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A non-convex adaptive regularization approach
to binary optimization

V. Cerone, S. M. Fosson∗, D. Regruto

Abstract— Binary optimization is a long-time problem ubiq-
uitous in many engineering applications, e.g., automatic control,
cyber-physical systems and machine learning. From a mathe-
matical viewpoint, binary optimization is an NP-hard problem,
to solve which one can find some suboptimal strategies in the
literature. Among the most popular approaches, semidefinite
relaxation has attracted much attention in the last years.
In contrast, this work proposes and analyzes a non-convex
regularization approach, through which we obtain a relaxed
problem whose global minimum corresponds to the true binary
solution of the original problem. Moreover, because the problem
is non-convex, we propose an adaptive regularization that
promotes the descent towards the global minimum. We provide
both theoretical results that characterize the proposed model
and numerical experiments that prove its effectiveness with
respect to state-of-the-art methods.

I. INTRODUCTION

Mixed-integer programming problems arise in several en-
gineering areas, ranging from model predictive control and
industrial production planning to cyber-physical systems.
Problems with binary variables are of particular interest in
several applications, such as in the optimization of networked
systems whose nodes can be either activated or deactivated,
as in cyber-physical systems, when controlling the available
resources by a suitable selection of sensors and actuators.
More precisely, it is important to know how to achieve a
given control objective with a minimum or with a prescribed
number of activated sensors/actuators; see [1], [2], [3].
In fact, on the one hand, the control of the number of
used devices helps to save resources; on the other hand,
an opportune sensor selection decreases the computational
complexity at the processing unit by selecting the most
important observations; see [4].

We encounter a different application of binary program-
ming in detection and localization problems: given a mon-
itored area subdivided into reference points, we have to
estimate the presence of one or more targets in those points
by estimating a binary vector from linear measurements; see,
e.g., [5].

More recently, binary problems have attracted the attention
in deep learning, specifically in the construction of sparse
neural networks with a limited number of parameters. To
control the number of these parameters, binary masks are
used in recent literature; see, e.g., [6] and references therein,
which recasts the problem into mixed-integer programming.

From a mathematical viewpoint, mixed-integer program-
ming is challenging as it is inherently NP-hard. For this
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motivation, one can find several low-complex suboptimal
methods in the literature. In particular, for quadratic opti-
mization with binary variables, one often exploits semidef-
inite programming relaxation (SDR), also known as Shor
relaxation; see [7]. The key idea is to relax the variable
matrix xxT , x ∈ Rn, into an n × n symmetric positive
semidefinite matrix X , and solve the so-obtained semidef-
inite program. The tightness of this approach is studied in
[8], [9]. When x is known to be binary, i.e., x ∈ {0, 1}n,
the constraints Xi,i = X1,i, i = 1, . . . , n can be added
to the SDR; similarly, if x ∈ {−1, 1}n, the trace of X is
tr(X) = n; see, e.g., [10], [11].

Further developments of SDR for binary quadratic opti-
mization include Lasserre’s polynomial optimization meth-
ods, where hierarchies of SDR’s are solved, see [12], [13].
From Theorem 4.2 in [13], the solution of the Shor relaxation
of a binary quadratic problem is the desired optimum if it
has rank 1; in this case, one can extract the desired binary
minimizer; see, e.g.,[14].

For this motivation, the rank minimization in SDR plays
a fundamental role in binary optimization, see [15] for a
complete overview. As rank minimization is NP-hard, one
often exploits the minimization of the nuclear norm, which
is the convex relaxation of the rank; moreover, one can find
non-convex approaches like the log-det heuristic; see [16].
In [17], SDR for binary quadratic optimization is enhanced
by an eigenvalue analysis of the solution, particularly by the
knowledge that the eigenvalues are binary and the multiplic-
ity of the null eigenvalue is n − 1. This analysis suggests
adding non-convex regularizer −〈X,X〉, that improves the
performance.

In this work, we propose a novel approach to binary
optimization. In particular, we focus on problems where the
`0-norm of the solution is known. Specifically, we propose to
relax the original problem with x ∈ {0, 1}n into x ∈ [0, 1]n

and add suitable non-convex regularizers that encourage the
solution to be binary. Since the overall problem is non-
convex, we propose an adaptive method to avoid local min-
ima. The proposed approach is analyzed and characterized
in terms of its global optimality and numerical simulations
are proposed to evaluate the practical effectiveness.

We organize the paper as follows. In Sec. II, we state the
problem. Sec. III, presents and analyzes the proposed ap-
proach. In Sec. IV, we illustrate the numerical experiments;
in Sec. V, we draw some conclusions.



II. PROBLEM STATEMENT

The aim of this paper is to solve binary optimization
problems of the kind

min
x∈{0,1}n

F(x) s.t.
n∑
i=1

xi = k (1)

where F : Rn → R is a suitable cost functional that admits a
minimum, and k ∈ {1, . . . , n} is known and typically k � n.
This is the case, for example, in resource allocation problems
and in sensor/actuator selection, when the number of used
devices may be set a priori, according to a given budget.

In many relevant applications, e.g., in hybrid model pre-
dictive control and in linear regression, the cost functional
is quadratic, i.e., F(x) = xTQx, where Q ∈ Sn, Sn being
the space of n× n symmetric matrices. We remark that the
presence of linear terms is envisaged: by adding a component
equal to 1 in x, the problem can be written in a homogeneous
form, see, e.g., [17] for details.

In this paper, we assume that minx∈{0,1}n F(x) =
minx∈[0,1]n F(x). This occurs, for example, when the pur-
pose is to find the binary solution to an underdetermined
linear equation Ax = b, A ∈ Rm,n, m < n. If we assume
that a binary solution x̃ exists, the related least squares cost
functional ‖Ax − b‖22 achieves global minimum at x̃. One
application of this problem is binary compressed sensing,
see, e.g., [18] and references therein.

A. Related literature

Since Problem (1), is non convex, even when F is convex,
different relaxations are proposed in the literature. If F
is convex, the most natural convex relaxation consists in
replacing x ∈ {0, 1}n by x ∈ [0, 1]n. As to quadratic
problems minx∈{0,1}n x

TQx, a most refined strategy is the
Shor relaxation, see [9], which leads to the SDR

min
X∈Sn+

〈Q,X〉

s. t. Xi,i = X1,i, i = 1, . . . , n
(2)

where Sn+ ⊂ Sn is the subspace of positive semidefinite
matrices. The constraint Xi,i = X0,i supports the fact that
xi = x2i . We remark that the constraint

∑n
i=1 xi = k can be

relaxed into the minimization of (
∑n
i=1 xi−k)2 and included

in the quadratic cost functional. As mentioned in Sec. I, the
Shor solution is exact if it has rank 1; in this case X = xxT

and x ∈ {0, 1}n. To encourage the 1-rank solution, in the
SDR one can penalize the nuclear norm, which corresponds
to the trace in Sn+. On the other hand, if

∑n
i=1 xi = k, one

can add the constraint tr(X) = k.
Another strategy to reduce the rank is to penalize

log det(X). This approach is not convex; however, one can
exploit iterative local linearization to achieve a local mini-
mum, see [16] for details. In [17], the penalization of the term
−〈X,X〉 is proposed. The rationale behind this approach is
the following. If

∑n
i=1 xi = k then tr(X) =

∑
i vi = k,

where vi are the eigenvalues. To have 1-rank solutions,
one would desire eigenvalues in {0, k}. To promote this
sparse binary structure of the spectrum, one can maximize

the energy of the eigenvalues’ vector v ∈ [0, 1]n, which
corresponds to ‖v‖22 = 〈X,X〉. This approach is shown to
enhance the state-of-the-art methods, see [17, Sec. 4].

III. PROPOSED APPROACH AND ANALYSIS

In this work, we propose and analyze a novel approach to
Problem (1). Basically, we propose the following relaxation:

min
x∈[0,1]n

F(x) + λPε(x) s.t.
n∑
i=1

xi = k

Pε(x) =
n∑
i=1

pε(xi)

pε :[0, 1]→ [0, 1]

pε(z) =
log
(
z
ε + 1

)
log
(
1
ε + 1

)
λ > 0, ε > 0.

(3)

Intuitively, pε is a concave regularizer which promotes the
sparsity of the solution. The parameter ε tunes the concavity:
if ε → ∞,

∑n
i=1 pε(xi) → ‖x‖1, while if ε → 0,∑n

i=1 pε(xi) → ‖x‖0. On the one hand, pε closer to `0 is
preferable as more consistent with the original formulation
of sparse optimization problems; on the other hand, pε closer
to `1 drives the problem towards convexity. In our model, the
sparsity of the solution is set to k, and we typically assume
k � n, therefore a sparsity promoting effect is desirable.
However, as the sparsity k is set, the rationale behind the
use of pε is different, and is more related to its capability of
encouraging binary solutions. More precisely, the following
theorem proves that, by solving Problem (3), one obtains the
solution of Problem (1).

Theorem 1: Let us consider Problem (1), and assume that
its solution x̃ ∈ {0, 1}n with

∑n
i=1 x̃i = k, is unique.

Moreover, let x̃ be a global minimizer for F(x), x ∈ [0, 1]n.
Then, x̃ is the global minimizer of Problem (3), for all λ > 0
and ε > 0.

Proof: To prove the statement, we start by character-
izing the minimizers of Pε(x) =

∑n
i=1 pε(xi) in [0, 1]n. As∑n

i=1 xi = k,

Pε(x) =

= c1

[
n−1∑
i=1

(log(xi + ε)) + log

(
k −

n−1∑
i=1

xi + ε

)
− c2

]
(4)

where c1 =
(
log
(
1
ε + 1

))−1
> 0 and c2 = n log(ε). As

c1 and c2 are not relevant to characterize the minimizers
of Pε, in the following, we neglect them without loss of
generality. Now, we compute the stationary points of Pε.
The components of the gradient are

∇iPε(x) =
1

xi + ε
− 1

k −
∑n−1
j=1 xj + ε

=
k −

∑n−1
j=1 xj − xi

(xi + ε)(k −
∑n−1
j=1 xj + ε)

.

(5)



Therefore, ∇iPε(x) = 0xi = k−
∑n−1
j=1 xj , which yields to

∇Pε(x) = 0⇔ xi =
k

n
∈ [0, 1] for all i = 1 . . . , n.

This is the unique stationary point. By computing the eigen-
values of the Hessian matrix in this point, one can conclude
straightforwardly that this stationary point is a maximum, we
omit the details for brevity. As a consequence, the minimum
points are on the boundaries of the hypercube [0, 1]n.

Moreover, one can prove by induction that the minimum
points are at a vertex of the hypercube. In fact, this is trivial
to prove for n = 2. For n = 3, a point on a face has a
at least one component in {0, 1}. Then, by minimizing over
the other two components, we recast the problem to the case
n = 2, and obtain that all the components are in {0, 1}. By
iterating this argument, we obtain the proof for a generic n.

In conclusion, argmin
x∈[0,1]n,

∑
i xi=k

Pε(x) ∈ {0, 1}n. More

precisely, any x ∈ {0, 1}n with k components equal to 1 a
global minimizer for Pε, for any ε > 0. Then, if we consider
the composite functional F(x) + λPε(x), we conclude that
x̃ ∈ {0, 1}n defined in the statement is the global minimum,
as both the terms F and Pε individually achieve global
minima at x̃. The value of λ is not affecting this fact.

Theorem 1 states that Problem (3) is well posed, since
its global minimum is the desired solution of Problem (1).
Actually, we have replaced a combinatorial problem with
a continuous one. Nevertheless, Problem (3) is non-convex,
therefore finding the global minimum is still challenging.
Iterative descent algorithms can be used to look for local
minima; for example, the gradient descent algorithm can be
used if F is differentiable. Nevertheless, local minima are
generally far from the desired binary solution.

To overcome this problem, we propose the following
iterative strategy. We implement a suboptimal solution to
Problem (1) that achieves a local minimum z0 ∈ [0, 1]n, e.g.,
a gradient descent algorithm. If z0 is not binary, we know that
it is a local (not global) minimum. Then, we remove this local
minimum by adding a penalization to it. For example, we can
consider a piecewise penalization rz0 : (0, 1)→ [0, 1]:

rz0(xi) =

{
1
z0,i

xi xi < z0,i
1

1−z0,i (1− xi) xi ≥ z0,i.
(6)

We notice that rz0 has domain (0, 1), that is, the binary
components are not penalized.

Then, we locally solve the problem

min
x∈[0,1]n

F(x) + λPε(x) + αRz0(x) s.t.
n∑
i=1

xi = k

Rz0(x) =
n∑
i=1

rz0(xi)

λ > 0, α > 0 ε > 0.

(7)

Once a new local minimum is obtained, if it does not
correspond to the global minimum, the procedure is iterated.
In other terms, at each iteration, we adapt the functional
in order to transform the current local minimum in a point

which is not a local minimum. The new functional is then
different, while the global minimum remains the same and
corresponds to the desired solution. In fact, since rz0(xi) = 0
when xi ∈ {0, 1}, Problem (7) has the same global minimum
of Problem (3). On the other hand, z0 is the maximum for
rz0 , then by considering a suitable α, z0 is no more a local
minimum of the overall cost functional.

By iterating this procedure, we modify the shape of
functional each time, without modifying its global minimum
and removing local minima. Actually, we are not guaranteed
that by this method we do not create other local minima;
however, in practice we generally obtain a steeper slope
towards the global minimum and the reduction of the basins
of attraction of local minima.

Intuitively, the effect is to shake the functional by keeping
fixed the global minimum, which is expected to promote the
descent to the global minimum, if a descent algorithm is
implemented. We illustrate this point through an example in
Sec. III-A. On the other hand, in principle we cannot foresee
how many times we have to repeat to procedure to make it
successful; this strongly depends on the initial conditions.
Therefore, this strategy is proposed as an heuristic method.
However, in Section IV we show that it is effective.

We remark that by considering a piecewise linear rz0 , the
problem is not differentiable. This could modified be con-
sidering other polynomial regularizers. However, in practice
it suffices to choose a suitable initial point to avoid to incur
in z0 in Problem (7), then if F is differentiable one can run
a gradient descent algorithm.

Fig. 1: Illustrative example: the global minimum is at
(1, 0, 0)T . The yellow circles indicate the minima. Left:
Problem (3); right: Problem (7). In the second case, we have
two local minima instead of one, but the slope is steeper
towards the global minimum. If we run a gradient-based
algorithm starting from 1

3 (1, 1, 1)
T in the second case we

achieve the global minimum.

The overall proposed strategy is summarized in Algorithm
1.

A. Illustrative example

We propose a low-dimensional example, that can be
graphically visualized and, at the same time, motivates the
proposed strategy. Let us consider A = (0.3, 1.5,−1) and
b = 0.3. Then, the equation Ax = b has binary solution
x̃ = (1, 0, 0)T . Our aim is to find it by solving Problem
(3), where F(x) = 1

2‖Ax − b‖
2
2. For simplicity, we set the

constraint
∑
xi = 1, so that we can graphically visualize F



Algorithm 1 Non-convex adaptive regularization algorithm

Input: F , λ > 0, ε > 0, α > 0

Output: xTstop = estimate of x̃
1: Compute a local minimizer x0 ∈ [0, 1]n of

F(x) + λPε(x) s.t.
∑
i

xi = k

2: If x0 ∈ {0, 1}n, then x0 = x̃ ⇒ STOP
3: for all t = 1, . . . , Tstop do
4: Compute a local minimizer xt ∈ [0, 1]n of

F(x) + λPε(x) + α

t−1∑
τ=0

Rxτ (x) s.t.
∑
i

xi = k

5: If xt ∈ {0, 1}n, then xt = x̃ ⇒ STOP
6: end for

as a function of two variables; this is depicted in Fig. 1, on
the left, by a contour line graph. The yellow squares indicate
all the minima. We see that a local minimum is present at
z0 = (0, 0.51, 0.49)T . Then, we add the penalization rz0 , and
we obtain the cost functional depicted in Fig. 1, on the right.
This new functional has two novel local minima. However,
since the global minimum remains at the same level, we
obtain a steeper slope towards it. For example, if we start
from the mid point 1

3 (1, 1, 1)
T in the second case we achieve

the global minimum, while this is not true in the first case.

B. Different concave regularizations

It is worth noticing that the proposed approach can be ex-
tended to other concave regularizers beyond the log function.
For example, Theorem 1 can be straightforwardly proved also
for penalties that maximize the energy, e.g., −‖x‖22. In this
work, we focus on the log as it is known to be more effective
to promote sparsity, also given the possibility to tune its
concavity by the parameter ε, see, e.g., [14] for details. If
F is quadratic, the use of −‖x‖22 may be preferable to keep
the overall problem quadratic, and then use Shor relaxation.
However, we remark that by Shor relaxation the term −‖x‖22
is relaxed to −tr(X), which is set to k in our framework.
Therefore, this strategy is not effective.

A special remark should be devoted to −‖x‖42, which
again maximizes the energy. We notice that −‖x‖42 =
−‖x‖22‖x‖22 = xTxxTx. Since by Shor relaxation, xxT is
relaxed to X ∈ Sn+, we can relax −‖x‖42 into −xTXx, which
in turn can be relaxed to −〈X,X〉, which is exactly the
method proposed in [17].

In this paper, we focus on the log regularizer, while
analyzes on different concave regularizers are left for future
work.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate the results of some numerical
simulations. First, we propose a simulation with synthetic

data. Second, we propose a real-world experiment that ad-
dresses an indoor localization problem via wireless sensor
networks.

A. Synthetic experiment

In the first experiment, we consider the following setting.
We have an underdetermined linear system Ax = b with a
binary solution, with n = 40 and m ∈ {8, . . . , 18}, m < n.
We consider different sparsity levels k ∈ {3, 4, 5}, k �
n. We assume that the constraint

∑
i xi = k is one of the

m linear equations in Ax = b. Our aim is to compute the
correct binary solution by applying Algorithm 1 to the cost
functional F(x) = 1

2‖Ax− b‖
2
2.

In this experiment, we set λ = 10−4, ε = 10−2, α = 1,
Tstop = 20. For local minimization, we implement the
gradient algorithm, with initial condition 1

21 ∈ [0, 1]n. We
compare the proposed approach to the classical SDR ob-
tained by Shor relaxation and to the algorithm KBE proposed
in [17]. In that paper, KBE is shown to perform better
than Shor relaxation, nuclear norm and log det methods.
The matrix A has Gaussian independent entries N (0, 1

m ).
The support of x̃ is generated uniformly at random. The
results, illustrated in Fig. 2, are averaged over 100 random
runs. Specifically, we show the exact recover rate for each
approach, i.e., how many times x̃ is correctly identified. The
method proposed in this paper is denoted by LOG in the
figure.

In Fig. 2, we can see that the proposed method sub-
stantially improves with respect to KBE, by reducing the
number of measurements that are necessary to find the
desired solution. We notice that in principle m = 1 might
be sufficient, provided that x̃ is the unique binary solution.
However, by increasing m we reduce the number of local
minima and we improve the overall performance. At the
same m, the proposed approach can achieve an improvement
of 20% with respect to KBE. Regarding the number of
measurements, the recovery rate obtained by the proposed
method at m = 12 is close to that of KBE with m = 14,
which means that we save around the 14% of measurements.

Regarding the run time, in this experiment SDR and KBE
require around 10−2 seconds to run. We specify that for them
we use the Mosek C++ Fusion API, see [19], which is quite
fast in solving SDRs. On the other hand, the complexity of
the proposed method is low, as it based on gradient descent
algorithm. However, by assuming a maximum number of
iterations Tstop = 20, which is quite large, we observe a
run time that can vary from 10−2 up to 10 seconds. The
optimization of the run time, by considering different local
minimization algorithms and by refining the tuning of the
parameters, is ongoing work.

B. Localization problem

In the last years, indoor localization has been attracting
much attention in cyber-physical systems, for different pur-
poses, such as monitoring, surveillance, control of industrial
production lines and of unmanned vehicles. Indoor localiza-
tion is challenging as GPS technologies are not available for
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Fig. 2: Synthetic experiment, n = 40, k = 4, 5, 6: exact
recovery rate. We compare the proposed approach, denoted
as LOG, to SDR and KBE [17]

it and one can find many methodologies in the literature; see,
e.g., [20] for an overview.

A valuable approach is to use wireless sensor networks:
sensors are deployed in the indoor area to monitor and
they acquire radio signals from the targets that they aim to
localize. For example, one can use sensors that measure the
received signal strength (RSS). In the so-called fingerprinting
approach, one performs a training phase in which the area
is split into n references points, and, in turn, the target
broadcasts a signal from each point. The m sensors acquire
the related RSSs and build a dictionary A ∈ Rm,n. After
the training phase, the localization is performed as follows:
each sensor takes one RSS measurement, so that one collects
a vector y ∈ Rm, and the localization can be performed by

solving Ax = y, corrupted by some noise. Actually, x is
binary vector and

∑
i xi = l is equal to the number of targets

to localize, which can be known a priori; see [21], [22] for
details.

In this section, we propose a localization experiment
via wireless sensor network, by considering the RSS-
fingerprinting model. We notice that we assume that the pro-
cessing of the data is performed by a central processing unit,
that gathers all the measurements taken from the wireless
sensor network. However, distributed algorithms might be
also considered, to perform the localization in-network.

We consider the following setting. We aim to localize k =
5 targets a 10× 10 m2 indoor area. We assume to split the
area into n = 100 square cells of side 1 m and our aim is
to identify in which cell the target is. Then, we consider a
wireless sensor network composed by m ∈ {20, 22, . . . , 34}
sensor nodes, deployed uniformly at random on the area. To
simulate to RSS measurement, we exploit the model defined
by the IEEE 802.15.4 standard, as reported in [21, Equation
11]. The targets are deployed uniformly at random on the
area. A measurement noise is added, corresponding to an
SNR of 25dB. We perform 100 random runs.

We show the configuration and the results of a single
experiment in Fig. 3. In this figure, we can see a 10 ×
10 m2 area, where we have randomly deployed 20 sensors,
represented by the green circles; then, we place 5 targets,
represented by the red squares, in different reference points.
The green crosses are the positions estimated by KBE, which
is this experiment provides the same result than SDR. Two
targets are not correctly localized, with an error of 1 m for
both. Instead, the proposed method, represented by the blue
triangles, provides a correct localization of all the targets.

We illustrate the performance in Fig. 4, in terms of exact
recovery rate, by comparing to SDR and KBE, as in the
previous experiment. We can see that also in this realistic
experiment, the proposed method has a better accuracy with
respect to state-of-the-art methods, for all the considered
numbers of measurements m.

V. CONCLUSIONS

In this work, we propose a novel approach to binary
optimization. Given a minimization problem with binary
variables, by assuming the knowledge of the sparsity of the
solution, we propose to regularize it by an opportune non-
convex penalization. We prove that the proposed problem
is well-posed, that is, the global minimum is the desired
solution. As the problem is non-convex, and it may be
challenging to achieve the global minimum, we propose
an adaptive iterative algorithm, in which, first, we run a
descent algorithm that achieves a local minimum. Then,
we add an adaptive regularizer that penalizes the obtained
local minimum, without affecting the global minimum. This
adaptive regularization encourages the descent to the global
minimum. This result is confirmed by an improvement in
the exact recovery rate observed in numerical simulations.
Future work will be devoted to a rigorous analysis of the
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rate. We compare the proposed approach, denoted as LOG,
to SDR and KBE [17]

adaptive method and to verify its effectiveness in large scale
problems.
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