
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quantitative analysis of prion disease using an AI-powered digital pathology framework / Salvi, Massimo; Molinari,
Filippo; Ciccarelli, Mario; Testi, Roberto; Taraglio, Stefano; Imperiale, Daniele. - In: SCIENTIFIC REPORTS. - ISSN
2045-2322. - ELETTRONICO. - 13:1(2023). [10.1038/s41598-023-44782-4]

Original

Quantitative analysis of prion disease using an AI-powered digital pathology framework

Publisher:

Published
DOI:10.1038/s41598-023-44782-4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983224 since: 2023-10-21T12:00:00Z

Springer



1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17759  | https://doi.org/10.1038/s41598-023-44782-4

www.nature.com/scientificreports

Quantitative analysis of prion 
disease using an AI‑powered digital 
pathology framework
Massimo Salvi 1*, Filippo Molinari 1, Mario Ciccarelli 1, Roberto Testi 2, Stefano Taraglio 3 & 
Daniele Imperiale 4

Prion disease is a fatal neurodegenerative disorder characterized by accumulation of an abnormal 
prion protein (PrPSc) in the central nervous system. To identify PrPSc aggregates for diagnostic 
purposes, pathologists use immunohistochemical staining of prion protein antibodies on tissue 
samples. With digital pathology, artificial intelligence can now analyze stained slides. In this study, we 
developed an automated pipeline for the identification of PrPSc aggregates in tissue samples from the 
cerebellar and occipital cortex. To the best of our knowledge, this is the first framework to evaluate 
PrPSc deposition in digital images. We used two strategies: a deep learning segmentation approach 
using a vision transformer, and a machine learning classification approach with traditional classifiers. 
Our method was developed and tested on 64 whole slide images from 41 patients definitively 
diagnosed with prion disease. The results of our study demonstrated that our proposed framework 
can accurately classify WSIs from a blind test set. Moreover, it can quantify PrPSc distribution and 
localization throughout the brain. This could potentially be extended to evaluate protein expression in 
other neurodegenerative diseases like Alzheimer’s and Parkinson’s. Overall, our pipeline highlights 
the potential of AI‑assisted pathology to provide valuable insights, leading to improved diagnostic 
accuracy and efficiency.

Prion diseases, also referred to as transmissible spongiform encephalopathies (TSEs), are an incurable group 
of transmissible neurodegenerative conditions characterized by the presence of aggregates of the pathologi-
cal isoform of the cellular prion protein (PrPSc)1,2. Once PrPSc is generated, a seeded-conversion mechanism 
begins, and the aberrant protein acts as a template for the recruitment and conversion of healthy proteins with 
the same amino acid  sequence1,3.

In 2018, the Centers for Disease Control and Prevention (CDC) established that the standard pathological 
techniques for diagnosing prion diseases include immunocytochemistry, Western Blot, and histopathologi-
cal analysis to detect scrapie-associated  fibrils4. The diagnosis is usually made post-mortem by performing an 
autopsy, which allows for easy examination of the nervous tissue from various regions of the central nervous sys-
tem (CNS) and accurate detection of features such as astrocytosis, neural loss, spongiosis, and PrPSc presence as 
evidenced by  immunohistochemistry1. Histopathological patterns require immunolabeling for visualization and 
can be classified into three  categories5,6 as shown in Fig. 1. Although none of these patterns identifies a specific 
phenotype, their presence and location are valuable for disease subtype classification. However, the identifica-
tion and characterization of certain prion protein aggregates, particularly synaptic deposits, pose challenges in 
immunohistochemical staining.

The diagnostic process for prion diseases is time-consuming, and physicians can be overwhelmed by the 
workload. Therefore, an automated tool that recognizes WSIs with PrPSc aggregates would speed up the pro-
cedure and enable pathologists to work more efficiently. Furthermore, the assessment of prion disease involves 
examining various regions within the brain, thereby increasing the time required for pathologists. Moreover, 
pathologists can only analyze one section at a time, posing a challenge in reconstructing the distribution of the 
prion protein throughout the entire brain. Lastly, in situations where comprehensive sampling is necessary, a 
tool that quantifies protein expression and localization across the entire brain would be highly beneficial for 
future research purposes.
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Over the past two decades, pathology has undergone a technological revolution similar to what radiology 
experienced in the previous century. The catalyst for this process was the widespread adoption of whole slide 
images (WSIs), which are digital reproductions of slides generated by scanners. Unlike traditional microscopy, 
WSIs offer several advantages due to their digital  nature7–10. Sharing WSIs is easier and faster than sharing 
physical slides, resulting in more efficient and accurate diagnoses by multiple  pathologists8,10. In addition, the 
increased availability of WSIs has made them valuable in training future  experts8. Moreover, WSIs are well-suited 
for quantitative analysis using artificial intelligence (AI) algorithms. As a result, the use of machine learning and 
deep learning in tasks such as segmentation, classification, and prognosis has exponentially increased in recent 
years, leading to numerous research  papers7–10.

In this context, it is important to emphasize the significance of standardization and quality control in the 
field of digital pathology. Optimal slide preparation, accurate staining techniques, and high-quality digitalization 
processes are essential factors that contribute to the development of reliable and robust AI tools. Standardization 
ensures consistency in slide preparation, minimizing variations that can affect the accuracy and reproducibility 
of AI algorithms. Accurate staining techniques are crucial for highlighting specific features and biomarkers in 
the tissue samples, enabling AI algorithms to effectively identify and analyze them. Additionally, high-quality 
digitalization processes ensure that the digitized slides capture the essential details and characteristics needed 
for accurate analysis by AI algorithms.

AI-based systems are increasingly popular due to their ability to learn from data and perform tasks at a human 
cognitive  level11–13. In the medical field, these algorithms can offer significant support to physicians by automati-
cally performing time-consuming tasks, speeding up medical  analysis14–16. They can also extract information 
beyond what the human eye can see and provide it to the physician, reducing the error  rate7. AI technology 
has shown remarkable results in tasks such as lesion identification and  labeling17, target area segmentation, 3D 
image  reconstruction18, image  classification19, and processing. Furthermore, an AI system can quantitatively 
examine images, while expert microscopic analysis is qualitative and prone to intra- or inter-operator variability. 
Therefore, a second opinion based on numerical data could support the pathologist and significantly reduce 
 misclassifications20.

The assessment of prion disease using AI poses various challenges that must be addressed, such as obtaining 
a wide and high-quality dataset and manual segmentations, managing the non-Boolean nature of the  diagnosis21, 
interpreting the results, and handling the large dimension of  WSIs22. To create a usable system, WSIs must accu-
rately represent the casuistry, as the presence of artifacts or suboptimal coloring could lead to diagnostic errors 
and hinder the development of a robust system. Manual segmentations are essential for teaching the system to 
differentiate between different labels but collecting them is time-consuming and subject to problems related to 
qualitative evaluation, such as inter- and intra-operator variability and uncertainty. Nevertheless, manual seg-
mentations are crucial for obtaining accurate results because the algorithm considers the expert’s knowledge as 
the gold standard. Another challenge is related to the interpretation of the results: although the diagnosis of prion 
disease may be binary, descriptive terminology that accounts for the clinical context, pathologist’s perception, 
and experience is used when exploring the disease phenotype. Replicating this process is not trivial, especially 
since there is no clear way to explain why the algorithm has made a certain decision, making the results difficult 
to  interpret23. Finally, digital slides typically contain hundreds of millions or even billions of pixels, while neural 

Figure 1.  Histopathological patterns used to evaluate prion disease. Positive patterns demonstrate an 
accumulation of the abnormal prion protein, resulting in a more granular texture of the image. In contrast, 
negative patterns show a normal distribution of protein.
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networks take relatively small images as input. This necessitates a patch extraction phase, which involves extract-
ing smaller regions from the original WSI. However, this process could result in the loss of relevant information 
that could be obtained from an overall view of the  image7.

In the last decade, AI has been widely used for brain image classification of Alzheimer’s Disease (AD) and 
Parkinson’s Disease (PD), which represent the most studied neurodegenerative  diseases24–26. In digital pathology, 
Convolutional Neural Networks (CNNs) have been proposed for classifying slides from patients with  glioma27 or 
 tauopathy28. Recently, researchers have also used AI to study prion diseases: Bhakta et al.29 investigated potential 
correlations between behavioral and environmental factors and the disease, while and Bizzi et al.30 proposed 
AI-based diagnostic methods for prion diseases from magnetic resonance imaging. However, both methods 
required manual effort to extract input features. Currently, detecting PrPSc accumulation through post-mortem 
tissue analysis is necessary for definitive prion disease diagnosis, and no research has been published on using 
AI to classify WSIs for prion disease.

This work aims to develop an AI-based framework that employs both machine learning (ML) and recent 
deep learning (DL) methods for accurate classification of WSIs as positive or negative for prion disease, and to 
quantify the distribution of prion proteins across entire tissue sections. The main contributions of this paper 
can be summarized as follows:

• We propose the first AI-based framework for the evaluation of prion diseases in digital pathology images. 
Our algorithm employs ML-based and DL methods to accurately classify prion diseases using immunohis-
tochemistry (IHC) slides. A comprehensive comparison is also carried out between these two techniques to 
find the best method in terms of accuracy and computational efficiency.

• We present a new segmentation network that combines a multi-scale features extraction technique (UPerNet) 
with a local adaptive attention mechanism (TWINS) to accurately segment PrPSc aggregates. The proposed 
segmentation network outperforms existing ML methods in the identification of histological patterns associ-
ated to prion disease.

• We develop a smart approach for patch extraction during inference that dramatically reduces computational 
times. Our approach is specifically designed to extract patches only from areas of tissue that are likely to 
contain PrPSc aggregates. By avoiding the extraction of unnecessary patches, our approach significantly 
increases the efficiency and speed of the overall analysis, with improvements of up to 700%.

• Our method enables the quantification of PrPSc distribution across entire tissue sections, allowing for the 
reconstruction and quantification of protein distribution throughout the entire brain. Such an approach can 
be easily extended to the quantification of other immunohistochemical proteins in different neurodegenera-
tive diseases.

This paper is structured as follows: section "Materials and methods" provides a comprehensive overview of the 
proposed method, while section "Results" details the experimental results. Finally, sections "Discussion" and 
"Conclusion" offer a thorough discussion of the overall work.

Materials and methods
Dataset
The dataset consisted of 41 patients, with two WSIs provided for 23 of them, referring to the cerebellum and 
occipital lobe of the cerebral cortex. For the remaining patients, 13 had only cerebellum WSIs and 5 had only 
occipital cortex WSIs. Overall, the dataset comprised 64 digital slides, with 36 for the cerebellum and 28 for the 
occipital lobe. The data utilized for this study originates from the "Piedmont Reference Center for Diagnosis and 
Monitoring of Prion Diseases (DOMP)." The DOMP Center, operating since 2002, is dedicated to institutional 
diagnostic and monitoring purposes related to prion diseases. The slides were retrieved from archived paraffin-
embedded tissue blocks of prion disease cases deceased in 2002–2008 period.

Two different scanners were used to digitize the slides in this study. The Ventana DP200 scanner, manufac-
tured by Roche, was used to scan 30 WSIs, while the remaining slides were scanned using the Aperio T2 scanner 
(Leica System). By using two different scanners, we aimed to introduce additional variability into the dataset, 
mimicking the variability that would be expected in a real-world clinical setting. This increased heterogeneity is 
beneficial because it better reflects the diversity of images that may be encountered in clinical practice, improving 
the generalizability of our findings, and ensuring that any algorithms or models developed on this dataset will 
be better suited to real-world scenarios.

Tissue PrPSc deposits were identified by immunohistochemistry with the 12F10  antibody31 after pretreatment 
with 30-min hydrate autoclaving at 121 °C and 5 min 96% formic acid to eliminate the cellular form of prion 
protein. The immunolabeling of sections was achieved using the avidin–biotin-complex (ABC) method and the 
Fast Red chromogen in an automated immunostaining machine (Leica Bond, Leica Biosystems Nussloch GmbH, 
Germany). This allows protein aggregates to be highlighted in positive subjects, resulting in red staining of the 
pathological tissue. Out of the 64 WSIs in the dataset, a total of 48 were labeled as positive for prion disease by 
an expert pathologist (D.I.), while the remaining 16 were negative controls. The positive WSIs displayed clear 
and distinct histopathological patterns associated with prion diseases, such as protein aggregates and neuronal 
loss, while the negative WSIs did not exhibit any such patterns. The same experienced pathologist manually 
annotated the regions of WSI that exhibited PrPSc deposits compared to the negative areas.

The WSIs were divided into three distinct subsets: the training and validation sets, which were used to 
construct and train the models, and a blind test set which served to validate the entire system. The numerical 
breakdown of each subset in terms of patients, WSIs, and tiles is presented in Table 1, providing an overview of 
the dataset and the distribution of data used for the development and validation of the system.
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To prevent bias and ensure balance, the dataset was divided into subsets for training, validation, and testing. 
The training set included 33 patients and 49 slides, while the validation and test sets included 5 and 3 subjects, 
comprising 9 and 6 slides, respectively. Partitioning was carried out based on anatomical regions, histopatho-
logical phenotypes, and labels. Due to the large size of the WSIs, the expert operator manually labelled positive 
and negative patterns to train the AI system. A sliding window was used to extract regions of size 512 × 512x3 
at 20 × magnification, which allowed for the observation of patterns at a spatial scale perceptible to the human 
eye. To prevent dataset imbalance, no more than 500 patches were extracted per slide. More details about patch 
extraction are reported in the Supplementary Material.

The aim of this study is to distinguish between positive and negative histopathological patterns of prion 
disease using two different methods: machine learning and deep learning. The machine learning approach 
involves extracting handcrafted features and performing a classification task to identify PrPSc aggregates in the 
input patch. On the other hand, the deep neural network can automatically extract features and perform pattern 
segmentation to determine whether individual pixels belong to the patterns. The key difference between the two 
approaches lies in their feature extraction and learning paradigm (Fig. 2).

Feature extraction and classification using machine learning
To perform feature extraction, we take advantage of texture analysis (TA), a subfield of radiomics that converts 
images into analyzable data to support decision-making32,33. Since TA works on single-channel images, we con-
verted patches from RGB to grayscale. However, this conversion led to a loss of information, as different colors 
with similar brightness were converted to very similar gray tones (Fig. 3). To mitigate this issue, we explored 
an alternative single-channel image approach called the DeltaE transform. As illustrated in Fig. 3, the DeltaE 
transform successfully reduced staining variability while retaining the informative content of the patch.

The DeltaE transform involves converting the RGB image to the LAB color space. Within this color space, 
there is a linear relationship between various colors, allowing for precise measurement of the distance between 
any two tones through the calculation of the Euclidean distance. In this application, we used the primary red 
(RGB triplet: [255, 0, 0]) as our reference color.

In Eq. 1, the index i denotes the values of the i-th pixel, whereas Lr, ar, and br correspond to the LAB values of the 
reference color. Pixels that are closer to the reference color will appear darker due to the smaller distance, while 
those farther away will appear lighter due to the larger distance in Euclidean space. Since DeltaE values may 
exceed 255, they are first normalized between 0 and 1 before being converted to integer format. The minimum 
and maximum values of the DeltaE transforms in the training set were used to determine the lower and upper 
limits, respectively.

(1)DeltaE =

√

(Li − Lr)
2
+ (ai − ar)

2
+ (bi − br)

2

Table 1.  Dataset composition.

Subset # Patients # WSI # Patches

Train set 33 49 16,833

Validation set 5 9 3302

Test set 3 6 3636

Figure 2.  Proposed pipeline for detecting prion diseases in whole-slide images using two different approaches. 
The first approach relies on machine learning, which classifies each patch in the WSI, while the second approach 
employs deep learning for semantic segmentation. In both approaches, a patch aggregation strategy is employed 
to determine whether the entire WSI is positive or negative for prion diseases.
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Texture analysis employs mathematical techniques to analyze the intensity and position of pixels within an 
image. Texture refers to the repetition of patterns and elements within a specific region, which possess consist-
ent perceptual characteristics while the term ‘position’ refers to a group of adjacent pixels with tonal or local 
properties. A total of 169 texture features were extracted using first- and second-order statistical  methods34,35 
from both the traditional grayscale image and the DeltaE transform.

First-order statistics evaluate the overall distribution of pixel intensities in the  image34, while second-order 
statistics consider the spatial interactions of gray levels. The most widely used matrices for second-order statistics 
are the gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM)36, and local binary pat-
tern (LBP)37. GLCM quantifies how many times two gray levels are within a certain distance of each other, and 
GLRLM evaluates the distribution of gray levels on a larger scale. LBP explores the neighborhood of a pixel and 
assigns a value to the pixel under consideration in the LBP matrix. The parameters extracted from these matri-
ces are used to calculate various features such as: contrast, dissimilarity, homogeneity, local energy, correlation, 
second angular momentum, local entropy, short-run emphasis, long-run emphasis, gray level nonuniformity, 
run length nonuniformity, run percentage, energy, and entropy.

The extracted features were normalized using either min–max scaling normalization or z-score normaliza-
tion. To reduce the number of dimensions in the feature space, principal component analysis (PCA)38 was used. 
PCA identifies the most informative features that contribute the most to the variance in the data. Additionally, 
a parallelized variant of the minimum-Redundancy Maximum-Relevance (mRMR)  algorithm39 was employed 
to select the most relevant features while minimizing redundancy among them. This method ensures that the 
selected features are highly informative and have a low correlation with each other. These techniques were applied 
to enhance the accuracy and computational efficiency of subsequent machine learning algorithms.

Finally, patches were labelled as positive or negative based on the percentage of annotation within the patch. 
For this classification task, four different machine learning algorithms were trained: K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN).

Multi‑class segmentation using deep learning
To identify positive and negative patterns, we adopted a recent architecture based on vision transformers, an 
emerging category of deep learning  networks40,41. Specifically, we integrated a vision transformer into the feature 
extraction phase of a  UPerNet42. The UPerNet architecture is a widely used network that combines encoding and 
decoding layers with skip connections and multi-scale fusion to generate accurate and detailed segmentation 
maps. This network is based on the Feature Pyramid Network (FPN)43, which performs predictions at different 
scales instead of only on the finest level. The UPerNet employs lateral connections to fuse feature maps generated 
by the bottom-up pathway, the feed-forward computation of the backbone, with those of the top-down pathway, 
obtained by upsampling feature maps from the top to the base of the pyramid (Fig. 4a). This results in a set of 
proportionally sized feature maps at multiple levels. Skip connections are used to preserve fine-grained details 
in the segmentation map, while the multi-scale fusion module fuses feature maps from different decoder and 
corresponding encoder layers using a weighted sum.

Figure 3.  Comparison between the traditional grayscale image and the proposed DeltaE image. DeltaE image 
effectively reduces staining variability while maintaining the patch’s structural content.
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To enhance the multi-scale feature extraction of the UPerNet, we used the Twins  Transformer44 as the back-
bone. The Twins architecture extracts local features from image patches and selectively focuses on important 
regions within each patch through spatially variant attention mechanisms. The Twins employs locally grouped 
self-attention modules (LSA) and global sub-sampled attention modules (GSA) (Fig. 4b). LSA operates on a 
local patch, divided into a grid of tokens, and performs self-attention across the tokens within that patch. This 
allows the model to analyze the local features of the patch while preserving its spatial  structure44. GSA, on the 
other hand, operates on a global representation of the image by subsampling the feature map. Both LSA and 
GSA allow the Vision Transformer to capture complex and multi-scale patterns within an image. By combining 
these two types of attention mechanisms, the model can selectively focus on important regions of the image at 
multiple scales, leading to more accurate and robust feature extraction.

During the training phase, we employed a batch size of 4 and an initial learning rate of  10−4, with a total of 
100 epochs. To prevent overfitting, real-time random flipping was applied. We utilized Adam’s optimization algo-
rithm with a weight decay of 0.005, and both the decode and auxiliary head of the model employed a weighted 
cross-entropy loss (Eq. 2). The weights Wc of the cross-entropy loss were assigned inversely proportional to the 
number of pixels belonging to class c, ensuring that the least represented class (i.e., positive patterns) would have 
a higher contribution during the weight update compared to the more represented class (i.e., negative patterns). 
The loss is defined as:

The terms pic and gic represent the predicted segmentation probability and the ground truth label of class c at 
pixel i, respectively. N and C are the numbers of pixels and classes in the training dataset.

Quantification of protein expression
The method for detecting prion protein expression can be applied to the entire WSI in order to extract quantita-
tive features that are relevant to pathologists. Once the AI generates a binary mask, two options become available: 
3D quantification in the brain and 2D quantification on the slide.

In the first scenario, the software can determine the presence of the protein on the slide by calculating the 
ratio of positive tissue to the total histological tissue, based on known brain regions (such as the cerebellum, 
occipital cortex, etc.). When extensive sampling covers multiple brain regions, our algorithm can reconstruct 
the protein levels for each specific area, providing a comprehensive spatial distribution analysis across the entire 
brain (first branch in Fig. 5).

Alternatively, if the objective is to quantify protein expression on the current slide, the software enables the 
extraction of various quantitative features. These features include texture operators (as detailed in section "Feature 
extraction and classification using machine learning") and spatial distribution characteristics such as Voronoi 
diagrams (reference). This allows for quantifying both the intensity and spatial distribution of the prion protein 
on the individual slide, delivering valuable quantitative data to speed up the diagnostic process for pathologists 
(second branch of Fig. 5).

Performance metrics
To evaluate the system’s ability to recognize histological patterns in individual patches, we calculated the accu-
racy for the machine learning classifiers and the dice coefficient (DSC) for the segmentation network. For the 
entire WSI classification, we compared the automatic label (e.g., positive, or negative slide) with that provided 
by the expert operator.

Results
Machine learning performance
We conducted tests on the four traditional classifiers (KNN, SVM, RF, ANN) by adjusting their input conditions 
and hyperparameters. Features were extracted from grayscale images, DeltaE transforms, or a combination of 

(2)LWCE = −
1

N

C
∑

c=1

Wc ·

N
∑

i=1

gic · log
(

pic
)

Figure 4.  Segmentation network used in this work. (a) UPerNet is based on Feature Pyramid Network that 
extract image features at different scales. (b) Twins interleaves locally grouped attention (LSA) with global sub-
sampled attention (GSA) during feature extraction.
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both (Grayscale + DeltaE). Additionally, we changed the normalization type (min–max scaling or z-score) and 
the number of features (using PCA or mRMR) to determine the optimal set of descriptors. We adjusted the 
hyperparameters of the classifiers by varying the k-parameter and distance metric of KNN, the penalty parameter 
C and kernel trick for SVM, the number of trees and splitting criterion for RF, and the hyperparameters of ANN, 
such as batch size or number of hidden neurons. To analyze the results, we grouped all trials based on the input 
image used and created Table 2 to display the best accuracy achieved by each classifier.

All the classifiers achieved an accuracy of over 90% for both the training and validation sets across each of 
the three types of input features. The DeltaE transform was found to be more informative than the traditional 
grayscale image. However, the combination of features extracted from both images produced the best results. 
The best-performing classifier on the validation set was the ANN, which achieved an average accuracy of 97.6%. 
The ANN consisted of two hidden layers, each containing 800 neurons. It was trained for 100 epochs with a 
batch size of 256 and a learning rate of 0.0001. Z-score normalization was applied to the features extracted from 
the grayscale image and DeltaE. The confusion matrices shown in Fig. 6 demonstrate that the performance on 
the two subsets were well-balanced. In fact, the validation set misclassifications included 78 out of 3302 patches, 
comprising 40 false positives and 38 false negatives.

Deep learning performance
The UPerNet-Twins (Fig. 4) adopted in this study focused on segmenting histopathological patterns rather than 
classifying input patches. The idea was to identify areas of the tissue sample that exhibited distinct patterns of 
staining, which could be indicative of the presence of PrPSc aggregates. As a result, two different segmentation 
metrics were utilized: Dice similarity coefficient (DSC) and accuracy. These metrics were used to evaluate the 
system’s ability to identify PrPSc aggregates. The UPerNet-Twins network performed consistently well on both 
the training and validation sets, achieving a DSC of 73.7% and 70.2%, respectively, and an accuracy of 93.6% 
and 93.7%. A visual comparison between manual annotation and the proposed network segmentation is shown 
in Fig. 7.

Figure 5.  The proposed method employs a binary mask generated by AI to quantify protein expression across 
the WSIs. This analysis includes 3D assessment across the entire brain and 2D evaluation on individual slides.

Table 2.  Patch-level performance of the machine learning approaches. Each of the four classifiers (KNN, 
SVM, RF, and ANN) are trained and tested on three different types of images: Grayscale, DeltaE and the 
combination of both (Grayscale + DeltaE). Best results on validation set are highlighted in bold.

Classifier Image ACC TRAIN ACC VAL (%)

KNN

Grayscale 95.0 90.5

DeltaE 96.5 92.8

Grayscale + DeltaE 96.8 93.1

SVM

Grayscale 99.3 95.8

DeltaE 98.5 96.8

Grayscale + DeltaE 99.2 97.4

RF

Grayscale 100 93.3

DeltaE 100 94.7

Grayscale + DeltaE 100 95.1

ANN

Grayscale 98.4 96.0

DeltaE 99.7 97.4

Grayscale + DeltaE 99.5 97.6
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Figure 6.  Confusion matrixes of the best performing machine learning classifier (ANN) on train and validation 
set.

Figure 7.  Performance of the deep learning-based method in the segmentation of PrPSc aggregates in three 
different tiles.
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Comparison of the two approaches for WSI labeling
To evaluate the performance of the machine learning and deep learning-based methods, we utilized WSIs, which 
offer a comprehensive view of the entire tissue sample. Information on WSI is generally stored in high-resolution 
patches, which makes it time-consuming to analyze an entire slide. To address this challenge, we developed a 
smart patch extraction approach that identifies the most diagnostically relevant portion of tissue. Our method 
involves applying a threshold in the RGB channel and extracting patches with a red intensity greater than the 
90th percentile of the entire slide. This approach significantly speeds up WSI inference by up to 700% while 
maintaining a high level of accuracy. Figure 8 provides a visual representation of the effectiveness of this method.

For the machine learning-based approach, patch classification results were extrapolated to the entire WSI by 
calculating the percentage of pixels labeled as pathological among all pixels containing a portion of the tissue. If 
this percentage exceeded 10%, the slide was labeled as positive for pathology. This threshold was chosen based 
on empirical data analysis and was found to be an appropriate cutoff for accurate classification.

Similarly, for the deep learning-based approach, segmentation network was applied to the WSI using a sliding 
window approach. The same threshold used in the machine learning-based approach was applied to the resulting 
heatmap to label the slide as positive or negative for pathology. Figure 8 illustrates the WSI labeling procedure of 
the proposed method. In addition to evaluating the accuracy of the machine learning and deep learning-based 
methods, we also assessed the number of patients correctly classified using each approach (Table 4). As can 
be seen, the best machine learning-based approach (ANN) misclassified 2 patients in the training set, 1 in the 
validation set, and 2 in the testing set. The deep learning-based approach (UPerNet-Twins), on the other hand, 
misclassified only 1 patient in the training and validation sets and correctly classified all patients in the testing set.

Figure 8.  Comparison in WSI labelling for machine-learning and deep learning-based methods. The process 
involves extracting relevant patches using a threshold on the red channel of the original WSI (depicted as yellow 
squares). The Artificial Neural Network (ANN) performs patch classification, while UPerNet-Twins employs a 
segmentation paradigm. Finally, a threshold on positive pixels is applied to obtain the final label of the slide.

Table 3.  Patch-level performance of the deep learning approach. The performance of the network was 
assessed in terms of the Dice coefficient (DSC) and accuracy (ACC) for both the training and validation sets.

Method Subset DSC (%) ACC (%)

UPerNet-Twins
Train 73.7 ± 9.1 93.6 ± 8.5

Val 70.2 ± 7.5 93.7 ± 6.8

Table 4.  Performance comparison between the best machine-learning approach (ANN) and the deep 
learning-based method (UPerNet-Twins) for WSI labelling in the training, validation, and test sets.

Method Subset WSI correctly classified

ANN

Train 47/49

Val 8/9

Test 4/6

UPerNet-Twins

Train 48/49

Val 8/9

Test 6/6
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Discussion
In this research paper, we have introduced an innovative and automated pipeline that employs AI-based algo-
rithms to analyze WSIs and classify them as either positive or negative for prion disease. To the best of our knowl-
edge, this is the first research work that employs machine learning and deep learning techniques for analyzing 
Whole Slide Images (WSIs) related to prion diseases. We also present a new type of image (DeltaE transform) that 
allows to extract more informative features and improves the classification performance of traditional machine 
learning techniques. In addition, we propose a multi-scale architecture based on a vision  transformer44 capable 
of segmenting the histological pattern associated with prion diseases.

The metrics computed during the construction process for both ML and DL approaches showed that both 
methods were suitable for this task (Tables 2 and 3). However, in a blind test set (Table 4), the DL method dem-
onstrated superior performance compared to the best-performing ML method (ANN). These results suggest 
that the DL approach has significant advantages over the traditional ML method in the context of prion disease 
diagnosis. By utilizing more complex algorithms and neural network architectures, DL can more accurately 
identify patterns and anomalies in WSIs, which is particularly crucial in the detection of prion diseases. Hence, 
the Twins-UPerNet proved to have better learned the characteristics of PrPSc aggregates with respect to the ANN.

Training the deep neural network took longer and required more resources, but once the system was trained, 
its application time was considerably lower than that of the ANN (31 s vs. 95 s). In fact, the use of texture 
analysis in feature extraction for the ML approach had a significant impact on computational time, making it a 
time-consuming process. One of the benefits of using deep learning was the higher accuracy in delineating his-
topathological patterns. This was achieved by a segmenter, which allowed for pixel-level precision. In summary, 
the proposed deep neural network offered several advantages over traditional classifiers, including:

• Extraction of more informative features
• Reduced computation time
• Improved accuracy in outlining the shape of PrPSc aggregates.

Applying this approach to extensive tissue samples could be highly beneficial in clinical and pathological practice. 
It could provide valuable insights into the distribution and spatial localization of PrPSc throughout the entire 
brain, leading to improved classification of prion disease cases (Fig. 5). Furthermore, this technique has the 
potential to be extended to evaluate multiple proteinopathies in other neurodegenerative diseases, including 
Alzheimer’s and Parkinson’s diseases.

The main limitation of this study was the restricted variance in the cases examined, primarily due to the rarity 
of prion diseases. Consequently, we had to rely on tissue slides from a single specialized medical center—namely, 
the Maria Vittoria Hospital of Turin—and annotations from a single pathologist. While this approach ensured 
consistency in the acquisition and processing of WSIs, it also introduced a possible source of bias in the data. To 
enhance the generalizability of our findings, future research should aim to incorporate WSIs from multiple medi-
cal centers, thereby increasing the variability in staining across slides, and involve a consensus among multiple 
pathologists for data annotation. In addition, incorporating other phenotypes of prion diseases would provide a 
more comprehensive understanding of the diagnostic capabilities of the proposed DL algorithm.

In our study, we also acknowledge the limitations associated with staining for synaptic deposits. The variability 
in immunostaining for synaptic types across different cases can make it challenging to determine and categorize 
these plaques accurately (see Supplementary Materials). We recognize the need to improve our approach to 
account for these staining variabilities in future work. Some potential strategies include incorporating uncertainty 
estimates in the model outputs to identify low-confidence synaptic deposit detections for expert pathologist 
review and focusing on developing a semi-quantitative grading schema or a machine learning approach to bet-
ter characterize the level of positivity. These advancements would enhance the accuracy and reliability of our 
AI-powered pathology framework for prion disease diagnosis.

The present study only included slides from two anatomical regions—the occipital lobe of the cerebral cortex 
and the cerebellum. Thus, future studies should include tissue samples from a wider range of regions to increase 
the generalizability of the findings. A larger dataset would also enable the development of a model capable of 
distinguishing between different types of PrPSc aggregates. This would provide a second quantitative opinion 
about the presence of prion disease in the patient and yield additional diagnostic information to help identify 
the specific phenotype of the disease.

Conclusion
This paper presents a novel approach for the automated classification of WSIs as positive or negative for prion 
disease. Our proposed method utilizes advanced AI techniques to accurately detect patterns and anomalies in 
the WSIs, facilitating the diagnosis of prion disease with improved accuracy and speed. In addition, our tool can 
be utilized for quantitative analysis of extended brain samples and applied to other neurodegenerative diseases.

Data availability
The digitized slides, manual annotations, and code used in this study are available from the corresponding author 
upon reasonable request.
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