparent limit
and find interface arcs, supporting chiral transport along the
interface. We emphasize the universal origin of these interface
states, whose main features can be derived using a simple low-
energy model of a magnetic Weyl semimetal with a minimal
pair of nodes.

The article is structured as follows. In Sec. II we intro-
duce the model underlying our study. In Sec. III we analyze
electron tunneling and Klein tunneling across a transparent
junction, and we determine the single-electron transmission
amplitude as a function of the incoming momentum. We
then compute the low-temperature limits of the conductance
and the thermopower per unit surface, showing their relation
with the shape and position of the projected Fermi surfaces.
In Sec. IV we determine the refraction properties of the
junction, showing that the interface acts as a beam splitter,
where electrons with opposite chiralities are transmitted with
different angles. In Sec. V we show that states localized at
the interface, in the shape of arcs in the Brillouin zone, are
generically expected in a minimal continuum model where
the interface is transparent and the Fermi surfaces on the

two sides are not overlapping. In Sec. VI we introduce the
contribution of Fermi arcs in the scattering problem and argue
that the interface states play an essential role in transport at
large rotation angles. We offer conclusions and an outlook in
Sec. VII. Technical details about rotations, interface states,
and the diagonalization of the slab problem are provided in
several Appendices.

II. MODEL

A simple model for a Weyl semimetal with broken
time reversal symmetry is described by the Hamiltonian
(h̄ = 1) [2,14,45,46]

H0 = vkxσ
x + vkyσ

y + m(kz )σ z, (1)

where v is the Fermi velocity and the Pauli σ matrices act on
a band (pseudospin) degree of freedom. The “mass”

m(kz ) = v

2kW

(
k2

z − k2
W

)
(2)

changes sign at kz = ±kW and singles out the z axis as the
anisotropy axis. The Hamiltonian (1) can be seen as a small-
momentum expansion of a widely-used minimal two-band
Hamiltonian of a magnetic Weyl semimetal [1,47]. Then, two
Weyl nodes with linear dispersion are present in the Bril-
louin zone at the momenta (0, 0, ηkW ), η = ±1. To each of
these points it is possible to associate a “chirality” η = ±1,
which coincides with the quantized flux of the Berry curvature
through a closed surface surrounding the node (divided by
2π ).

We will model an extended region with a lattice tilted with
respect to the adjacent one by starting from the Hamilto-
nian (1) and applying a rotation of an angle θ around the x
axis, which rotates the internal “pseudospin” degree of free-
dom as well as the anisotropy axis. Denoting k = (ky, kz )T

the component of the momentum in the yz plane and kθ =
(kθ,y, kθ,z )T = Rθk its rotated counterpart, the transformed
Hamiltonian is written as (see Appendix A)

Hθ = vkxσ
x + bθ · σ, (3)

where

bθ =
(

bθ,y

bθ,z

)
= R−θ

(
vkθ,y

m(kθ,z )

)
. (4)

The matrix Rθ represents the two-dimensional rotation in
the yz plane. Note that if the mass function is chosen to be
of the form m(kz ) = vkz, the Hamiltonian and the spectrum
are invariant under rotations. Conversely, with our choice of
m in (2), the spectrum of (3) is composed by an electron
(ν = +1) and a hole (ν = −1) branch, with eigenvalues

E = Eθ,ν (kx, k) = ν

√
v2k2

x + b2
θ , (5)

corresponding to the eigenvectors given in Appendix A. It is
readily checked at this point that the Weyl nodes are moved to
the positions

k(η)
W,θ = ηkW

(− sin θ

cos θ

)
. (6)
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The chirality associated with the node, instead, does not
change with θ . In the vicinity of the nodes the vector bθ

assumes the simple linearized form bθ ≈ v(k − k(η)
W,θ ).

In this paper, we consider an interface in the x direction
between two identical samples, whose anisotropy axes are
tilted by an angle θ , see Fig. 1. We also introduce a potential
step in the form V (x) = sgn(x)V0, with V0 > 0, thus realizing
a model np junction. This configuration can be achieved by
different doping levels or, for a sufficiently thin sample in the
z direction, via suitable gating. In real samples, a mismatch in
the lattice orientation results, in general, in a larger interlayer
distance and in an only partially transparent interface. This
can be modeled by a small region −� < x < � around the
origin in which a potential barrier of height V1 � V0, E is
inserted. While this affects the transparency of the interface,
no qualitative changes to the transmission coefficients are
introduced in the thin barrier limit and, for the sake of sim-
plicity, we omit this effect altogether. We therefore write the
Hamiltonian

Hk =
{
vk̂xσ

x + vkyσ
y + m(kz )σ z − V0, x < 0

vk̂xσ
x + bθ,yσ

y + bθ,zσ
z + V0, x > 0

(7)

where k̂x = −i∂x. The tilt results in a mismatch in the position
of the Weyl nodes on the two sides of the interface, with
the displacement between the tilted and untilted Weyl nodes
given by

	kW = k(η)
W,0 − k(η)

W,θ = 2ηkW sin
θ

2

(
cos θ

2

sin θ
2

)
(8)

for the nodes with the same chirality. For nodes of opposite
chirality, the displacement is given by Eq. (8) with θ replaced
by θ + π . The separation between tilted and untilted nodes
plays an important role in the scattering and refraction prop-
erties of the interface, which we will address in the following
sections.

The original Hamiltonian (1) has inversion symmetry, rota-
tional symmetry in the xy plane, and particle-hole symmetry.
For the interface Hamiltonian in Eq. (7), all these symmetries
are broken by the tilt between the left and right subsystems
and by the potential step. We note that the reflection in the
plane spanned by x̂ and R− θ

2
ẑ exchanges the Weyl nodes on

the two sides of the system. We show in Appendix C that
this reflection is a symmetry of the dispersion relation of the
interface arcs if V0 = 0.

III. SINGLE-ELECTRON TRANSMISSION
AND TRANSPORT ACROSS AN INTERFACE

In this section, we study the scattering problem on the
interface, in the presence of a tilt θ and a potential step 2V0.
In the regime E > V0, an electron incoming from the left can
be either reflected or transmitted as an electron through the
potential step and one writes a scattering state in the form

ψE ,k(x) =
{

u0;kx,keikxx + r u0;−kx,ke−ikxx x < 0
C uθ ;k̄x,keik̄xx x > 0

(9)

with the bulk eigenstates uθ ;kx,k given in (A6) and complex-
valued coefficients r and C. The momentum in the x direction

is not conserved, but depends instead on the energy via the
relations

kx = 1

v

√
ε+2 − v2k2

y − m2(kz ), (10)

k̄x = 1

v

√
ε−2 − v2kθ,y

2 − m2(kθ,z ), (11)

where ε± = E ± V0. In the regime −V0 � E < V0, we con-
sider an electron incoming from −∞, which can be either
reflected as an electron or transmitted as a hole (Klein tun-
neling). In this situation, the transmitted hole traveling in the
positive x direction is described by a scattering state analogous
to (9), with the wave function in the region x > 0 replaced by
uθ ;−k̄x,ke−ik̄xx. In the same way, one can describe the transmis-
sion and reflection of holes by changing appropriately the sign
of kx and k̄x.

Imposing the continuity of the wave function at the inter-
face, the transmission probability Tθ = 1 − |r|2 follows as

Tθ (E , k) = 4kxk̄xAθ

(Aθkx + k̄x )2 + (
Aθky − ν1ν2by

θ /v
)2 , (12)

where

Aθ = |ε−| − ν2bz
θ

|ε+| − ν1m(kz )
. (13)

Here ν1 = ± labels the particle/hole branch on the left of the
interface and ν2 = ± on the right. One can readily check that
the transmission probability from right to left has the same
expression.

When the chemical potential is close to the band crossing,
for V0 ≈ 0, the reduced Fermi surface implies that very few
states are available for transport. In particular, for μ � vkW ,
one can approximate it with a sphere of radius μ centered
around each node. Hence, the Fermi surfaces on the two sides
overlap if

2μ � v|	kW |. (14)

An analogous expression holds if μ = 0 and V0 �= 0. The
transmission function is, at all energies, strongly peaked
around the Weyl nodes, both in the case of normal and of Klein
tunneling, as exemplified for the latter in Fig. 2. In particular,
it is nonzero in the area where the projections of the Fermi
surfaces from the two sides overlap [48]. The transmission
probability can reach unit value only for θ = 0, and is mildly
suppressed for small tilt.

We now address the consequences of the shape of the
transmission factor on transport observables. Throughout our
analysis, we assume coherent transport in a clean sample.
For V0 �= 0, the charge accumulation in the region around the
junction creates a nonuniform electric field, which has been
analyzed in [30]. The new features introduced by the tilt are
qualitatively similar to that of a normal junction, so we focus
on V0 = 0 in the following. Approximating the quasiparticle
distributions in the contacted samples with Fermi distribu-
tions, we make use of the Landauer-Büttiker formalism to
describe quantum transport through the junction. To this end,
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FIG. 2. Intensity plot of the transmission factor (12) in the kykz

plane (momenta in units of kW ) for a zero-energy electron with
a potential step V0 = 0.2 vkW and tilt angle θ = 0.2. The red and
orange circles delimit the Fermi surfaces on the two sides of the
interface.

we define

Tθ (ε) =
∫

d2k

(2π )2 Tθ (ε, k), (15)

where the integration is over the domain in which there exist
incoming states, i.e., in which kx in (10) is real. As exempli-
fied in the inset of Fig. 3 for various values of the potential
step, the total transmission function has a quadratic angular
dependence around its maximum at θ = 0. In terms of the

FIG. 3. Zero-temperature conductance per unit surface area as
a function of chemical potential for V0 = 0 and (from top to bot-
tom) θ = 0, θ = 0.2, θ = 0.4, θ = 0.6. This function is symmetric
under μ → −μ in the absence of a potential step. Inset: Angu-
lar dependence for μ = 0 and, from top to bottom, V0 = 0.1vkW ,
V0 = 0.15vkW , V0 = 0.2vkW , V0 = 0.25vkW .

FIG. 4. Dimensionless conductance per unit surface as a function
of temperature for V0 = 0, μ = 0.1vkW and, from top to bottom,
θ = 0, θ = 0.2, θ = 0.4, θ = 0.6.

integrals (kB = 1)

In =
∫

dε
(ε − μ)nTθ (ε)

4T cosh2 (ε−μ)
2T

, (16)

we write the charge conductance per unit area as [30]

Gθ (μ, T ) = e2

2π
I0, (17)

where e is the charge of the electron taken with its
sign. At low temperatures, this quantity behaves as
Gθ (μ, T ) ≈ Gθ (μ, 0), with Gθ (μ, 0) = e2Tθ (μ)/2π . This
function is plotted in Fig. 3 for various values of θ . This
limit is valid up to quadratic corrections in T/μ: Using
μ = 0.1vkW , v ≈ 105 m/s and kW ≈ 9 × 102 Å−1 [49], one
estimates a reference temperature μ ≈ 70 K. Clearly, the cur-
rent is always suppressed around charge neutrality, due to the
vanishing density of states. Moreover, the momentum-space
area where the transmission function is vanishing broadens
with increasing tilt angle, due to the mismatch between the
scattering states on the respective Fermi surfaces on the two
sides [37]. As a consequence, one finds from (17) a finite zero-
temperature value and a quadratic low-temperature correction
proportional to e2π2

48 ∂2
μTθ (μ) only for θ = 0, while for small

but finite θ one has activated behavior, with activation gap of
the order v

2 |	kW | − μ. This is consistent with the temperature
dependence of the conductance, shown in Fig. 4 for various
tilt angles. For large angles θ ≈ π , the relevant gap is instead
determined by the separation between the nodes with opposite
chirality.

A small temperature difference 	T between the two con-
tacted samples makes free electrons and holes diffuse across
the interface, creating, in the steady state, an electrical voltage
gradient 	V0. This is known as thermoelectric effect and
can be quantified via the thermopower (or Seebeck coeffi-
cient) [50]

S = −
(

	V0

	T

)
jx=0

= 1

eT

I1

I0
. (18)

In bulk Dirac and Weyl semimetals, it is known that the
numerical value of this quantity is determined by the Berry

045413-4



TRANSPORT, REFRACTION, AND INTERFACE ARCS IN … PHYSICAL REVIEW B 106, 045413 (2022)

FIG. 5. Angle-dependence of the linear contribution (19) to the
thermopower for V0 = 0 and various values of the chemical potential.
From top to bottom: μ = 0.1 vkW , μ = 0.15 vkW , μ = 0.2 vkW .

curvature, the density of carriers and the direction and mag-
nitude of the applied magnetic field, allowing it to achieve
very large values [51,52]; conversely, in our analysis, the
energy-dependence of the transmission probability across the
interface plays a pivotal role. It is readily seen that the ther-
mopower is sensitive to the asymmetry of the transmission
coefficient: Hence, it will be exactly vanishing for μ = 0 (it
is negative for μ > 0 and positive for μ < 0). We assume for
simplicity V0 = 0 in the following. At finite chemical potential
and low temperature T � μ, the first nonzero contribution is
linear in temperature and given by the Mott formula

S = π2T

3e

∂μTθ (μ)

Tθ (μ)
, (19)

in which the condition (14) is assumed for this term to be fi-
nite. The coefficient of the linear contribution has a minimum
at θ = 0 and increases linearly with the tilt angle at small tilts,
as shown in Fig. 5. For large temperatures μ � kBT the hy-
perbolic cosine in (17) and (18) flattens and we obtain instead
a 1/T decay. As seen above, the tilt angle strongly suppresses
the charge conductance, which has the consequence that (18)
must be larger for larger tilt angles, as shown in Fig. 6, and
for lower values of the chemical potential. We observe that the
position of the maximum of the thermopower is shifted toward
lower and lower temperatures as μ is decreased. In fact, for
finite chemical potential, the particle branch has a larger den-
sity of states than the hole branch and the numerator of (18)
initially increases. However, at larger energies, more states in
the hole branch are accessible, contributing with the opposite
sign to the thermoelectric current and the thermopower starts
decreasing.

Summing up, we have shown that the electric conduction
and the thermoelectric properties of the junction can be tuned
by the tilt angle θ . The considerations above only arise from
the probability of the electron being transmitted at the inter-
face, independently from its direction. However, we note that
the momentum in the x direction is generally discontinuous
across the interface: This leads to electron refraction at the
interface, which we study in detail in the next section.

FIG. 6. Temperature dependence of the thermopower (18) at
chemical potential μ = 0.15 vkW , for various tilt angles. From bot-
tom to top: θ = 0, θ = 0.1, θ = 0.2 and θ = 0.3.

IV. REFRACTION AT THE INTERFACE

Given that the dispersion relation is anisotropic, an elec-
tron with the same momentum has a different energy on the
two sides of the interface. In particular, as translation invari-
ance is broken only in the x direction, the component of the
momentum parallel to the interface is continuous across it,
while kx is discontinuous and determined from (10) and (11).
Considering a monochromatic electron beam incident from a
given direction, we determine how the direction of the trans-
mitted excitation depends on θ and V0, both in the cases of
normal and Klein tunneling. Complementing earlier observa-
tions [37], we show that the refraction angle is not uniquely
determined by the incidence angle, but one has to specify the
chirality of the incident electron as well. We explore the effect
of the tilt on the polar angle and determine the splitting of the
electron beam due to the chirality of the nodes.

As seen in Sec. III, the transmission of an electron takes
place in the vicinity of a Weyl node. As a consequence, its
dispersion relation is approximately linear in the deviation of
the momentum from the position of the Weyl node and the
group velocity of the incoming electron is

(vi,x, vi ) = v2

ε+

(
kx, k − k(η)

W

)
, (20)

where η = ± and ε± = E ± V0. The momentum k parallel to
the interface is unchanged through the interface, but the Weyl
nodes are in position kW,θ = η̄kW (− sin θ, cos θ ), where η̄ is
now the chirality of the Weyl node in which the electron is
transmitted, i.e., η̄ = η for θ ∼ 0 and η̄ = −η for θ ∼ π . It
follows that the velocity of the outgoing mode is

(vo,x, vo) = v2

ε−

(
k̄x, k − k(η̄)

W,θ

)
, (21)

with k(η̄)
W,θ defined in (6). Importantly, the sign of ε− can be

negative, which signals Klein tunneling, in that the velocity
and momentum of a hole are opposite in direction. We denote
the angle of the incident/outgoing particle velocity with re-
spect to the normal to the interface as χi,o and the azimuthal
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FIG. 7. Polar plot of the refraction polar angle for Klein trans-
mission, see Eq. (24). We represent above sin χo as a function of
ξi at fixed incidence angle χi = 0.1 for V0 = 0.2 vkW , E = 0, and
θ = 0.1. The angle χo depends on the chirality of the incident elec-
tron: The continuous blue line is for an incident electron with positive
chirality η = 1, the dashed orange line for negative chirality η = −1.
The two curves are exchanged if the tilt angle is reversed (θ → −θ ).

angle in the yz plane as ξi,o, so that

(vi/o,x, vi/o) = v(cos χi/o, sin χi/o cos ξi/o, sin χi/o sin ξi/o),
(22)

with 0 � χi/o < π/2 and 0 � ξi/o < 2π . The momentum
component perpendicular to the interface of a transmitted
excitation is a function of the energy and the momentum par-
allel to the interface, which are conserved in the transmission
process. With the parametrization (22), we find

v2k̄2
x = ε2

− − ε2
+ sin2 χi − 2v2k2

W (1 − ηη̄ cos θ ) (23)

− 2ηvkW ε+ sin χi[sin ξi − ηη̄ sin (ξi − θ )].

From Eqs. (21) and (22), the polar angle is then given by

cos χo = vk̄x

|ε−| . (24)

Moreover, setting ξo = ξi + φ for an outgoing electron (or
ξo = ξi + φ + π for an outgoing hole), we find

tan φ = −2ηvkW sin θ
2 sin(ξi − θ

2 )

|ε+| sin χi + 2ηvkW sin θ
2 cos

(
ξi − θ

2

) (25)

if the transmission takes place close to a node of the same
chirality, i.e., if ηη̄ = 1. If the chirality is changed across the
interface, for ηη̄ = −1, one should replace θ with θ + π in
Eq. (25). The equations (24) and (25) fix the direction of the
transmitted electron or hole and can be seen as a generaliza-
tion of Snell’s law [38]. As an example, Fig. 7 illustrates the

FIG. 8. Azimuthal angle shift for a transmitted electron with
E = 0.2 vkW and V0 = 0. We represent above φ as function of θ for
two fixed incidence angles χi = 0.3, ξi = 0.2 and χi = 0.3, ξi = 3.0,
and the two chiralities.

dependence of the polar angle of a transmitted hole on the
azimuthal angle of the incident electron.

The presence of a tilt already implies that the angle of
refraction is different from the angle of incidence, and the
anisotropy of the material makes the refraction coefficient
dependent on the azimuthal angle ξi. Noticeably, normal in-
cidence (χi = 0) does not imply normal transmission, but
instead transmission at the angle

sin χo = 2vkW

|ε−| sin
θ

2
(26)

with respect to the normal. In order to underline the effect of
the tilt on the azimuthal angle, one can consider a situation
in which the component of the momentum of the transmitted
electron parallel to the separation between the Weyl nodes
on the two sides of the interface lies between the projection
of the two Weyl nodes. Then, the projection of the velocity
in this direction is opposite on the two sides of the junction,
which results in a large shift of the angle φ. This mechanism is
exemplified in Fig. 8, in which the momentum of the electron
is held fixed, i.e., it is a point in the Brillouin zone: By
increasing θ , the Weyl node passes from one side to the other
of this point, hence, the azimuthal angle shift φ quickly passes
from ≈0 to ≈ π when this happens.

There is an explicit dependence of the refraction angles
in (24) and (25) on the chirality η of the incident particle:
The fact that the same group velocity is attained by electrons
near both Weyl nodes implies that birefraction takes place and
the interface acts like a beam splitter for the electrons. As
shown in Fig. 7, the refraction angle depends on the azimuthal
angle and a finite tilt angle displaces the electrons with the
same incidence direction, but opposite chiralities, in opposite
directions. The splitting angle χs between the refracted beams
can be directly computed using the angle parametrization (21).
For |θ | < π/2, using Eqs. (24) and (25), we arrive at

cos χs = v2k2
W

ε2−

⎧⎨
⎩ε2

+ sin2 χi

v2k2
W

− 4 sin2 θ

2
+

√[
ε2−

v2k2
W

− 4 sin2 θ

2
− ε2+ sin2 χi

v2k2
W

]2

− 16
ε2+

v2k2
W

sin2 χi sin2 θ

2
cos2

(
ξi − θ

2

)⎫⎬
⎭. (27)
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FIG. 9. Polar plot of the splitting angle cos χs as a function of
the azimuthal angle ξi for E = 0, θ = 0.1 and V0 = 0.2vkW , for var-
ious incidence angles: Starting from the outer curve and proceeding
inwards χi = 0.1, χi = 0.3, χi = 0.4 and χi = 0.5.

As illustrated in Fig. 9, the splitting angle is minimal for
ξi = (θ ± π )/2, while it reaches its maximum value in the
orthogonal direction ξi = θ/2, ξi = π + θ/2. In the case of
normal incidence χi = 0, the splitting angle is independent of
ξi. For Klein tunneling in a Weyl np junction, as well as for
normal tunneling at specific angles, the transmitted particle is
refracted with opposite component of the velocity in the plane
parallel to the interface. Therefore, the possibility of focusing
electron beams, or Veselago lensing [38,41,53], appears, but
it is hindered by the intrinsic anisotropy of the materials if the
Weyl nodes on the two sides of the interface are misaligned.
On the other hand, the interface acts as a polarizing filter, in
which the “polarization” is the chirality index, due to the fact
that a monochromatic electron beam incoming from a given
direction is split at the junction. For materials with more Weyl
nodes, our analysis above suggests a different outgoing angle
for each of the nodes.

V. INTERFACE STATES

We now study states which are exponentially localized at
the interface. These states are expected, for instance, in related
systems locally described in the bulk by a Dirac equation,
and at the interfaces between topological insulators [54,55].
Defining the inverse decay lengths

κ = 1
v

√
v2k2

y + m2(kz ) − ε2+, x < 0, (28)

κ̄ = 1
v

√
v2k2

θ,y + m2(kθ,z ) − ε2−, x > 0, (29)

a localized eigenstate of the Hamiltonian (7) can be written in
the form

ψE ,k(x) =
{

C1u0;−iκ,keκx x < 0
C2uθ ;iκ̄,ke−κ̄x x > 0 , (30)

where we use the spinors defined in (A6). C1 and C2 are arbi-
trary coefficients, determined by continuity and normalization
of the wave function. Imposing the continuity at the interface,

we arrive at the condition

�(E , k) = 1, (31)

where

�(E , k) = (E + V0 − m(kz ))(−vκ̄ + bθ,y(k))

(E − V0 − bθ,z(k))(vκ + vky)
. (32)

This equation implicitly defines the dispersion relation E =
E (k) of the interface states. For fixed energy, its solutions
define a one-dimensional curve in the Brillouin zone, an inter-
face Fermi arc, analogous to a surface Fermi arc. A necessary
condition for such interface states to exist is that κ and κ̄

must be real. The endpoints of the arc are determined by
the conditions κ = 0 or κ̄ = 0: In these points, the interface
states merge with the bulk states on one or the other side.
Interface arcs exist for |E | > V0 for every θ > 0, while they
exist for |E | < V0 if the projected Fermi surfaces do not
overlap.

Using the implicit function defined by (31), one can also
compute the group velocity of an electron wave packet on the
interface as

va = −∂ka�

∂E�
, a = y, z. (33)

The shape of the interface arcs can be determined by solv-
ing (31) numerically, and is illustrated in Figs. 10 and 11 for
several values of the tilt angle in two different situations. In
Fig. 10 we show the interface arcs for the case V0 = 0, while
Fig. 11 shows the zero-energy arcs for the case of finite V0

(np junction setup). The first interesting feature we see is that,
in contrast to the usual surface Fermi arcs that connect (the
projections of) Weyl nodes of opposite chirality, the interface
arcs connect the projections of the bulk Fermi surfaces of
opposite sides of the interface with the same chirality. This
occurs for any value of θ for which interface arcs exist. It is
interesting to note that in the case V0 = 0, below a critical
angle θc, the shorter arc connects the nodes with chirality
η = +1, the longer arc those with chirality η = −1.

At θ = θc the two arcs intersect and then exchange their
role, as seen in the last two panels of Fig. 10. For example, in
our model, at E = 0.1vkW , we find θc ≈ 2.49, close to 4π/5,
as can be seen in the last panel of Fig. 10. The angle θc tends to
π as E → 0, but otherwise its value is model-dependent. If the
Weyl node separation is not the same on the two sides, there
appears a range of angles in which the connectivity changes,
namely, the arcs connect the Weyl nodes of opposite chirality
on the same side. When the separations become the same, this
interval shrinks to zero, and the change of connectivity occurs
only at θ = π . This is in accordance with the results of [43].
In Fig. 10 we also note that for V0 = 0 the arcs are symmetric
under reflection in the line going through the midpoints be-
tween the nodes with the same chirality. This is a consequence
of the invariance of Eq. (31) under a reflection symmetry as
discussed in Appendix B, and implies that both arcs carry a
net current in the direction (sin θ

2 ,− cos θ
2 ), perpendicular to

the displacement vector between the Weyl nodes on opposite
sides of the interface 	kW in (8).

The second salient feature in Figs. 10 and 11 is that the
way the arcs attach to the bulk projections depends on whether
the projections consist of particle states or of hole states. This
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FIG. 10. Interface states in the plane ky − kz (in units of kW ) for V0 = 0, energy E = 0.1 vkW , and several values of the tilt angle θ : From
left to right, θ = π/5, 2π/5, 3π/5, 4π/5. The circles correspond to the interface projections of the bulk Fermi surfaces, the red being those
of the left subsystem, with Weyl nodes at (0,±kW ), the orange the ones of the right, rotated subsystem, with Weyl nodes in the positions (6).
The black arrows represent the direction of the group velocity, which is normal to the arc. In the last two panels, the incomplete arc portions
join outside the shown region of the ky − kz plane.

difference can be rationalized along the lines of [1,56]. The
Fermi contours depicted in the figures are constant-energy
curves, so the group velocity, which is the energy gradient
in the ky − kz plane, is always normal to the curves. At the
junction between the arc and the bulk part of the Fermi sur-
face, the velocities of the interface and of the bulk states
must eventually align. Looking at Fig. 10, one sees that this
is indeed the case, as the velocity of bulk states is oriented
perpendicularly to the circles, pointing outwards. Conversely,
the velocity of holes states has the opposite sign: In the pres-
ence of a potential step, the arc must therefore attach to the
circle on the opposite side, which is what we observe when
comparing Fig. 11 with Fig. 10.

The detailed shape of the interface arcs depends on the
specific form of the model Hamiltonian. However, we can
consider the net chirality of the interface states, defined as the
difference N = n+ − n− between the numbers of right (n+)
and left (n−) movers in the y direction at given kz. Its change
when crossing the projection of the Weyl nodes is independent
of the microscopic details and fixed by the relative position
of the projections of the Weyl nodes in the bulk subsystems.
We can understand the qualitative aspects of the arc shapes
in terms of this difference. In order to see this, we follow
the arguments of [12,42,43] and divide the Brillouin zone
of the system into slices with fixed kz: Away from the Weyl
nodes, each slice can be seen as the Brillouin zone of the
junction between two-dimensional topological insulators. As
such, the value of N is fixed by the difference between the

bulk Chern numbers [57–61]. The continuum Hamiltonian (7)
does not have a Brillouin zone, yet, it can be seen as the
small-momentum expansion of a lattice model and the role
of the difference between the Chern numbers is taken on by
the difference of the signs of the mass functions at given
kz, i.e., N = sgn(m(kθ,z )) − sgn(m(kz )). As we scan in kz,
when the mass changes sign across a Weyl node, the number
of interface modes changes. In our system, because of the
tilt, the sign change takes place at different values of kz in
the right and left subsystems. Let us illustrate this argument
with the help of, e.g., the second panel of Fig. 10. When kz

crosses the Weyl node of the left subsystem (at kz = kW ),
the interface is between a topological insulator and a trivial
insulator, so a Fermi arc should appear: Indeed, starting from
the region kz > kW , where N = 0, we observe that as soon
as kz = kW , a right mover appears and N jumps to 1. The
situation is mirrored for negative kz: For kz < −kW , there are
one left and one right interface modes and N = 0, while we
observe N = 1 for −kW < kz < −kW cos θ . As soon as kz

crosses the Weyl node of the right subsystem, we have a junc-
tion of two topological insulators with the same value of the
Chern numbers, and indeed we observe N = 0 in the region
|kz| < kW cos θ . If θ > π/2, as in the third panel of Fig. 10,
we observe a similar situation, with N = 0 if |kz| > kW , and
N = 1 if kW > |kz| > kW | cos θ |. Contrarily to the previous
case, in the region |kz| < kW | cos θ | the sign the mass function
jumps from −1 to +1 across the interface and we observe
indeed N = 2.

FIG. 11. Zero-energy interface states in the plane ky − kz (in units of kW ) for a potential step with V0 = 0.15vkW and the same values of θ

as in Fig. 10. The conventions are the same as in Fig. 10. In this case no interface state is present as long as the bulk Fermi surface projections
overlap. As soon as they are disconnected, an interface state connects the projections with the same chirality.
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To close this section, we remark that we obtained the arcs
for a transparent interface, whereas the conventional Fermi
arc surface states are found imposing a vanishing condition on
the current across the interface. Our approach can be seen as
the limit in which Fermi arcs from two disconnected samples
are fully hybridized by a very strong tunneling between the
samples [42,44,62]. From this perspective, the region in which
no interface states are present results from the gapping out of
counter-propagating Fermi arcs, while this does not happen
if the two Fermi arcs are copropagating, in the region with
N = 2.

It is worth emphasizing that interactions may alter the
transport properties of the interface in the presence of elec-
trons localized at the interface. While this would change the
boundary conditions for weakly tunnel-coupled surfaces, it
can be neglected in first approximation in our strong tunneling
limit. An intriguing consequence of the existence of interface
arcs can instead be observed in the electric transport in the
y direction, which we study in a slab geometry in the next
section.

VI. SCATTERING IN THE PRESENCE
OF SURFACE STATES

We now consider the junction of two slabs, with transverse
size L in the y direction, but otherwise infinitely extended
and joined at x = 0 via a transparent interface. In this
situation, two Fermi arcs are present on the lateral surfaces
at y = 0 and y = L and transport chiral current in the x
direction. These states are responsible for the large surface
contributions to electric transport in different geometries and
setups [13,63–65]. The transmission of the surface current
carried by these states at the interface depends on the twist
angle θ . Considering for definiteness a tilt |θ | < π/2, the
projections of the Weyl nodes on the surface Brillouin zone
at y = 0 for the left subsystem are at distance 2kW , while at
distance 2kW cos θ for the right subsystem. It follows that for
kW cos θ < |kz| < kW , a Fermi arc is present for x < 0, but not
for x > 0. In this region, as seen in the previous subsection,
an interface arc appears, which can indeed be thought of as
the continuation of a portion of the Fermi arc in the bulk
of this system. The same argument applies for |θ | > π/2,
only in this case the Fermi arcs at y = 0 have opposite
velocities in the x direction, hence, we have N = 2 in the
region |kz| < −kW cos θ . In order to illustrate the physical
consequences, we consider here the two extreme cases, θ = 0
and θ = π , in which the Weyl nodes are at k = (0,±kW )
on both sides of the interface. For the sake of simplicity, we
assume straight Fermi arcs on the surfaces of the slab.

A. Bike lanes

For θ = 0, we impose the boundary conditions [66]

σ x�(y = 0) = �(y = 0)

σ x�(y = L) = −�(y = L) (34)

on the wave function �, for every value of x. These boundary
conditions do not break inversion symmetry [67] and imply
that the charge current vanishes across the surfaces at y = 0
and y = L. The wave function reduces then to the eigenvectors
ξ± of the Pauli matrix σ x.

For simplicity, we consider the large-L limit. The spectrum
is then composed of bulk states in the form (D7) (plane waves
in the x and y direction). The transverse momentum is quan-
tized according to Eq. (D6). In the large transverse size limit
|m|L � 1, the quantized ky,n approach the values

ky,n = πn

L
, n = 1, 2, . . . . (35)

The corresponding transverse electron subbands are

En(kx, kz ) =
√

v2k2
x + v2k2

y,n + m2(kz ) (36)

(hole subbands have the opposite sign). In addition to the bulk
states, within the interval −kW < kz < kW , there are a pair of
surface states in the form

�0(y) =
√

2|m(kz )|em(kz )y/vξ+,

�L(y) =
√

2|m(kz )|e−m(kz )(y−L)/vξ−. (37)

The energy of these states is E0 = vkx, EL = −vkx, hence,
the electrons on the opposite surfaces propagate with oppo-
site group velocity vx = ±v in the x-direction. Each mode at
given kz contributes to the current in the x direction by the
amount

Ix
0 = ev, Ix

L = −ev , (38)

for −kW < kz < kW . Integration of kz ∈ [−kW , kW ] produces
a total current ±evkW /π related to the anomalous Hall
response in the presence of an electric field in the y
direction [12].

With a potential step at the interface at x = 0 between the
rotated regions, the momentum kx is not conserved, but is
instead a function of the energy given by

kx,n = 1

v

√
ε2+ − v2k2

y,n − m2(kz ),

k̄x,n = 1

v

√
ε2− − v2k2

y,n − m2(kz ),

(39)

on the two sides. The energy of the surface states is now
E0 = vkx ∓ V0, EL = −vkx ∓ V0 on the two sides of the
junction, but the group velocity of the electronic states is unaf-
fected. In the regime −V0 < E < V0, an electron propagating
on the surface at y = 0 toward the interface can be reflected
in any of the bulk modes with amplitude rn or in the counter-
propagating surface state with amplitude rL. Analogously, it
can be transmitted in a bulk state with amplitude tn or in only
one of the surface states, the one with matching chirality, with
amplitude t0. The state is then written as

�E =
{
�0(y)eiε+x/v + rL�L(y)e−iε+x/v + ∑

n rn�
(−)
n (y)e−ikx,nx x < 0,

t0�0(y)eiε−x/v + ∑
n tn� (+)

n (y)eikx,nx x > 0.
(40)
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FIG. 12. Junction of two magnetic Weyl semimetal slabs with
matching Weyl nodes (θ = 0). Perfect transmission of the surface
electrons is realized for any value of the potential step.

In the expression above, when ky,n is sufficiently large, the
momenta kx,n and k̄x,n become imaginary, which accounts
for the possibility of having evanescent waves on either side
of the interface, with inverse localization length κn = −ikx,n

and κ̄n = ik̄x,n. Imposing the continuity condition of the wave
function at the interface and projecting onto the various bulk
states, one readily sees that the only solution is t0 = 1, with
all other coefficients being zero. One then has perfect trans-
mission along the chiral direction, due to the fact that on
the other side of the interface there exists a matching state.
The two states on the two opposite surfaces behave like “bike
lanes”, preferential paths for the electron transport across the
interface, as illustrated in Fig. 12.

B. Pedestrian crossing

An opposite scenario arises when the bulk is depleted of
states and the two Fermi arcs on the same side of the slab
have opposite chirality: In order for an electron to be either
transmitted or reflected (necessarily as a surface state) it must
cross the sample in the y direction. To exemplify this situ-
ation, we can consider the extreme case in which a sample
is contacted with a copy of itself, mirrored in the yz plane,
in the absence of a potential bias. We therefore set θ = π

and V0 = 0. Given that for a transparent interface the wave
function is continuous at x = 0, this condition would not be
compatible with abruptly reversing the boundary condition
for x < 0 and x > 0. In order to retain the simplest picture
of the Fermi arcs, we require that, sufficiently far from the
interface, the states satisfy the boundary conditions (34) for
x < −�, while

σ x�(y = 0) = −�(y = 0), σ x�(y = L) = �(y = L),
(41)

for x > �. Here � > 0 is a length scale, which models the
smooth change in the boundary conditions. Physically, we
expect this length to be of the same order of magnitude of
the localization length of the interface states. An alternative
approach would be to relax the continuity condition at the
interface in proximity of the boundaries: As our considera-
tions in this section are mostly qualitative, the two ways of
imposing boundary conditions can be considered physically
equivalent. In fact, if one sample is disconnected from the
other, one has a unique Fermi arc, which is an eigenstate of
σ x on the surface at y = 0 and an eigenstate of σ y on the
surface at x = 0, provided one is sufficiently far from the
origin: Around the corner of the sample, the spinor smoothly

rotates from one configuration to the other. If two samples
with copropagating Fermi arcs are put in contact, this picture
is not altered.

While the bulk spectrum is unchanged by the π rotation,
the eigenstates are different on the two sides. In particular, the
bulk states are given in (D10). Moreover, a pair of boundary
states exists in the region −kW < kz < kW , with wave function
given by

�0(x, y) =
√

2|m(kz )|/v eikxx+m(kz )y/vξ−,

�L(x, y) =
√

2|m(kz )|/v eikxx−m(kz )(y−L)/vξ+,
(42)

and chiral dispersion, E = −vkx (E = +vkx) for the state
localized at y = 0 (y = L). An electron traveling from −∞
towards the junction cannot be transmitted in the chiral state
at y = 0, as the latter does not support outgoing states. A
scattering state can in principle be written in the form (40),
but, following the discussion above, one can only expect
such an expression to be valid far from the junction. Clearly,
the term �0 has to be substituted by �L for x > 0 and the
bulk eigenstates by the corresponding eigenstates in the tilted
model (D10). One can then divide the system into three re-
gions and impose continuity equations at x = ±� [40]. While
the problem is in general complicated in the vicinity of the
junction, an especially simple and interesting situation is ob-
tained for E = 0, for which the only states that propagate in
the x direction are the surface states. Given the form of the
asymptotic states and the fact that the only bulk states are lo-
cated at the Weyl nodes, the current, which is localized on the
surface cannot leak into the bulk on either side. Moreover, the
“out” surface states are localized on the far junction: In such a
setting, the interface states studied in section V must provide
a sort of “pedestrian crossing” for the electrons, in analogy
with what happens in topological insulators [60]. In fact, in
the simplified case at hand, the quantization equation (31) has
the only solution ky = 0 and in the region −kW < kz < kW , the
surface state at y = 0 transports electric current Iy = evkW /π

in the positive y direction, which matches the incoming cur-
rent from the Fermi arc.

In order to understand what happens at the other end of
the interface arc, y = L, one can model the interface arc and
the Fermi arcs on the two sides as effectively one-dimensional
chiral modes entering or exiting a Y junction. At the junction,
we impose the continuity of the boundary condition using (30)
and (B5) for the interface arc and (42) for the Fermi arcs,
reading

1√
2

(−i
1

)
= aLξ− + aRξ+, (43)

where aL/R are the probability amplitudes for the electron
to be transmitted to the left or to the right Fermi arc and
satisfy |aL|2 + |aR|2 = 1. One readily obtains the solutions
aL/R = (±1 − i)/2, hence, we conclude that the current splits
with equal probability to the two sides of the path, as depicted
in Fig. 13. A current injected from the left side of the interface
at y = 0 can then be measured with half intensity on the right
side at y = L, which determines a nontrivial signature of the
interface states in this specific setup. This splitting of the
currents is arguably analogous to the one described in [68]
for snake states in graphene.
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FIG. 13. Junction of two magnetic Weyl semimetal slabs, with a
θ = π tilt and V0 = 0. An incoming chiral electron on the surface at
y = 0 must travel along the interface arc.

We can now, at least qualitatively, try to understand what
happens when the various idealized assumptions are relaxed.
While we have studied the simplest situation in order to
solve (31), the fact that the Fermi arcs have opposite velocities
in the x direction when they arrive at the interface remains true
as long as |θ − π | < π/2, hence we expect this effect to be
robust if we vary the tilt angle. On the other hand, for a generic
chemical potential, transmission of the Fermi arc excitations
into the bulk states on the other side is generically possible,
hence, at least part of the current leaks into the bulk. Fermi
arcs can hybridize with the bulk states, as a consequence of,
e.g., scattering by random impurities, although they remain
well defined as long as the bulk Weyl nodes are not gapped
out [1,69,70]. In fact, the latter are robust against weak dis-
order [8,71] and we expect the “pedestrian crossing” scenario
to survive in this situation. In real materials, the Fermi arcs
do not, in general, describe straight lines in the Brillouin
zone [72]. Nevertheless, there still is chiral propagation along
one direction, hence, the scenario of this section is expected to
hold. Moreover, multiple pairs of Weyl nodes can be present
in the material and, in some instances, their connectivity in the
Brillouin zone can depend on the details of the surface [18]:
The bare two-node scenario is clearly not expected to describe
this more complicated situation, and it would be interesting to
understand whether the simple argument based on the position
of the projections of the Weyl nodes will apply. Finally, a
nontransparent interface, while always allowing for transport
from one side of the slab to the other, will reduce the ratio of
the current, which is found on the other side of the interface
against the one on the same side.

VII. CONCLUSIONS

We have studied electronic transmission and refraction
properties of junctions of two magnetic Weyl semimet-
als in contact via a transparent interface, with mismatched
anisotropy axes. We have related the magnitude of the low-
temperature conductance and thermopower to the nontrivial
topology of the Fermi surface, which features two discon-
nected or partially overlapping regions. Furthermore, we have
studied the momentum refraction at the interface as a func-
tion of the incoming momentum and tilt angle, and we have
shown that the interface splits the incoming electronic beam
according to its chirality. Potentially, this property can find
application in the experimental detection of the nature of bulk
quasiparticles, i.e., to establish whether there exist chirality-

polarized valleys around the Fermi energy, and in the control
of the electron trajectories, as this effect is able to produce a
beam with a single chirality.

Using a low-energy two-band model, which retains the
universal features of the band crossings, we have established
that there exist interface states, connecting the Fermi surfaces
around the nodes with the same chirality on the two sides
of the slab, whenever the Fermi surfaces do not overlap. We
have characterized their chiral transport along the interface
and their shape in the Brillouin zone, which, although model-
dependent, is uniquely fixed by the tilt angle. Arguably, the
interface arcs stem from the discontinuity in the local ori-
entation of the Berry curvature at the interface, originated
by misaligned Weyl nodes on the two sides. Since the Berry
curvature acts on the semiclassical trajectories of the electrons
analogously to a magnetic field in momentum space [73], a
discontinuity bears many resemblances with a magnetic field
jump in a graphene layer: In particular, the interface states
can be seen as three-dimensional analogues of the “snake
states” [74]. Interestingly, the chirality of the interface arcs
implies that they are to some extent robust to backscattering
arising from the interaction with, e.g., phonons, while dissi-
pation of the current in the bulk modes is generally possible
and most prominent for states in the vicinity of the merging
points with the bulk Fermi surface [67]. It will be interesting to
extend the analysis of this paper to related models, including
type-II, multi-Weyl and triple-point Weyl semimetals [75–78].
Possible applications of the work include engineering the
interfaces in order to control the path of the interface
current [79].
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APPENDIX A: ROTATIONS

The rotation of the Pauli σ matrices by an angle θ around
the x axis is accomplished by the matrix R̂θ , defined by

R̂θ = e−i θ
2 σ x

. (A1)

This acts as σ a
θ = R̂θσ

aR̂−θ , a = x, y, z. While σ x clearly
commutes with R̂θ , the matrices σ y and σ z are brought into
the form

σ
y
θ = cos θσ y + sin θσ z, (A2)

σ z
θ = − sin θσ y + cos θσ z. (A3)

Analogously, while kx is unaffected by the rotation, the mo-
mentum in the yz plane k = (ky, kz )T becomes

kθ = Rθk, (A4)
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with kθ = (kθ,y, kθ,z )T and the rotation matrix
Rθ = cos θI + iσ y sin θ . Applying these transformations
to the bulk Hamiltonian (1), one readily obtains (3) for a
generic rotation angle θ :

H0(kx, k) → R̂θH0(kx, Rθ k)R̂−θ = Hθ (kx, k). (A5)

The corresponding eigenvectors are

uθ ;kx,k =
√

1

2

(
1 − bθ,z

E

)( vkx−ibθ,y

E−bθ,z

1

)
(A6)

and have energies E = Eθ,ν (ν = ±1) given in (5) for the
particle/hole branches. (The normalization factor included
in Eq. (A6) applies only to propagating states.) The current
density along the x direction carried by the bulk states (A6) is

jx
θ = ev2kx

Eθ,ν

(A7)

and is affected by rotation only through the modified disper-
sion. (We omit here the volume normalization factor.)

APPENDIX B: MORE ON INTERFACE STATES

The current density carried by the interface states is evalu-
ated from the wave function (30) as

jy(x) = ev�†σ y� = 2ev2N 2
i (κ + ky)

ε+ − m(kz )
e−2κ̃|x|, (B1)

where the normalization is

Ni =
√

κκ̄ (ε+ − m)2

2S (κ + κ̄ )[ε+(ε+ − m) + v2κ (κ + ky)]
(B2)

and κ̃ = κ�(−x) + κ̄�(x). (Here, S is a normalization area
in the yz plane.) The expression (B1) is exponentially de-
caying from the junction. Integrating over x, one obtains the
contribution to the current

Iy = ev2(ε+ − m(kz ))(κ + ky)

[ε+(ε+ − m(kz )) + v2κ (κ + ky)]S (B3)

from a mode at given energy and kz. For θ → π±, the wide
interface arc between the nodes of negative chirality widens
more and more, until its far end is pushed to ky → ∓∞.
Exactly for θ = π , the continuity equation (31) reduces to

E − m(kz )

E + m(kz )
= ky + κ

ky − κ
, (B4)

and admits the two solutions

E = vky, vκ = −m(kz ) |kz| < kW ,

E = −vky, vκ = m(kz ) |kz| > kW . (B5)

Specializing them at E = 0 and substituting into (B3), we
obtain

Iy = − sgn(m(kz ))
ev

S . (B6)

This expression changes sign at kz = ±kW .

APPENDIX C: SYMMETRY OF INTERFACE
STATES DISPERSION

When V0 = 0, the equation (31) that determines the disper-
sion relation of the interface states is invariant under a mirror
reflection in the plane spanned by x̂ and R− θ

2
ẑ. To see this,

we rotate the whole system by θ
2 around the x axis, so that

the mirror plane coincides with the xz plane. The function
�(E , k) in Eq. (32) then takes the more symmetric form

�(E , k) =
(
E − b− θ

2 ,z(k)
)(−vκ̄ + b θ

2 ,y(k)
)

(
E − b θ

2 ,z(k)
)(

vκ + b− θ
2 ,y(k)

) . (C1)

The reflection in the xz plane maps ky into −ky. Under this
transformation, we find that

b± θ
2 ,z → b∓ θ

2 ,z, b± θ
2 ,y → −b∓ θ

2 ,y, κ̄ ↔ κ, (C2)

and therefore

�(E ,−ky, kz ) = 1/�(E , ky, kz ), (C3)

which indeed leaves Eq. (31) invariant. It follows that, in the
rotated system, E (k) and vz(k) are even in ky and vy(k) is
odd in ky, hence the net current carried by the arc is along the
z direction, which is normal to the node displacement vector
	kW .

APPENDIX D: WEYL SEMIMETAL SLAB

In this Appendix, we briefly summarize the derivation of
the eigenstates of H0 and Hθ=π in Eqs. (1) and (3) for a slab
of finite width L in the y direction and infinite extension in the
x and z directions, used in Sec. VI. Here, the eigenstates are
labeled by momentum components kx and kz and energy E .

We look for eigenstates in the form

�(y) = f+(y)ξ+ + f−(y)ξ−, (D1)

where

ξ± = 1√
2

(±1
1

)
(D2)

are the eigenstates of σ x. We first consider the case θ = 0 and
apply the Hamiltonian H0 to the state (D1). Using

σ yξ± = ±iξ∓, σ zξ± = −ξ∓, (D3)

we obtain the equation

0 = {(E − vkx ) f+ + m(kz ) f− + v f ′
−}ξ+

+ {(E + vkx ) f− + m(kz ) f+ − v f ′
+}ξ−. (D4)

The general solution of the coupled differential equa-
tions above reads(

f−
f+

)
= c1

(
vky cos (kyy) − m(kz ) sin (kyy)

(E + vkx ) sin (kyy)

)

+ c2

( −(E − vkx ) sin (kyy)
vky cos (kyy) + m(kz ) sin (kyy)

)
, (D5)

in which the coefficients c1 and c2 are fixed by the boundary
conditions and by the normalization condition, and

v2k2
y = E2 − v2k2

x − m2(kz ).
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Real values of ky correspond to bulk transverse states, whereas
imaginary values ky = iκy correspond to transverse states lo-
calized at the surfaces y = 0 and y = L, with inverse decay
length κy. The boundary conditions (34) imply f−(0) = 0 and
f+(L) = 0. In turn, these fix c1 = 0 and give the quantization
equation

vky

m(kz )
cot (kyL) = −1. (D6)

In the large-|m|L limit, the real solutions ky,n approach the
asymptotic values given in Eq. (35). The bulk transverse states
for a plane wave e±ikxx+ikzz then read

� (±)
n (y) = Nn{[vky,n cos (ky,ny) + m(kz ) sin (ky,ny)]ξ+

− (E ∓ vkx ) sin (ky,ny)ξ−}. (D7)

For real ky, the normalization factor is, at leading order in L,

N−1
n =

√
2LE (E ∓ vkx ), (D8)

and the corresponding subband dispersion relations are

En(ky, kz ) = ±
√

v2k2
x + v2k2

y,n + m2(kz ). (D9)

In the same way, we can analyze the case θ = π . Using
the Hamiltonian (3) with by

π = vky and bz
π = −m(kz ) and

imposing the boundary conditions (41), one finds the same
quantization condition as in (D6) and the bulk transverse
states

� (±)
n (y) = Nn{(E ± vkx ) sin (ky,ny)ξ+

+ [vky,n cos (ky,ny) + m(kz ) sin (ky,ny)]ξ−},
(D10)

with the spectrum given in (D9). The normalization factor Nn

is obtained from (D8) substituting kx → −kx.
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