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Bringing Online Egocentric Action Recognition
into the wild

Gabriele Goletto∗,1, Mirco Planamente∗,1,2,3, Barbara Caputo1,3, and Giuseppe Averta1

Abstract—To enable a safe and effective human-robot
cooperation, it is crucial to develop models for the
identification of human activities. Egocentric vision
seems to be a viable solution to solve this problem, and
therefore many works provide deep learning solutions to
infer human actions from first person videos. However,
although very promising, most of these do not consider
the major challenges that comes with a realistic deploy-
ment, such as the portability of the model, the need
for real-time inference, and the robustness with respect
to the novel domains (i.e., new spaces, users, tasks).
With this paper, we set the boundaries that egocentric
vision models should consider for realistic applications,
defining a novel setting of egocentric action recognition
in the wild, which encourages researchers to develop
novel, applications-aware solutions. We also present a
new model-agnostic technique that enables the rapid
repurposing of existing architectures in this new context,
demonstrating the feasibility to deploy a model on a tiny
device (Jetson Nano) and to perform the task directly
on the edge with very low energy consumption (2.4W
on average at 50 fps). The code is publicly available at:
https://github.com/EgocentricVision/EgoWild.

Index Terms—Deep Learning for Visual Perception;
Deep Learning Methods; Human-Robot Collaboration

I. Introduction
Current robotics research demonstrated an increasing

interest in the development of technologies to support the
physical interaction between humans and machines, ranging
from the planning and control [1], up to their social impact
[2]. However, the deployment of this technology in the real
world requires an extension of the human intention retrieval
capabilities of robots, from a mere pose estimation and
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Fig. 1. Top: Comparison between offline (a) and online (b) inference
protocol for first person action recognition (FPAR). Bottom: Frames
per Second (FPS) processed with the I3D model [4] on different devices.
The areas show traditional action recognition models’ difficulty to
run online inference on edge devices, either due to latency or hardware
constraints. Our goal is to promote research toward models that can
work in the area, allowing egocentric models to run online inference
and on tiny devices.

forecast, to an high level description of the action executed.
To reach this goal, a very promising solution relies on the
use of egocentric vision, in which the human activity is
recorded by wearable cameras placed on the head of the user
[3]. This setting comes with the benefit that source data are
characterised by a rich multi-modal information, thanks to
the proximity of audio/video sensors to the action scene,
and by an intrinsic embedding of an attention mechanisms
that stems from the human gaze direction itself.

Although many works in the literature have provided
solutions to infer knowledge about human activity from
egocentric data (a.k.a. First Person Action Recognition,
FPAR), this is frequently achieved through very large
neural architectures without regard to their computational
demand (see Fig. 1, bottom part). As a consequence,
although very accurate, most of the models presented in
literature are not suitable for realistic usecases, where real-
time inference (Fig. 1, online scenario) should be performed
on board of low-power hardware to enable wearability, avoid
data transfer and preserve privacy. The goal of this paper
is to encourage a new line of research based on realistic

https://github.com/EgocentricVision/EgoWild
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Fig. 2. Examples of two frames taken from different videos sources
with the same label (“mix”).

egocentric vision use cases. We propose a new FPAR
benchmark with real-world constraints, which consists of
altering current action recognition protocol to follow a set
of realistic limitations that we add progressively (model
size, cross domains, online, and untrimmed).

In addition, we propose a model-agnostic technique to
enable a fast re-purposing of existing architectures in this
new context. Our approach consists of two components:
an anomaly detection-based solution for action boundary
localization, followed by a two-fold aggregator strategy.
The first solution is based on the assumption that if I can
recognize an action, I can also localize it. Considering that
traditional training of the action recognition framework
is done with trimmed data containing single actions, the
embedding that arises from multiple actions will be very
different from the standard one, and as a consequence, the
network will be able to detect it as an anomaly. The second
solution is introduced to cope with the large proportion
of overlapping segments in fine-grained action recognition
that make it harder to localize concurrent actions.

To summarize, this paper contributes with:
• the definition of a new setting of FPAR in the wild,

which encourages researchers to develop applications-
aware solutions;

• a benchmark of popular action recognition models for
real-world application in FPAR;

• a method to enable the use of existing features
extractors to achieve efficient yet accurate action
recognition under constraints, exploiting an anomaly
detection strategy to localize the boundary of the
actions and a two-fold aggregator solution to deal
with concurrent actions in a continuous stream;

• an analysis of performance on an edge device, opening
interesting perspectives for on-board intelligence.

II. Related Works
First Person Action Recognition (FPAR). The

main architectures utilized in this context are generally
inherited from third-person literature and may be classified
into two broad categories: 2D convolution -based [5], [6],
[7], [8] and 3D convolution -based [4], [9], [10], [11], [12].
The first group is generally complemented with other
modules such as LSTM or its variations [13], [14], [15],
Temporal Shift Module (TSM) - a parameter-free channel-
wise temporal shift operator presented in [6], or the
Temporal Relation Network module (TRN) [7]. The use
of 3D convolutions was proposed as an alternative in [4],
[10] to learn spatial and temporal relations simultaneously,

even if they often introduce more parameters, requiring
pre-training on large-scale video datasets [4].

The complex nature of egocentric videos raises a variety
of challenges, such as ego-motion [16], partially visible or
occluded objects, and environmental bias [17], [18], [19],
which limit the performance of traditional approaches when
used in FPAR [20], [21]. Those challenges attract the
community’s interest and motivate the design of novel and
more complex architectures, often based on multi-stream
approaches such as [13], [22], [23], [14].

Action segmentation and detection. Action seg-
mentation [24], [25], [26], [27], [28], [29] and detection
[30], [31], [32] can be intended as the extension of action
recognition to the more complex scenario of untrimmed
videos, where the task is to assign an action label to
each frame, identifying non-overlapping (for segmentation)
and overlapping (for detection) action segments. Most of
these tasks require large and offline models, especially for
the EPIC-KITCHENS challenge solutions∗, in which the
network uses the entire video as input to infer the action.
This makes state-of-the-art models unsuitable for our
purpose, where on-line processing is fundamental. Recently,
[33] developed a novel unsupervised methodology for event
boundary localization (detection) that outperforms current
approaches while increasing inference time significantly,
making it perfect for edge devices.

III. Bringing FPAR in the wild

To really enable the deployment of egocentric vision
models, it is fundamental to consider a variety of constraints
in terms of energetic, memory and temporal budget. The
first (and foremost) of these is the amount of resources
required to perform the task, namely the memory size to
store model parameters and input data, and the number of
operations (e.g. MACs) required to perform inference. The
first is a constraint imposed by the flash memory of the
device, while the second is related to the micro-controller
velocity in inference, and to the frame-rate required by the
task.

The input specification is another important feature
to consider for real-world applications. In this regard,
the goal is to find a good trade-off between: i) the
amount of information needed as input to properly encode
the temporal information; ii) the corresponding memory
increase for storing input data on the device; and iii)
the critical fact that, unlike the spatial dimension, the
temporal dimension is presented as a continuous stream,
which prevents an efficient sub-sampling and requires
online processing. Another important aspect to consider
when posing real-time constrains is that, in the context of
egocentric vision, many techniques attain notable results
only by leveraging non-real-time secondary modalities
such as the optical flow. Although this modality is highly
successful, it has a high computational cost [34], [35], which

∗https://epic-kitchens.github.io/Reports/EPIC-KITCHENS-
Challenges-2021-Report.pdf
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prevents its use in real-time applications, and increases the
size of the model.

It is also worth reporting that, because the sensor is worn
by the user - usually at the head level - it records data
with a high degree of variation produced by rapid changes
in environment, perspective, and illumination as in Fig 2.
Input variability can cause a difference in the distribution
of data between the training and testing phases. This
results in a problem known as environmental bias or domain
shift that can negatively impact the performance of the
model. Studying the network capability to generalize across
domains provides clues on how the model will perform in
a real scenario (where domain shifts are present).

The last point of interest for a real deployment of
egocentric technologies in the wild lies in the intrinsic
untrimmed nature of input data. Indeed, the vast majority
of works of action recognition assume that the input clips
are “trimmed” around the action of interest, which clearly
represent an invasive form of supervision not available in
realistic settings. Therefore, we argue that, despite recent
progress in the area, trimmed action recognition has limited
relevance in real-world scenarios, while continuous video
flows with no previous knowledge on action location in
time are the primary input source to be considered.

Model size, online recognition, robustness across domains,
and untrimmed data source represent the constraints that
realistic usecases pose, and - to the best of our knowledge
- no work in the literature investigates general solutions
appropriate for this setting. In this paper, beyond proposing
a new line of research, we investigate a solution to bring
existing FPAR models to perform online action recognition
without introducing further training, thereby promoting
the repurposing of existing models.

A. Benchmarking FPAR with real-world constraints.
As a first step, we tackle the model footprint issue and

assess the impact of the model reduction by comparing it
with popular action recognition networks, testing their
generalization capabilities in seen and unseen settings
(domain shift). Then, following an increasing complexity
order, all real-world restrictions are added sequentially
(Streaming, Online, and Untrimmed).

Backbone. To assess the effects of model footprint on
task accuracy, we considered several 2D-CNN and 3D-CNN
models for action recognition, which are often used in the
context of egocentric vision, including I3D [4], TSN [36],
TSM [6] and TRN [7]. These typical action recognition
architectures are compared with two families of NAS-based
models which optimize model efficiency: [37] and [38]. From
these, we considered for our purposes the smallest versions,
named X3D-XS and MoViNet-A0 (with and without buffer)
respectively. We tested the backbones on both seen and
unseen data distributions (e.g. different environments).
Albeit this is very often omitted, testing across domains
is fundamental to assess the generalization capabilities of
models and can highlight overfitting occurrence on specific
data distributions.

Fig. 3. Illustration of the Streaming inference scenario. T WTs

represents a temporal window sliding along the video with stride
1. At each time step, a clip of Ts contiguous frames is fed into the
network, which comprises a feature extractor F and a classifier C with
n classes (C1, C2, ... ,Cn). A represents the aggregator that - at each
step - updates the output of the network, taking into consideration
the current output and the previous ones. R stands for aggregator
cleaning, triggered by the sample’s last frame.

Offline, Streaming, and Online. As anticipated
before, the standard action recognition inference protocol
usually works in an offline fashion, exploiting the supervi-
sion information on the edges of the action (start and end)
to take the right input to process. To do this, specific
sampling strategies are needed to reduce the amount
of input data and avoid that a sample x of T frames
cause a model to exceed its memory budget. Most works
address this issue relying on uniform sampling, i.e picking
Ts equidistant frames, with Ts < T . This method is the
preferable solution for video understanding, but suffers
of two major drawbacks: i) it assumes the knowledge
of samples length in advance (which is not the case for
continuous streams); and ii) uniform sampling completely
filters out information related to the action velocity. Other
works, instead, rely on dense sampling, selecting a set of
Ts contiguous frames. In some cases, this choice penalizes
the model due to the fact that its temporal receptive fields
may see only a limited portion of the action. Indeed, the
final prediction is usually obtained by averaging the pre-
dictions of different equidistant clips over the whole video,
performing video level uniform sampling, i.e. requiring the
sample’s length information.

The artificial limits of offline inference approaches are
alleviated in two novel cases. The first, hereinafter named
Streaming inference, still assumes the knowledge of action
boundaries but enables the processing of a continuous input
stream (see Fig. 3). Intermediate outputs are continuously
collected with an aggregator (A in Fig. 3) which is then used
to obtain a final prediction. When the action is completed
(i.e. at the final frame), the aggregator is flushed to reset the
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model for novel predictions. Removing the supervision on
action boundaries as well (i.e. no prior knowledge on when
to reset the aggregator), we introduce the Online inference
setting, where the model is asked to identify both actions
and their (rough) temporal edges. The complexity of this
setting requires to deal with untrimmed data when actions
are alternated with “unknown” clips. In our experiments,
we studied the online inference settings with and without
“unknown” clips, to verify how their presence affects the
final performance.

IV. Methodology
A. From single clips to continuous data streams

We extended the offline inference approach to deal with
continuous streaming input by using a sliding window
(TWTs) with a unitary stride that selects Ts dense frames
progressively (see Fig. 3). For each time sample, the oldest
frame (red in Fig. 3) is removed and replaced by a new one
(blue in Fig. 3), and a new inference is performed and accu-
mulated with the previous ones. Then, a continuous output
is obtained with an aggregator strategy (aggregator(A) in
Fig 3). MoViNet implements its aggregator by replacing
3D convolution with the (2+1)D operation and exposing
a stream buffer mechanism to cache feature activations,
allowing the temporal receptive field to expand without
the need for recomputation. To support frame-by-frame
output and exploit the buffer mechanism, it uses Causal
Convolutions and Cumulative Global Average Pooling. The
first one is used to make the convolutions unidirectional
along the temporal dimension. The second one, instead,
approximates any global average pooling involving the
temporal dimension. For models lacking specific aggregator
mechanisms, we implemented a continuous averaging of the
corresponding temporal window’s output. Each aggregator
is empty at the beginning of each sample and is resetted
(R) at the end.

B. Actions boundaries localization
As anticipated before, action recognition models are

trained to classify well-separated actions taken as input.
Transferring this capability to continuous video flows comes
with the difficulty that the model may be asked to infer
from clips that do not necessarily contain separate and
complete actions. Therefore, the continual encoding of
successive actions results in an overall increase in prediction
uncertainty and instability in time. The anomaly detection
literature [39] describes this behavior as a consequence of
the fact that the network processes data with a pattern
that does not conform to the defined notion of normal
data learned during training. Therefore, the presence of
concurrent or unknown action can be seen as an anomaly
in time. Based on this consideration, we implemented a
Dynamic Boundary Localization (DBL) strategy - with
almost no overhead in terms of model size and latency -
to localize the boundary of an action by examining the
continuous stream of extracted features.

Fig. 4. Illustration of the proposed two-fold aggregator (A2) method.
The two aggregators work asyncronsly, δ is a parameter used to
guarantee the asyncroncity of the two and indicates the frame-delay
of the DBL activation of one aggregator when the other one detects
an anomaly.

More specifically, since cross-entropy loss (de facto
standard for FPAR) promotes class representations to
be well separated in feature space [40], it is possible to
use a distance metric (e.g. Mean Square Error) between
the features extracted to measure their variations caused
by action changes. Therefore, it is possible to identify
action boundaries in a continuous data flow by looking
for abnormalities in feature distribution over time while
treating all frames of the same action as normal. This
method could not only reveal differences between known
actions but also detect the presence of “unknown” segments
of video (e.g., background).

However, it is important to note that in case of overlap-
ping segments (which e.g. in the EPIC-Kitchens dataset
reaches up to 28.1% of the total clip), the detection of
the new class could be delayed or anticipated with respect
to the current action. Since the aggregator solution can
encode only one action at a time, the network’s inference
will favor one of the two consecutive actions.

In light of the above considerations, we can state that
for fine-grained action recognition, the standard aggregator
may be ineffective. To solve this problem, we introduced
a two-fold aggregator strategy (A2). The two aggregators
(A1 and A2 in Fig. 4) run asynchronously using a mixed
boundary detection approach, allowing the encoding of the
next action before the previous one finishes. When one
aggregator detects an anomaly, it disables its DBL and
activates the DBL of the second aggregator. To guarantee
asynchrony in the moment of the anomaly’s detection, we
delay the activation of the second aggregator’s DBL by an
hyperparameter δ.

The final output is obtained as:

O = n1A1(x)+n2A2(x) (1)

where Ai(x) is the output of the i-th aggregator for the
input x and ni corresponds on the quantity of frame
processed by the i-th aggregator.
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V. Implementation

Dataset. In our experiments, we utilize the top three
kitchens with the most labeled samples from the EPIC-
Kitchens-55 dataset [20]. These kitchens are referred to
as D1, D2, and D3. We have chosen this specific setting
as it is the standard and widely used dataset for cross-
domain analysis in first-person perspective [12], and it also
provides rich multi-modal information, including audio and
event data [35], which can be beneficial for further analysis.
Additionally, the difficulties in this dataset arise not only
from the significant domain shift among different kitchens,
but also from imbalanced class distribution both intra- and
inter-domain.

Input. Experiments with I3D [4] and X3D [37] are
conducted by sampling one random clip from the video
during training and 5 equidistant clips spanning across
all the video during test, as in [17]. The number of
frames composing each clip is 16. For TSN [36], TSM [6]
and TRN [7] architectures, uniform sampling is used,
consisting of 5 frames uniformly sampled along the video.
During testing, 5 clips per video are adopted, following
the experimental protocol proposed in [6]. For MoVinet
[38], dense sampling is adopted, with 4 consecutive clips
composed by 8 frames, randomly taken from the video
during training as in the original work. All the architectures
follow the standard video data augmentation as in [5], the
spatial input resolution has been kept consistent with the
pretrained models (182 for X3D, 172 for MoViNet and 224
for the others) while the temporal resolution for all the
models has been set to 30 fps.

Implementation Details. We adopted the original
I3D network proposed in [4] with Inception-V1 as inflated
backbone, while we chose to use X3D-XS and MoViNet-A0
to have the most efficient models from the two families.
The optimizer is SGD with momentum of 0.9, weight decay
10−7 and a starting learning rate η of 0.01. I3D has been
trained for a total of 5000 iterations, the learning rate
decays by 0.1 at step 3000. Instead, MoViNet-A0 and X3D-
XS have been trained for 1500 iterations without learning
rate decay. For all the experiments we adopted a batch
size of 128. For the two-fold aggregator implementation,
we estimated the value of δ = 20 directly from the dataset
(a subset of kitchens from [21] not used in this paper) by
calculating the average length of action overlaps (at 30
Hz).

Evaluation Protocols. In this part, we discuss the
evaluation protocol we used for our benchmark.
Seen ⇌ Unseen. For the seen results we train on kitchen
Di and test on the same (Di → Di), i ∈ {1,2,3}. We
evaluate performance on unseen test by training on Di

and testing on Dj , with i ̸= j and i, j ∈ {1,2,3} (Di → Dj).
Offline, Streaming, and Online. We refer to offline to
indicate the standard action recognition inference protocol,
which typically uses as input a sub-sample of the input
frames. We perform experiments using both uniform and
dense sampling. The term streaming inference refers to
experiments where the test is performed using all the

TABLE I
Top-1 mean accuracy (%) of different common-use

architectures, over all Di → Dj combinations on both seen
and unseen test sets in offline-trimmed setting.

EPIC-Kitchens 55
Network Sampling Params Seen Unseen

TSN U 5x5 10.7M 60.88 31.55
TSN-TRN U 5x5 18.3M 63.13 32.42
TSM U 5x5 24.3M 71.48 35.97
TSM-TRN U 5x5 - 69.52 36.05
I3D U 16x5 12.4M 67.34 43.89
I3D D 16x5 12.4M 67.08 42.42
X3D-XS U 5x5 3.8M 51.46 36.39
X3D-XS D 16x5 3.8M 48.45 32.66
MoViNet-A0 U 5x5 3.1M 62.17 39.25
MoViNet-A0 D 16x5 3.1M 64.17 40.68

TABLE II
Top-1 mean accuracy (%), over all Di → Dj combinations on

both seen and unseen test sets in both offline-trimmed
setting and streaming-trimmed setting

EPIC-Kitchens 55
Network Mode Sampling Seen Unseen
I3D Offline D 16x5 67.08 42.42
X3D-XS Offline D 16x5 48.45 32.66
MoViNet-A0 Offline D 16x5 64.17 40.68
I3D Streaming All Stream 63.38 40.57
X3D-XS Streaming All Stream 43.37 32.31
MoViNet-A0 Streaming All Stream 62.24 39.59

frames (to simulate the continuous stream of the data that
comes from a wearable device) with the supervision on the
action’s boundary (start and end) to properly clean the
aggregator. The online inference setting, instead, assumes
no supervision on action limits, and to effectively deal with
this scenario the model should automatically detect both
action and their boundaries.

Trimmed → Untrimmed. Moving from the trimmed
to the untrimmed scenario, the lack of mutually exclusive
temporal separation from the actions found in the original
dataset makes it difficult to calculate an accuracy per
frame. At the same time, the precise timestamp of start
and end in fine-grained action is complex and extremely
subjective. For this reason, we use accuracy as a metric to
validate our experiments, putting the focus on the ability
to recognize the action when it happens instead of the
precise localization of its boundaries. For simplicity, the
performance is still computed at the end of each action, and
the “unknown” segments are not used in the evaluation of
the performance but only in the event boundary localization
part. In other words, we did not use the “unknown” class
during the evaluation of the accuracy, but the network
should be able to manage it during the clean phase of the
buffer or the logits accumulation.
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VI. Experiments
In Table I, we compare two families of recently designed

tiny-networks with popular architectures used in action
recognition, examining various factors such as different
pretrains, sampling methodologies, and amount of params.
Then, in Table II, we analyze the performance in the
streaming scenario, displaying a plot of the models’ ac-
curacy vs the portion of the video observed (Fig 5). Fig 6
shows the effects of the action detection algorithms used to
move from the streaming to the online inference scenario.
Finally, in Fig 7, we test the performance with untrimmed
data, demonstrating how our two-fold aggregator (A2)
method grants a more robust solution with a little increase
in parameters. The Table III illustrates the impact of
performance in terms of latency, power consumption, and
other critical characteristics for a designed device.

Impact of footprint on model accuracy. MoViNet and X3D
are the two tiny architecture included in our benchmark to
compare smaller models w.r.t standard action recognition
networks. Interestingly, for X3D the tiny model size appears
to have a negative impact on the final results, showing
the lowest accuracy. It also suffers significantly from
the transition from uniform to dense sampling (U→D).
MoViNet, on the other hand, appears to be the preferable
alternative, showing more notable results in both seen
and unseen settings. Noteworthy, we also observed higher
robustness to the shift in sampling from uniform to dense
(U→D). All those considerations motivate our focus on
MoViNet in this work.

The importance of seen-unseen accuracy. In contrast
with the standard benchmark in action recognition, in
our analysis we conduct experiments considering two
different scenarios: seen and unseen. Indeed, looking only
at the performances in the seen scenario, it seems that
MoViNet obtains lower results compared to the TSM
(62.45% and 71.48% respectively). Instead, when tested
on unseen data distribution, we have a significant gain in
performance of MoViNet w.r.t. TSM and I3D. In particular,
the MoViNet results with uniform or dense strategy are
quite similar (39.25% and 40.68% respectively). It is also
worth noticing that, with more frames, MoViNet results

in unseen scenarios improve considerably (see Table II).
Offline −→ Streaming. Table II shows the results in these

two distinct settings. It is interesting to observe that
MoViNet is the model that better exploits the continuous
stream of data, obtaining the smallest deterioration in
performance equal to 2% and 1% in seen and unseen
scenarios respectively, whereas the other two networks show
a much bigger decrease in performance. This behavior is
caused by the buffer implementation used in the MoViNet
streaming version, which enables the simulation of a
receptive field as large as the entire input video, while
processing frames one-by-one (Ts = 1). On the contrary,
I3D and X3D take as input block of 16 frames (Ts = 16),
which requires the recomputation of overlapping frames
activations and may limit the total efficiency of the models.
Streaming −→ Online. As discussed before, the standard
action recognition protocol assumes available the knowledge
of the action boundary as a prior-knowledge for the correct
restart of the averaging output, to obtain video level
prediction for architectures such as I3D or X3D, or to
properly reset the buffer mechanism for MoViNet. In other
words, “cleaning” the prior encoding for the new one is
necessary to produce an accurate prediction for the current
action. At this stage of our investigation, we assess how
much the typical action recognition architectures rely on
the action’s boundary and how their performance is affected
by the absence of this supervision knowledge.

Dependency from the actions boundary. In Fig. 5 we
plot the accuracy of the models as a function of the
percentage of the video observed. From this chart, we
notice that the use of the last portion of the video does
not provide a gain in accuracy, and after the 85% of the
video, no substantial improvement is obtained. Similar
observations can be made for the initial part of the video.
Interestingly, the performances of the tiny model X3D in
the initial part of the observed video are very close to
the final one, revealing a tendency to privilege appearance
information with respect to motion information. Instead,
the performance gap of MoViNet and I3D from the first
portion of the video observed and after viewing 60%–80%
of the data, confirms that their prediction is based more
on the motion. This behavior is consistent with the more
robust results in unknown conditions (unseen), where the
appearance-based solution suffers more due to the fact that
the appearance characteristics of the scene (texture, light
condition, etc.) changes more among the environments with
respect to the motion.

Effects of no supervision on actions boundaries. The loss
of knowledge on actions boundaries requires a solution
to automatically identify action changes. In this section,
we discuss the performance of the strategy presented in
section IV-B, comparing the results with a static solution
(Fig. 6). The latter is based on the “naive” assumption
that all sample lengths are nearly equivalent, and as a
result, it assumes that a new action is “discovered” at each
k frame. For both the solutions, we report a sensibility
analysis on the number of frames for the static solution
(SBL), and on the threshold value for the dynamic one
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Fig. 6. Top-1 mean accuracy (%), over all Di → Dj combinations
on both seen and unseen test sets in online-trimmed setting. Left)
Static boundary localization (SBL) with different values for the
clean buffer. Right) Dynamic boundary localization (DBL) with
different threshold-values.
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Fig. 7. We present the results in an online-untrimmed scenario using
three different approaches: ABD [33] as a secondary stream to identify
the boundaries, our DBL technique with a single aggregator (A), and
our DBL technique with a two-fold aggregator (A2). We also report
the results obtained in a streaming scenario (S) as an upper bound
reference.
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Fig. 8. Analysis of the effects of the delay parameter δ. We report
Top-1 mean accuracy (%) in online-untrimmed setting.

(DBL), in both seen and unseen settings. According to
Fig. 6, MoViNet with a low-loaded aggregator is unreliable;
indeed, the results are lower than those without a clean one.
Furthermore, by raising the buffer load, i.e., forwarding
more frames, it increases its performance. A significant
improvement of the dynamic strategy over the static one is
also noticeable in Fig 6. Moreover, MoViNet performance
appears to be not sensitive to proper threshold values;
indeed, the improvements of the DBL solution are always
better compared to the best results of the SBL solution.

Trimmed −→ Untrimmed. In Fig 7 we show the results
in an untrimmed online scenario. We compare the perfor-

TABLE III
MACs, FPS (Hz), Latency (ms, inference time) and

Energy(watt) on different devices.

On Device
Network Device MACs FPS Lat.(ms) Power(watt)
I3D 2080 Ti 270e8 110 9.1 53.7
MoViNet 2080 Ti 0.47e8 781 1.3 52
I3D MX350 270e8 15 65.7 24.9
MoViNet MX350 0.47e8 169 5.9 11.5
I3D Jetson Nano 270e8 3 393.7 3.7
MoViNet Jetson Nano 0.47e8 56 17.9 2.4

mance of our DBL approach with single (A) and two-fold
(A2) aggregator, to the recently proposed technique ABD
[33], exploiting it as a secondary stream to identify the
boundary and provide the action boundary to the primary
model of classification. For ABD, we used the original
online implementation, with both NMS and filter windows
size equal to 50. Furthermore, we report, as a reference,
untrimmed streaming (S) results, i.e., experiments in which
the real boundary of the action is used as prior knowledge.
We present the performance of the DBL technique and
two-fold aggregator using I3D to demonstrate that the
proposed approach is scalable and model agnostic. Indeed
the improvement of A2 is remarkable and the results
obtained for both the architecture are comparable with
the streaming scenario. Moreover, the solution with a
single aggregator performs similarly to the competitor
ABD, without using a secondary stream for the boundary
localization. Finally, the improvements of our solution A2

with respect to the ABD are consistent across scenarios and
models. To provide a comprehensive analysis, we conducted
an ablation study on the delay hyperparameter δ. The
results are presented in Fig. 8 and confirm that estimating
δ as the average overlap of actions at the desired frame
rate is a reliable approach.

Edge Deployment. In Table III we show MACs, FPS
Latency and Energy on different devices. These metrics are
obtained from models deployed on each different hardware
through the usage of TensorRT. Power is measured with a
power meter, subtracting the static power. This analysis
focuses on how hardware constraints affect the applica-
bility of the existing model for action recognition on real
device. Indeed, when the I3D model moved from a high-
performance GPU (2080 Ti) to a laptop GPU (MX350)
and, to an edge device (NVIDIA Jetson Nano), it used
more energy, falling short of the required FPS threshold for
identifying human motion (up to 20-30 FPS [41]). Instead,
in the case of MoViNet, the minimal number of model
parameters ensures appropriate FPS (twice as needed),
allowing the use of two-fold aggregator technique in online
inference scenario.

VII. Conclusions
The purpose of this work is to investigate and highlight

the limitations that mainstream egocentric vision models
show in realistic usecases, where computational time and
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power are limited. We promote a new line of research for
FPAR, which considers real-world application limits such
as hardware restrictions, cross-domain scenarios, and online
inference on untrimmed data.
We provide: i) a new benchmark to assess the challenges
of real world deployment, and ii) a novel approach capable
to bring FPAR models on low-power devices (edge com-
puting), tackling the presence of overlapping actions and
the absence of supervision on action boundaries for real
world usage. In light of the challenges discussed in this
work, we encourage future researchers to devote attention
to designing innovative approaches that allow real-time
adaptation of the model on the edge during the processing
of untrimmed videos, particularly in the presence of changes
in environmental conditions.
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