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Abstract: The latest progress in the design of the water-cooled lithium-lead (WCLL) tritium extraction
and removal (TER) system for the European DEMO tokamak reactor is presented. The implementation
and optimization of the conceptual design of the TER system are performed in order to manage the
tritium concentration in the LiPb and ancillary systems, to control the LiPb chemistry, to remove
accumulated corrosion and activated products (in particular, the helium generated in the BB), to
store the LiPb, to empty the BB segments, to shield the equipment due to LiPb activation, and to
accommodate possible overpressure of the LiPb. The LiPb volumes in the inboard (IB) and outboard

check for (OB) modules of the BB are separately managed due to the different pressure drops and required mass

updates flow rates in the different plasma operational phases. Therefore, the tritium extraction is managed
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by 6 LiPb loops: 4 loops for the OB segments and 2 loops for the IB segments. Each one is a closed
loop with forced circulation of the liquid metal through the TER and the other ancillary systems. The
design presents the new CAD drawings and the integration of the TEU into the tokamak building,
designed on the basis of an experimental characterization carried out for the permeator against
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vacuum (PAV) and gas-liquid contactor (GLC) technologies, the two most promising technologies for

tritium extraction from liquid metal.
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The eutectic alloy LiPb is the breeder candidate of the water-cooled lithium-lead
(WCLL) breeding blanket (BB) [1], the only European driver BB candidate that uses a
liquid breeder. The WCLL BB concepts used water as the coolant and the eutectic LiPb
alloy (15.7 at. % Li) as the breeder and neutron multiplier. The main functions of the
WCLL BB are to remove the heating power generated in the plasma; generate tritium to
sustain the fusion reactions, also compensating the losses towards the environment and
the other systems; and to shield the superconducting magnets. LiPb also serves the role
of a tritium carrier, and the system being dedicated to the alloy’s circulation through the
BB to the tritium extraction unit (TEU), where tritium can be extracted from LiPb and
routed to the tokamak exhaust processing (TEP) unit, is the tritium extraction and removal
(TER) system. TER loops are being designed in order to manage the LiPb circulation in the
Attribution (CC BY) license (https://  Teactor, to achieve an extraction efficiency rate of at least 80%, and to control the chemistry
creativecommons.org/licenses /by / of the liquid metal. The design of LiPb loops presents several technical issues due to
4.0/). the characteristics of the alloy: opacity, corrosivity, a melting temperature of 235 °C, and
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electrical conductivity [2]. The opacity of lead alloys is a technical issue, since several
measurement techniques, such as particle image velocimetry, cannot be used, meaning it is
not possible to characterize the velocity profiles of lead alloys inside several components,
such as the gas-liquid contactor and cold trap; therefore, it is not possible to determine
the performance of the components with the traditional techniques. Moreover, the opacity
of lithium lead, in combination with its high melting temperature, presents challenges
related to the inspection and monitoring of major loop components. The design of the TER
system is analyzed in Section 2, while in Section 3 the candidate technologies for the TEU
are analyzed and the designs are compared. The design is based on numerical models
developed and experimental characterizations carried out on dedicated mock-ups. The
systems devoted to removing the corrosion products, activated products, and helium from
the liquid metal are analyzed in Section 4, while Section 5 discusses the design of the LiPb
pumping system and its integration into the LiPb loop. Finally, the whole TER integration
process in the tokamak building is shown in Section 6.

2. TER Design

The implementation and optimization of the conceptual design of the TER were
performed considering the main functional requirement to extract the tritium produced
in the breeding modules from LiPb [3]; moreover, the TER system has to satisfy the
following requirements:

1. Circulate the liquid LiPb through the BB;

2. Provide adequate heating in order to maintain the LiPb liquid in all system locations,
including the BB during outgassing and baking;

3. Control the LiPb chemistry and remove accumulated activated impurities (in partic-
ular, the problem of helium generated in the BB and the necessity of discharging it
using the buffer tank);

4.  Ensure gravitational draining of the BB modules and LiPb loops;

5. Accommodate possible overpressure of the liquid metal.

The LiPb volumes in the inboard and outboard modules of the breeding blanket are
managed separately due to the different pressure drops and required mass flow rates
during operation and in the different plasma operation phases. Considering the WCLL
BB segmentation in 16 sectors and the total mass flow rate for the inboard and outboard
modules (Table 1), 6 LiPb loops are foreseen, namely 4 loops for the outboard (OB) segments,
so that one loop is connected to 4 OB sectors, and 2 loops for the inboard (IB) segments, so
that one loop is connected to 8 IB sectors. The IB and OB LiPb loops are connected to the
WCLL BB [1], to the tritium plant, and to the storage tank, which is used to store all of the
LiPb. Table 1 reports the main parameters for the TER loops.

Table 1. Operating conditions of IB and OB TER loops.

Parameter OB 1B
Total mass flow rate (kg/s) 1.127 499
Number of loops (-) 4 2
Loop mass flow rate (kg/s) 281.7 249.3
Tritium concentration, cr (mol/m?) 1.41 x 1072 1.41 x 1072
Total LiPb inventory per loop (m?) 164.3 154.3
LiPb inventory in BB per loop (m?) 1442 137.6
Total pressure drops (MPa) (including MHD) 1.82 2.6
TEU target efficiency, 11 (%) >80 >80
Temperature, T (°C) 330 330

Each loop is a closed loop with forced circulation of the LiPb. The total amount of LiPb
for each loop is about 150 m® and it is stored in a dedicated storage tank (TA002) during
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The LiPb will be recovered in the dedicated storage tank during the non-operational
phases. In cases of In-box BB LOCA, due to the failure of a double-walled tube in which
water flows and the consequent injection of water at about 330 °C and 155 bar in the LiPb
loop [1], dedicated passive failure disks allow the fast discharge of the pressure in the
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safety tank, while the active isolation valves stop the water injection in the loop and the
propagation of the water-LiPb mixture into the LiPb loop.
The identified TER operational phases are:

Conditioning, constituted by baking, tritium outgassing, and vacuum conditioning;
Plasma operation (POS), constituted by the operational state and hot standby;
Short-term maintenance, constituted by cold standby and maintenance of the equip-
ment, components, or pipes as a consequence of failures or as routine maintenance;

e Long-term maintenance, where the LiPb is evacuated into the storage tanks.

During the baking, carried out in the first start-up of the loops and after long-term
maintenance, it is necessary to remove the impurities and oxygen solubilized in the pipes
and in the equipment by heating the loops to 270-300 °C under inert atmosphere and then
by pumping the vacuum in the loops and in the BB modules (0.01-1 Pa). The heating will be
performed under an inert atmosphere and by using heating cables and bands for the loops,
while the BB can be heated using the water cooling system. The LiPb loading is carried out
under vacuum conditions to remove all of the gas from the LiPb loops and the BB.

3. TEU

Two technologies are currently considered as the most promising for tritium extraction
from LiPb, the gas-liquid contactor and permeator against vacuum (PAV) technologies.
In the GLC, a flow of helium (or helium plus a small percentage of hydrogen, a mix that
increases the extraction efficiency) is put into direct contact with LiPb in a counter-current
and the tritium is removed by the stripping gas.

Packed columns are used to provide a large interfacial surface between the LiPb and
the gas flow. Instead, in the permeator against vacuum (PAV) system [1,3] a membrane
separates the LiPb from the vacuum. The membrane is made with a tritium-permeable
material, such as «-iron [4], vanadium, or niobium, allowing the diffusion of tritium
from LiPb to vacuum as a consequence of the concentration gradient. A third promising
technology is under evaluation for the extraction of tritium from the liquid metal, the
liquid—-vacuum contactor (LVC). In the LVC’s conceptual design, the LiPb is brought into
contact with a high- or ultra-high vacuum in order to enhance the diffusive process of T
solubilized in the liquid metal towards the vacuum. The recent numerical and experimental
studies carried out by University of Kyoto demonstrate the possibility to scale up the
system [5,6] with high efficiency. Preliminary designs of TEUs based on PAV, GLC, and
LVC technologies with a minimum tritium extraction efficiency of 80% are carried out
on the basis of the experimental results obtained from prototypical mock-ups installed in
the TRIEX-II [7,8] and CLIPPER facilities. The designs of the manufactured and qualified
mock-ups are analyzed in the following paragraphs.

The LiPb properties adopted in the analysis are reported in Table 2 with the corre-
sponding references.

Table 2. LiPb properties.

Parameter Value Ref

Sievert’s constant, Ks (mol Pa—%% m~3) 2.37 x 10~ 1-exp(—12,844/RT) [9]
Diffusivity, D (m? s~1) 4.03 x 10~8-exp(—19,500/RT) [10]

Mass transfer coefficient, K (m s~1) 2.50 x 1073 -exp(—30,700/RT) [11]
Recombination constant, K; (m* mol~! s~1) 5.73 x 1072-exp(—29,717/RT) [12]
Density, p (kg m~3) 10,520.35 — 1.19051-T [2]

3.1. PAV

This technique consists of tritium’s permeation from the LiPb through a membrane
containing the liquid metal to a secondary chamber subjected to a vacuum. The driving
force is the pressure gradient generated by the vacuum onto the external surface of the
membrane [13]. One of the key points to improve the process is the use of highly permeable
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the vacuum circuit. Therefore, while running along the U-pipes, the LiPb reduces its
tritium concentration.

As described in detail in [15], the main constraints for the PAV dimensioning concern
the space occupation (limited by the space allocated for its installation in the plant, allowing
a vessel diameter of up to 7 m) and the allowable pressure drop (about 2 bar). The maximum
permeator length (40 m) is related to the maximum height of the vessel (10 m) and the fact
that there are 2 U-pipe passages.

The dimensioning of the PAV was carried out for one of the OB loops, as they feature
the largest mass flow rate (up to 264 kg/s), varying the following parameters:

Geometry (vessel diameter, pipe number, diameter, and length);

Operating temperature (from 330 C to 500 °C);

Permeation regime (diffusion- or surface-limited, mainly depending on the real mem-
brane permeation properties, also connected to the oxidation status of its surface).

The operating conditions and constraints retained for the design are reported in Table 3.
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Table 3. Design parameters adopted in designing a PAV for DEMO and the design constraints.

Design Parameters (Operating Conditions) Value
Tritium partial pressure (@ PAV inlet) 55 Pa
Membrane thickness 0.4 mm
Pipe internal diameter 9.2 mm

Design Constraints

Maximum overall height of PAV 10m
Maximum allowable pressure drop 0.2 Mpa
Efficiency 80%
Min/max velocity in the pipes 0.21-2.1m/s

As shown in [16], it is possible to operate the OB TEU featuring the PAV technology
with the Nb membrane with an extraction efficiency of 90%:

e Atany temperature, including the operating temperature of 330 °C, in the diffusion-
limited regime (non-oxidized surface) or in the surface-limited regime but considering
a series connection of at least two permeators and a reduction to 70% of the target
extraction efficiency;

e At 400 °C in the surface-limited regime but considering a series connection of at least
two permeators (or a reduction to 70% of the target extraction efficiency);

e At 500 °C in the surface-limited regime.

PAV sizing was carried out at the LiPb outlet temperature (330 °C). The superficial
status of the membrane material determines the tritium transport regime and the PAV
sizing, and a few oxide layers on the surface can change the Nb or V permeability value
by one order of magnitude. The design was carried out on the basis of the experimental
characterization of niobium and vanadium’s permeability performed in two independent
laboratories [7] and by the characterization in flowing LiPb in the TRIEX-II facility of the
PAV mock-up [15] (Figure 3), called PAV-ONE. The mock-up is constituted by 16 Nb tubes,
characterized by a length of 2 m, a diameter of 4 mm, and a thickness of 0.2 mm. The Nb
tubes’ thickness was selected based on the certified Nb pipes available on the market with
a length of 2.00 m and closest to the Nb pipe thickness selected for DEMO. The TRIEX-II
(tritium extraction) facility was manufactured and installed at ENEA C.R. Brasimone with
the objective of characterizing the different candidate technologies as the tritium extraction
unit (TEU) of the ITER WCLL-TBM and DEMO WCLL-BB. We were capable of qualifying
three kinds of extractor mock-ups—the GLC, in the packed column configuration, the PAV,
and even the LVC. The mock-ups were tested in the TRIEX-II facility in flowing LiPb and
using protium (or deuterium) as a substitute for tritium for safety reasons. A chromium-
molybdenum steel (ASTM A335 Gr. P22) is used as the structural material at TRIEX-II due
to its low corrosion rate linked with the low nickel concentration [17]. More details on the
TRIEX-II facility can be found in [7]. The experimental PAV-ONE characterization process
was carried out with LiPb and solubilized hydrogen, whereby the LiPb flowed inside the
POV-ONE tubes with a total mass flow rate in the range between 0.6 and 1.2 kg/s and the
hydrogen that permeated through the pipes was monitored by a mass spectrometer in order
to detect the permeated flux. PAV-ONE was characterized at the temperatures of 350 °C and
450 °C and in the hydrogen partial pressure range of LiPb of between 100 and 400 Pa.

The TEU designed for the OB loop required in the surface-limited tritium transport
analysis 1600 Nb tubes, while instead in the diffusion-limited regime the number of tubes
is reduced to 855, Table 4. For the diffusion-limited regime, it is expected that with cleaned
Nb pipes, a thin oxide layer can reduce the permeation flux by a factor 1000; therefore,
the measure of the Nb permeability under relevant operating conditions is mandatory to
design the TER system based on PAV technology.
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the range of 299-385 (pipes with a diameter of 9.2 mm and length of 40 m, i.e., 2 U-tubes

with a total height of 10 m).
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The range of tube numbers that satisfy the constraints on the pressure drop and on the
fluid velocity within a 40 m length for a mass flow rate of either one-fifth or one-quarter of
the loop mass flow rate is between 360 and 385 tubes in each PAVU; the same device could
fit groups of 4 or 5 units for each OB loop, and as a single unit for each IB loop, dramatically
simplifying the overall design of the TEU.

3.1.2. PAV Design Based on V Plates

At CIEMAT, efforts are being devoted to the experimental validation of a vanadium-
based PAV. A first prototype—TRITON—was manufactured using 1-m-long vanadium
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to operate under a wide range of conditions (350-530 °C; 0.4-4 L/s) and deuterium
pressures [20].

The experiments were firstly focused ona WCLL-relevant scenario, where theoreticz
simulations showed an extraction efficiency range of the mock-up of between 5 and 20%
with fluxes in the order of 7-10” mol/s. For high temperatures and IloW flows, th

extraction performance can increase by up to 40% [14].
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into a real TEU system could be the attachment of several membranes (maximum length of
approximately 2 m) into a common base structure. Moreover, a modular approach for PAV
was estimated with a mass flow rate for each module of 55 kg/s.
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Figure 10. Sketch of the GLC extractor with the nomenclature of the efficiency calculations.

Figujre 10. Sketch of the (%L,C extractor with the nor%enclature of the effic

he most relevant results obtained in TRIEX-II were achieved by solubilizing deu-
terium in liquid LiPb and extracting it with a stripping gas of helium plus a 0.5% vol.
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flow rate. The former flow'rate was varied in the range of 0.5-1 kg/s and the latter in the
tasts cﬂﬂ@—mpﬂ)/]ltadi}lﬁl_ﬁqlg‘?dﬁﬁega]llre of 450 °C. As detailed in [7], the extraction
efficiency was measured by means of a quadrupole mass spectrometer, calibrated such
that the isobaric interferences were reduced as low as possible, enabling the possibility
to discern D, from He. The maximum extraction efficiency rate of 44% was found for an
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were 4.30 m and 10.27 m, with a 2 m diameter. A TRS is required to remove tritium from
the stripping gas:

e A nominal volumetric flow rate of 521 Nm3/h required for the outboard module;

e A nominal volumetric flow rate of 108 Nm? /h required for the inboard module.

An overview of the results obtained is reported in Table 7.
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Table 7. Final parameters for the GLC scaled to DEMO.

Parameter [Unit] OB Value IB Value Notes
Inlet stripping gas pressure 1.0-1.4 Mpa 1.0-1.4 Mpa Helium plus H; stripping gas
Total stripping gas flow rate to TEU 400~1000 Nm?/h 100-6000 Nm®/h
Stripping gas composition inlet TEU He + Hj, 0.1-0.5% mol He + Hj, 0.1-0.5% mol
Height of the vessel 9-11m 4-55m Preliminary estimation with

External diameter of the vessel

Outflow of HT + T, from TEU to TRS 56 5% g/d 48 +5%g/d

surface-limited regime
2-3m 2-3m Preliminary estimation
Accounting for a 70% outboard
contribution to the total tritium
generation rate (320 g/d) and for the
share of a single outboard LiPb loop

3.3. LVC

The liquid—vacuum contactor is the third technology analysed for the TEU design and
it is considered as back-up solution due to some relevant uncertainties in the design and
the lower maturity of this technology compared with the PAV and GLC. In liquid—vacuum
contactors, the liquid domain is kept in direct contact with the vacuum side. The hydrogen
isotope atomically solubilized in the liquid carrier migrates from the bulk to the interface
between the liquid and vacuum and then it recombines to molecular hydrogen departing
from the surface. Among the possible designs, the vacuum sieve tray (VST) is one of the
most promising, where the interface between the LiPb and vacuum is realized with LiPb
droplets. The use of VSTs is a high-efficiency and promising method to extract tritium
from liquid lithium-lead alloys. The lithium-lead flows from an upper chamber to the
bottom one, kept under dynamic vacuum conditions, passing through a tray equipped
with nozzles of a diameter of the order of the millimeter, which allows the alloy to form
an unstable liquid jet of droplets. The atoms of hydrogen isotope Q are transported from
the inside of the falling droplets to their outer surface, where they recombine to form Q,
which leaves the liquid metal and is collected using a vacuum pump train. Extended R&D
activities on VST extractor systems have been performed at Kyoto University in Japan [5,6].
Another configuration of the liquid-vacuum contactor is given by the free surface extractor.
In this system., the liquid flows in a channel where there is direct contact between the whole
surface of the liquid phase and the vacuum. Tritium migrates from the liquid towards the
vacuum and is collected by a vacuum pumping system.

3.3.1. Analysis of the Advantages of the Use of Membrane Materials with Respect to the
Direct LVC

In order to analyse whether the tritium extraction from LiPb is more efficient with di-
rect contact between the LiPb and vacuum or with an interposed permeable membrane, an
experiment is being prepared at CIEMAT. The test will determine whether the membrane
acts as a true ‘catalyzer’ of the permeation process, enhancing the extraction of H-isotopes
from the liquid metal. For this, two extractors are being manufactured: one with a vana-
dium membrane (PAV prototype) and the other with flowing LiPb directly exposed to
vacuum conditions (free surface LVC prototype) (Figure 14). The comparison between both
approaches will be performed in a dedicated experimental campaign in CLIPPER (Figure 9),
and under WCLL-relevant conditions [28,29]. The main design requirements are having
the same effective permeation surface, the same operational conditions, and the need to
reach a steady state to compare results. A system with a 1 m length of exposed surface
or membrane could provide a flux of 1 X 1078 mol/s, which is enough for its detection.
Figure 15 shows the steady-state extraction flux and the extraction efficiency as a function
of the mass flow rate in CLIPPER for both methodologies. These were computed using a
1D system level approach and empirical correlations for the mass transfer coefficient [29].
The calculations were performed with the experimental vanadium permeability obtained
at CIEMAT [19,30]. Despite the prototype being expected to work at low efficiency rates,
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LiPb thickness to facilitate tritium extraction. The analysis was mainly performed as a
preliminary evaluation of the size of an LVC-type system.

In Figure 16, the total length of the channel required to reach the target efficiency of
80% is shown (left y-axis) as a function of K, for the OB at 500 °C (left) and 330 °C (right).
On the right axis, the corresponding C value is presented. The recombination constant27

has been swept between 1-10 > and 1-10% times the reference value reported in lable
7. In addition, the channel width has been changed to between 1 and 4 m. It is evident
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Table 8. Preliminary sizing results for the free surface LVC for IB and OB segments.
Table 8. Preliminary $izing results for the free surface LVC for IB and OB segments.

Lardimneter Ub LD
LiPbtemperature (“°C) o 330 561 36 500
Number of U ) 6 6 5
MR afil@%ﬁmw ) 50 6 50 6 55 550
Chalrmels Iigiiber, (m),;, (-) 4.00 x 1050 4.00 x 50 4.00 5002 4,060 102
LiPb height, ri;pp (m) 1.00 x 1072 1.00 x 1072 1.00 x 1072 1.00 x 1072
Channel length, L (m) 58 16 62 17
LiPb/vacuum area, A (m2) 11,600 3200 12,400 3400

3.4. Comparison among the PAV, GLC, and LVC

Table 9 shows a comparison among the TEUs designed on the basis of the PAVs
manufactured with Nb pipes and V plates, the GLC, and the LVC for the LiPb OB loop.
The analysis was carried out at 330 °C for one OB LiPb loop.
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Table 9. Comparison among TEUs designed for one OB LiPb loop based on the PAV, GLC, and LVC.

Parameter PAV-ND Tubes PAV-V Plates LVC GLC
LiPb/Vacuum area, A (m?2) 3723 6840 11,600 -
TEU lenght/height (m) 8 15 58 10
TEU Volume (m?) 226 34 2784 71
TEU Auxiliary system Vacuum system and Vacuum system and Vacuum system and Helium line and tritium

getter system getter system getter system extraction system from helium

Technology issues

Design of LiPb
distribution system in
order to optimise the
interface surface
(LiPb-vacuum)

Connection between V
plates and
support structure

Optimization of Nb
pipes shape

Tritium extraction system
from helium

The PAV manufactured with V plates required a higher interface area with respect to
the PAV manufactured with Nb tubes but the more compact design reduces the total size of
the component. However, the vacuum connection of the V plates with the support structure
by welding or using gasket connections is still an open issue to be solved. A better Nb
pipe distribution inside the PAV is requested in order to optimize the total volume of the
TEU; moreover, particular attention should be dedicated to the welding procedure between
the Nb pipes and support plate due to the huge number of pipes, at about 1600 per TEU.
The GLC shows a total volume comparable with PAV technologies; moreover, thanks to
the high maturity level of the technology there are no manufacturing technological issues,
although the system requires an auxiliary system in order to remove the tritium from the
stripping gas, with additional hydrogen contents in the range between 0.1 and 0.5% mol.
Instead, the PAV and LVC required a vacuum system to extract tritium from LiPb and a
getter system able to manage the tritium inventory and for transport to the tritium plant.
The LVC requires a huge interface surface between the liquid and vacuum that cannot
be obtained with a square channel solution; using the LiPb droplets could be a possible
solution but dedicated R&D is requested to investigate the efficiency of the system at a
relevant scale from fluid dynamics and tritium extraction point of views.

4. LiPb Purification Systems

The composition of LiPb changes during the reactor operation due to the corrosion
of structural materials, the transmutation reactions caused by neutron irradiation, and
helium production due to (n, Li) reactions. In order to manage the chemistry of LiPb,
three dedicated systems are being designed:

(@) A removal system for activation products;
(b) A removal system for corrosion products;
(¢) A removal system for helium solubilized in LiPb.

The irradiation products generated in the LiPb are shown in Table 10(a), while the
specific activities after irradiation are summarized in Table 10(b). The most harmful
species identified to date are 3H, Po, and Hg, with specific activity rates after irradiation
of 8.89 x 10'2,2.41 x 10', and 5.49 x 108 Bq/kg, respectively. In order to remove the
activated products, a gas saturator plus cold trap was designed. This method is based
on collecting metal vapor condensation from a gas that passes through a saturator. The
activation products Hg, Po, and 3H are relatively volatile; therefore, they will be removed
by evaporation from the hot liquid LiPb, as shown in Figure 17. The base of the saturator
is a spray column with a liquid distributor located at the top. Here, the liquid will pass
through a set of 1 mm nozzles. Drops will fall through a column of gas into a collecting
tank at the bottom. The falling height will be approximately 1 m.



Energies 2023, 16, 5231

tank at the bottom. The falling heig}{t will be approxi;nately 1m.

Table 10. LiPb activation products and specific activity.

(a) Activated Products Generated in

LiPb (b) Specific Activities after Irradiations of 27

Specific Activity aft
Reactant Reaction Type Products Species Half Time pectiic Activily atet

. I P Irradiation [Bq/kg]
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Gan Erea
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dhe enfire sy tlgela GaLses nt%‘f‘[%?}i;m of corrosion products to be large en01.1gh to require a
removal system. Indeed, corrosion products can hinder the correct operation of the loops
by forming plugs caused by precipitation in cold spots, near discontinuities, or where the
magnetic field is more intense. The reference values of impurities in the LiPb must fulfill

the following requirements [31,33]:

The Li content must be in the range of 15.7 £ 0.5 at%, i.e., 0.62 £ 0.03 wt%;
Ag, Cu, Nb, Pd, and Zn should be less than 0.001 wt% each;

Fe, Cr, Mn, Mo, Ni, and V should be less than 0.005 wt% each;

Si and Al should be less than 0.01 wt% each;

Bi, Sn, and W should be less than 0.02 wt% each.

The common approach in order to avoid the precipitation of corrosion products is to
control the liquid metal’s chemistry by purifying the liquid metal.

The purification system used in fission procedures and applied also to TER is essen-
tially composed of a cold trap (CT) [34] consisting of a heat and mass transfer device. The
principle of the CT is to maintain the impurity equilibrium concentration in the loop below
the LiPb solubility at the lowest temperature (T},,) foreseen in the plant (T < Tjyy). The
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corrosion products and impurities precipitated in the solid state are removed, avoiding the
precipitation in the loop. For a generic solute or solvent system with a source term S g/s,
the impurity concentration C(¢), in ppm, can be obtained from a balance equation:

C(t) = C™ <1 - e”iﬁ”f) 3)

where M is the LiPb total mass in the system (kg), m; is the mass flow in the CT, n is the
CT efficiency, and C* is the asymptotic concentration (t — o), defined as:

o = ( 5 4 cE;”) (4)
1 Mt

where C3* represents the iron solubility at the minimum CT temperature, T (with iron
being the main component of F/M steel). Concerning the CT efficiency, it can be generically

defined as:
n= Cin — Cout (5)
Cin — Ccstﬂt
In an initial assessment, it is assumed to have the same form of CT efficiency defined
for the sodium purification system:

1

T1tpt ©)

n
where T represents the fluid residence time (min) in the CT and p and q are coefficients set as
equal to 122 and 3.4, respectively, for sodium CT. The appropriateness of such a correlation
for the LiPb corrosion system should be evaluated experimentally with a chemical analysis
of LiPb sampling upstream and downstream of the CT. Referring to the schematic of
Figure 18, the following thermal balance can be written:

mct Ep(Ti - Tct) = ThTEp(Ti - TO) (7)
then: (T, — To)
o i— 1o

N ) 20 ol

From Equation (8), it is possible to derive the mass flow rate repartition through the CT.
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Figure 18. Mass flow rate rejpartitiom and temperaiures.
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Finally, once the residence time and mass flow rate through the CT are fixed through
Equation 8, it is possible to derive the volume of the CT:
Vee =7:60-1mr-p- T T, 9)
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The system devoted to removing the activated products with a gas satura
cold trap should be placed in the upper part of the system within the buffer tank
is used also to ensure the discharge of the helium bubbles generated in the BB. Al
g of helium is generated daily by the lithium absorption of neutrons:
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Figure 20. Cold trap layout. 21 of 27
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5. LiPb Pumping System

To circulate the liquid metal through the BB, a pumping system was designed based
on mechanical centrifugal pump technology, which was selected as the reference solution
instead of a permanent magnet pump due to its higher efficiency range (50-+-60% instead of
7%). The design of the pumps was carried out under the operating conditions of IB and OB
loops, based on the required volumetric flow rates and pressure head identified by two
operating points, i.e., the part-load point (PLP) and best efficiency point (BEP). Table 11
shows the target performance of the pump.

Table 11. Operating parameters of the pump.

Q H
[m3/h] [m]
PLP 304 30.0

BEP 729 15.0
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Rotational speeds: 1000 rpm (for outboard), 750 rpm (for inboard);
Efficiency n = 60%;

Hydraulic power with LiPb: 48 kW (outboard), 40 kW (inboard);
Electric motor required: 90 kW, 6 poles.

The main seal of the pump is located in the oiled bearing frame. It consists of a seal
with a magnet drive (Figure 24). The external magnet is mechanically coupled to the electric
motor, while the internal magnet is coupled to the shaft. When the motor runs, the shaft
rotates as a result of the magnetic field created by the two magnets. Between the external
and internal magnets there is a rear casing, which has the function of keeping the liquid in
the pump.
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The oil used to lubricate the balls in the bearing frame and in the radial bearing and
to cool the shaft is discharged from the first compartment of the sealed frame.
If, for any reason, the oil does not discharge from the first compartment, it is drained
from the second vane. In this way, it is not possible for the LiPb to come into contact with
Energies 2023, 16, 5231 the oil and with the upper part of the pump. The pump’s characteristic curves are shgw#i 2/
in Figure 25.
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The oil used to lubricate the balls in the bearing frame and in the radial bearing and to
cool the shaft is discharged from the first compartment of the sealed frame.
If, for any reason, the oil does not discharge from the first compartment, it is drained
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6. TER Integration in the Tokamak Building

The TER loops have to be integrated into the tokamak building while taking into
account certain technical issues. First of all, the TEU must be placed as close as possible to
the outlet from the BB in order to reduce the tritium concentration in the loop and tritium
leakage into the environment. In order to allow the integration of the PAV or GLC, the
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6. TER Integration in the Tokamak Building

The TER loops have to be integrated into the tokamak building while taking into

account certain technical issues. First of all, the TEU must be placed as close as possible

to the outlet from the BB in order to reduce the tritium concentration in the loop and

tritium leakage into the environment. In order to allow the integration of the PAV or GLC,

the reserved space considers the dimensions of the biggest component. The gravitational

draining of the BB, the pipework, and the LiPb equipment shall be assured by placing the
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Figure 27. 3D drawing of 1ER IB (purple) and UB (cyan) loops.
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The TEU concept integrated here is based on PAV technology manufactured and with
Nb tubes, and the space reserved is enough to allocate a TEU based on GLC technology if
selected as the reference solution.

7. Conclusions

The preliminary design of TER LiPb loops was completed, including the design of
a TEU based on the PAV and GLC. In order to select the best technologies, dedicated
experimental R&D is mandatory to support the modelling of the TEU. In particular, the
major concerns are related to the tritium transport coefficients. The PAV technology shows
some advantages over the GLC from the point of view of the operation and auxiliary system
required, as in the PAV the tritium is directly extracted by the vacuum system and can be
stored by a getter system before being transferred with the support of purge gas to the
tritium processing plant. Instead, tritium extracted by GLCs is mixed with helium, and if
a mix of helium and hydrogen is used as the stripping gas with protium (H2, T2, HT), a
dedicated tritium extraction system from helium fluxes in the range of 100-6000 Nm3/h is
required. In order to select the best TEU technology for the WCLL BB, several parameters
have to be evaluated, such as the technology readiness level (TRL), manufacturing process,
integrability, reliability, operability, remote maintenance procedures, waste management
procedures, and costs. The selection procedure must also take into consideration the
auxiliary circuits required to operate the TEU, vacuum system, and getter for the PAV/LVC
and the tritium extraction system from helium for the GLC. Moreover, if the GLC is selected,
it can be used also for helium removal from LiPb, meaning it will be possible to reduce
the size of the expansion tank used as the helium removal system. To validate the PAV
design, R&D activities are required to analyze how the membrane materials’ permeability
is affected by the superficial status of the membrane. A TEU based on PAV technology
and designed with a surface permeation regime was integrated into the tokamak building
together with the other auxiliary systems (chemistry control system, pumping system,
storage tank, etc.), taking into account the safety requirements (e.g., tritium release into
environment, shielding of the systems, accidental scenarios) and remote maintenance
requirements. A preliminary design of the system devoted to removing the corrosion-
activated products was completed to control the impurity concentration in the liquid metal.
Dedicated R&D is required in order to validate the solution proposed to remove helium
in the expansion tank of LiPb and control the LiPb’s chemistry in order to validate the
codes under development. A mechanical pump with a magnetic bearing was designed in
order to circulate the LiPb IB and OB mass flows outside the BB and into the tank used
to remove the helium solubilized from LiPb. The 3D drawings of the LiPb loops were
completed by considering the main interfaces between the loops and the other systems and
their integration in the tokamak building.
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