
Doctoral Dissertation
Doctoral Program in Software Engineering (36thcycle)

New Programming Paradigms for
Optimization

Or Building Faster Programs for a Better Future

By

Andrea Calabrese

Supervisor(s):
Prof. Stefano Quer

Prof. Giovanni Squillero

Doctoral Examination Committee:
Prof. Alessandro Cimatti, ITC-Irts
Prof. Evelyne Lutton, Grenoble/INP Phelma
Prof. Cristina Manfredotti, INRAE Paris Saclay
Prof. Maurizio Rebaudengo, Politecnico di Torino
Prof. Mario Schölzel, University of Applied Sciences, Nordhausen

Politecnico di Torino
2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Andrea Calabrese
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my parents, who have always been there for me.

To my dear colleagues and friends, that supported me and beared me even at my
worst.

To my friends (...and sorry if I wasn’t present enough), listening to all my blabbering.

In the end, to my supervisors. I wouldn’t be here if they didn’t believe in me, which
hopefully I did not disappoint... too much.

To Politecnico di Torino. We have hard times working together, but I share with it
some of the best friends I have.

To ScuDo, which not even a stick to their heart can defeat.

To Sheila, the wonderful dog that freed me from my cage from time to time.

Abstract

Ph.D. est omnis divisum in partes tres: first of all, the testing branch. Then, the
algorithm optimization and parallelization branch. Lastly, the Artificial Intelligence
(AI) branch.

Testing. Chips are becoming larger and larger as new modules are added to
improve performance and safety measures. In the testing domain, together with
my colleagues at CAD group, we began developing tools for the evaluation of test
programs. Those tools include an EVCD file analyzer, a toolchain built around it and
a new metric for improving the speed of test routines development. The toolchain
is able to speed up the ability to evaluate large test programs on an automotive
System-on-Chip (SoC) from the SP58 family including more than 20 million gates,
reducing the wall-clock time of execution from days to hours for larger files.

On the other hand, the new metric called connectivity is able to speed-up auto-
matic test generation using a well-known evolutionary tool called µGP. Moreover, it
can also be used by programmers, providing a fast feedback with comparison to the
standard fault coverage. However, we do not aim to replace the fault coverage metric,
as it is the standard that provides complete information; thus, the connectivity, by
computing partial information, is able to detect quick-to-fix errors in the execution
of the program, providing instruction-level feedback to the test engineer.

Algorithms and Parallelization. Algorithms from NP class solve relevant
problems today, and effort is put into improving their current performance. In partic-
ular, together with my colleagues and thesis students we focused on the Maximum
Common Subgraph (MCS) problem, a well-known NP-hard problem that is used
in molecule mining and even security. We improved the state of the art algorithm
McSplit and its variants, among which the latest McSplitDAL, by applying the
PageRank algorithm to classify vertices of the graphs. We were able to improve the
original result up to 1.07 times on graphs of size up to 100 vertices. We also tested

v

different vertex classification algorithms on larger graphs of up to 7000 vertices,
finding that, while PageRank is not always the winning metric, it provides the most
stable improvements.

As Central Processing Units (CPUs) get more and more capable, and the multi-
core paradigm became standard for large computations, also the many-core approach
is becoming more important over the years: from Artificial Intelligence to computer
graphics, Graphics Processing Units (GPUs) are ubuquitous in today’s world, and
research is being put into adapting or improving currently known algorithms into
the many-core approach. In particular, together with my colleagues and thesis stu-
dents we focused on the Graph Coloring (GC) problem, a well-known NP-complete
mathematical problem. We were able to improve one of the state of the art algo-
rithms on GPU, called Jones-Plassman-Luby, with a custom CUDA implementation,
improving over the most famous implementation, Gunrock, up to 62 times, with a
geometric mean of 3.16 times.

Artificial Intelligence. Together with Université Paris Saclay, we developed a
system that is able to abstract rules using given knowledge of basic concepts. In
particular, the objective of the system is building an inductive explanation of a game,
detecting objects, categories and rules that the objects follow. Using a standard
image detection library, OpenCV, we were able to feed videos involving 2 games,
Arkanoid and Pong. By using a basic image recognition we were able to detect
objects and their movements, detecting their velocities and positions. After this
step, we were able to detect interactions between objects, creating a cause-effect
relationship between interactions and change of status. In the end, we use a genetic
algorithm provided by the Inspyred library to induce a set of categories and rules
that apply to each category, involving interactions between them.

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Research activity . 1

1.2 Technological introduction . 3

1.2.1 Language: C++ . 3

1.2.2 Language: Rust . 5

1.2.3 Language: Python . 7

1.2.4 Concurrency and synchronization 7

1.2.5 GPU parallelism . 11

1.2.6 Language: CUDA . 13

2 Testing 14

2.1 Background . 14

2.1.1 Testing . 14

2.1.2 Value Change Dump files 16

2.1.3 Working with more VCDs 18

2.2 The VCD Analyzer . 19

2.2.1 File reading . 20

Contents vii

2.2.2 Pipelined parsing operations 21

2.2.3 Experimental results . 24

2.2.4 Conclusions . 31

2.3 The VCD Toolchain . 31

2.3.1 The standard file . 32

2.3.2 Layout-aware analysis . 33

2.3.3 The Set Tool . 38

2.3.4 The Hierarchical Analysis Tool 40

2.3.5 The Chip-Surface Stress Plotter 42

2.3.6 Experimental results . 44

2.3.7 Experimental setup . 45

2.3.8 The Logic Simulator . 47

2.3.9 The VCD File Analyzer 48

2.3.10 Layout-Aware Elaboration Scripts 49

2.3.11 The Set Tool . 55

2.3.12 The Hierarchical Analysis Tool 56

2.3.13 The Chip-Surface Stress Plotter 57

2.3.14 Wrapping up the flow . 57

2.3.15 Conclusions . 59

2.4 Connectivity: A new metric . 61

2.4.1 The Proposed Methodology 61

2.4.2 The Basic Algorithm . 65

2.4.3 Optimized Algorithm . 69

2.4.4 Load/Store Instructions . 71

2.4.5 Branch Instructions . 71

2.4.6 Multiple Destination Instructions 75

viii Contents

2.4.7 Experimental Results . 79

2.4.8 The Industrial Device under Analysis 79

2.4.9 Evaluation of SBST Programs 80

2.4.10 Evaluation of BI Programs 81

2.4.11 Evaluation of SLT programs 83

2.4.12 Conclusions and Future Works 83

2.5 Conclusions . 84

3 Algorithms 85

3.1 Graphs . 85

3.1.1 Notation . 86

3.2 Graph Coloring on GPU . 87

3.2.1 Introduction . 87

3.2.2 Graph Coloring . 89

3.2.3 Jones-Plassmann-Luby . 90

3.2.4 Gebremedhin-Manne . 92

3.2.5 Atos . 97

3.2.6 Cohen-Castonguay . 97

3.2.7 Gunrock . 99

3.2.8 Our Coloring Procedure 101

3.2.9 Experimental Results . 106

3.2.10 Performance analysis . 117

3.2.11 Conclusions . 119

3.3 McSplit+PR . 120

3.3.1 Introduction . 120

3.3.2 Background . 122

3.3.3 McSplit . 123

Contents ix

3.3.4 McSplit variants . 125

3.3.5 Other Approaches . 127

3.3.6 The PageRank Algorithm 128

3.3.7 The main idea behind our approach 129

3.3.8 McSplitX+PR . 131

3.3.9 Experimental results . 132

3.3.10 Conclusions and future works 136

3.4 Conclusions . 139

4 A Core knowledge-based AI 140

4.1 Background . 142

4.1.1 Core knowledge . 142

4.1.2 Related works . 143

4.2 Proposed approach . 145

4.2.1 Objects identification . 145

4.2.2 Evolutionary learner . 148

4.3 Experimental evaluation . 150

4.3.1 Implementation . 151

4.3.2 Case study 1: Pong . 151

4.3.3 Case study 2: Arkanoid . 153

4.3.4 Behavioural considerations 155

4.4 Conclusions and future works . 157

4.4.1 Towards the future works 157

5 Conclusions 158

5.1 A short wrap-up . 158

5.2 Some final words . 159

x Contents

References 161

List of Figures

1.1 CPU-GPU workflow . 11

2.1 VCD file structure . 17

2.2 The proposed pipeline with all the stages. Colors represent how fast
is a certain stage: green means faster, while red means slower. . . . 22

2.3 The toolchain built around the VCD 32

2.4 The workflow for the layout-aware analysis 34

2.5 An example of the circuit as described in the VCD file. 35

2.6 An example of the clustering method (DBSCAN) executed on a
generic layout . 37

2.7 Rising and falling transition set cover: from file to set interacts . . . 39

2.8 A high-level view of the tree data structure containing the coverage
for each node . 42

2.9 An example of stress heatmap over a generic SoC layout 43

2.10 Experimental setup . 43

2.11 Coverage difference between exhaustive and deductive structural
simulation for OpenRisc 1200. 47

2.12 Density-colored heatmap for the DUT 51

2.13 Runtime memory consumption of the heuristic method. 52

2.14 Evolution of BI metrics. 55

xii List of Figures

2.15 Visualization of the overall stress provided by the superimposition
of all stress patterns. 58

2.16 Visualization of the overall stress provided by the superimposition
of all stress patterns, plus the additional functional stress pattern
targeting the identified unstressed module 59

2.17 Stress-colored heatmaps in terms of toggle coverage with detailed
zoom on some regions. 60

2.18 The logic flow of our testing framework 62

2.19 A graphical representation of Example 2.4.1. 64

2.20 The CDFG of the code snippet of Table 2.23 in represented in Fig-
ure (a). Figure (b) illustrates the vertex-coloring process obtained
following WAW edges, and Figure (c) the colors obtained at the end
of the RAW visit. 67

2.21 An example including arithmetic operations and load/store instruc-
tions. 72

2.22 A graph example including a branch instruction. 74

2.23 Another branch instructions example. 76

2.24 A code snippet with instructions with multiple destinations: Our
instruction-oriented analysis is modified to be destination-based. . . 77

2.25 The experimental setup including a development board with the
SPC58 micro-controller and a hardware debugger. 80

2.26 Evolution of the population of ASM programs generated by the
optimizer microGP. 82

3.1 An example of the Compressed Sparse Row (CSR) format: Graph
(a) and corresponding CSR representation (b). 87

3.2 Application of the Jones-Plassmann-Luby algorithm on a small graph
of 10 nodes. 92

3.3 Application of the Standard Gebremedhin-Manne algorithm on a 10
nodes graph . 94

List of Figures xiii

3.4 Application of the Gunrock implementation of the JPL algorithm on
a 10 nodes graph . 102

3.5 Application of our implementation of the JPL algorithm on a 10
nodes graph . 106

3.6 Speedups of our implementations JPLmax and JPLmin-max against
CuSparse, Gunrock, and Atos. The Gunrock procedure (in red color)
is used as a reference and normalized to one. 113

3.7 Speedup of our JPLmin-max approach (dealing with two indepen-
dent sets for each iteration) over our JPLmax methodology (dealing
with a single independent set). The expected 2X factor is reached on
average as overheads are negligible. 113

3.8 Elapsed time to complete each kernel launch within our JPLmin-max
strategy and the one delivered by Gunrock. 114

3.9 Percentage variations in the number of colors used by the different
GPU-based methods with respect to GMs-imp used as a reference
and CPU-based. 117

3.10 The y-axis represents a percentage of the nodes, whereas the x-axis
represents the execution progress. 118

3.11 Typical behavior of the effectiveness of the original implementation
of McSplit. The size of the solution often increases rapidly in the
first part of the process; then, the procedure is captured by local
minima which slow down the convergence process and force the
algorithm to visit enormous state spaces that do not improve the
solution size. In orange, we can see the solution size at the end of
the execution . 133

3.12 The histogram plots the number of times each heuristic finds the
MCS (i.e., the largest maximum common subgraph) on the 400
experiments. When a graph with the same size is returned by more
than one method, each strategy is reported as a winner 134

xiv List of Figures

3.13 A circular rolling average (with a window width of 50 consecutive
tests) of the sizes of the solutions obtained by the McSplitX and
McSpliX+PR algorithms on each instance. All values are normalized
with respect to the results obtained by the original McSplit 136

3.14 The relative performance of the McSplitX and McSplitX+PR meth-
ods. For each row, we report the average improvement relative to the
respective column. Darker blue colors highlight the size improve-
ments . 137

3.15 The dispersion of the points above the main diagonal shows that
McSplitX+PR finds more extensive solutions in the vast majority of
the cases . 138

4.1 Proposed pipeline for finding general rules describing interactions
between classes. 144

4.2 A video frame of Arkanoid shows the instant in which the ball hits
the user’s paddle and is about to bounce back. 146

4.3 A visual analysis of the correction of the ball velocity performed by
our framework. 147

4.4 An image of the Pong game. The net (white stripes) divides the
playing court in half; the two user-controlled paddles play against
each other. The blue ball is represented in the middle of the court,
and the scores are reported on the top of the screen. 152

4.5 The Pong puzzle: The classes and rules discovered by our strategy. 153

4.6 A video frame of an ongoing Arkanoid game, where some bricks
have already been hit by the ball and disappeared from the image. . 154

4.7 The Arkanoid puzzle: The classes and rules discovered by our strat-
egy. 154

List of Tables

2.1 Single point full timing analysis. Running times for the different
pipeline stages, with an increasing number of threads, for the smaller
VCD file, i.e., the one of 38 GBytes. All times are reported in
seconds. The symbol → means that the data is meaningless in that
experiment. 25

2.2 Single point full timing analysis. Running times for the different
pipeline stages, with 32 threads (our most efficient configuration) for
VCD files with increasing size (from 10 to 243 GBytes). All times
are reported in seconds or hours (when explicitly stated). 25

2.3 Single point full timing analysis. In-depth analysis of our approach:
Waiting times for the two most critical phases (the Read and Parse
stages), pipeline efficiency, and speedups for the Parse phase and
the entire process. All times are reported in seconds or hours (when
explicitly stated). 26

2.4 Single point stress timing analysis. Running times for the different
pipeline stages of our chain, with an increasing number of threads
for the smaller VCD file, i.e., the one of 10 GBytes. All times are re-
ported in seconds. The symbol → means that the data is meaningless
in that experiment. 27

2.5 Single point stress analysis. Running times for the different pipeline
stages, with 32 parsing threads (our most balanced configuration) for
VCD files with increasing size (from 10 to 243 GBytes). All times
are reported in seconds or in hours (when explicitly stated). 27

xvi List of Tables

2.6 Single point stress analysis. In-depth analysis of our approach:
Waiting times for all threads of the two most critical phases (read
and parse stages), pipeline efficiency P (Equation 2.1), and speed-ups
for the Parse phase and the entire process. All times are reported in
seconds. 28

2.7 Multiple Point Stress Analysis. Running times for the different
pipeline stages, with different thread configurations, for the smaller
VCD file, i.e., the one of 10 GBytes. All times are reported in
seconds. The symbol → means that the data is meaningless in that
experiment. 29

2.8 Multiple Point Stress Analysis. Running times for the different
pipeline stages. with the 16/64 threads configuration (the most
efficient one in our experiments) for VCD files with increasing size
(from 10 to 243 GBytes). All times are reported in seconds or hours
(when explicitly stated). 29

2.9 Multiple Point Stress Analysis. In-depth analysis of our approach:
Waiting times for all threads of the two most critical phases (read
and parse stages), pipeline efficiency, and speed-ups for the Parse
phase and the entire process. All times are reported in seconds or
hours (when explicitly stated). 30

2.10 A simplified view of the coverage file, highlighting the information
looked by the hierarchical analysis tool 41

2.11 The logic simulation phase: CPU times and size of the VCD files
generated. The symbol “*” means the time is estimated. “N/A”
means that the value is Not Available. 45

2.12 Profiled execution for the VCD Analysis for the single-point stress
metric. 48

2.13 Profiled execution for the VCD Analysis for the multi-point stress
metric. 49

2.14 Profiled execution of Virtual node elimination script. 50

2.15 Comparing the execution time of the exhaustive and the heuristic
approach. 52

List of Tables xvii

2.16 Confusion matrix showing the accuracy of the heuristic method
compared to the exhaustive. 53

2.17 Single point stress metric coverage. 54

2.18 Multiple point stress metric coverage. 54

2.19 Profiled execution of the Set Covering tool. 56

2.20 Profiled execution of Hierarchical analysis tool. 56

2.21 Profiled execution of Chip-surface stress plotter. 58

2.22 An example of instruction sequence with the operation performed. . 63

2.23 Instruction sequence, source, and destination operands. 66

2.24 Instruction sequence, source and destination operands. 71

2.25 Instruction sequence, source and destination operands. 73

2.26 Instruction sequence, source and destination operands. 75

2.27 Instruction sequence with multiple destinations. 76

2.28 Test programs evaluation. All branches without an alternative are
marked as black in our analysis. NA means the data is not available. 79

3.1 The main characteristics of the benchmark graphs used during our
experimental analysis. The graphs are numbered from 1 to 28 to find
an easy correspondence in the following plots. Column Type indi-
cates the main characteristics of each graph: Real (r) or generated
(g), undirected (u) or directed (d), following a power-law degree
distribution (p) or not (-). Notice that power-law graphs, which have
distinct characteristics and on which the different approaches behave
differently, have been inserted in the second part of the table. 107

xviii List of Tables

3.2 Average coloring time for each one of our implementations. Columns’
headers have the meaning described in the itemization included in
the main text. On the CPU-side, we indicate with GMs-imp and
GMa-std our implementations of the GM synchronous and asyn-
chronous algorithm, and with JPLmin-max the JPL procedure. On
the GPU side, we report the results of cuSparse, Gunrock, and Atos.
The last two columns include our implementations on GPU. Once
more, the graphs after the horizontal line (used as a separator) follow
a power-law degree distribution. 108

3.3 Detailed comparison of our JPL min-max approach against Gunrock.
Notice that Gunrock pre-processing times are roughly equivalent to
the sum of our times, including the vector randomization, the GPU
allocation, and the CPU-to-GPU transfer time. The post-processing
phase includes the GPU-to-CPU transfer time. 111

3.4 The average number of colors for each one of our implementa-
tions. On the CPU side, we present our implementations of the GM
synchronous and asynchronous algorithm (GMs-imp and GMa-std,
respectively), and the JPL procedure (JPLmin-max). On the GPU
side, we report the results of cuSparse, i.e., the csrColor Cohen
and Castonguay implementation, Gunrock, i.e., the Gunrock’s algo-
rithm, and Atos from Chen et at. The last two columns include our
implementations on GPU. 116

3.5 Percentage of instances improved by the PR methods (columns) over
the original methods (rows), without breaking ties 134

4.1 The evolution of Pong and Arkanoid games respectively: for each
seed, we show the fitness of the best individual in the first generation
and the fitness of the best individual in the last generation 156

Chapter 1

Introduction

Central Processing Units (CPUs) are becoming more and more capable every genera-
tion. Vectorization units, multi-core CPUs and many-core Graphic Processing Units
(GPUs) are considered standard elements of today’s computers. Moreover, GPUs are
becoming more and more capable, and much progress has been made in the General-
Purpose Computing on Graphics Processing Units (GPGPU), to the point that GPUs
can run arbitrary code. Due to this fact, parallel computing is becoming much more
important, both on the multi-core approach and on the many-core approach.

My Ph.D. work develops on 3 different branches of computer sciences: first,
the hardware testing branch; then, the algorithmic optimization and parallelization
branch; in the end, there is a small incursion in the Artificial Intelligence branch.
As we will see, however, the algorithm parallelization pervades all of the branches,
standing as the protagonist of this thesis.

1.1 Research activity

In this section, I will focus on a brief description of the various chapters: the main
subject, the goal of each one and a short description of the results.

Chapter 2 focuses on the hardware testing branch. In the hardware testing branch
of my work, I mainly focus on the evaluation of test programs. In particular, my
work involves the automated evaluation of test programs according to standard
metrics already known in the hardware testing field (such as the toggle activity of

2 Introduction

signals) using a standard file format (VCD) and the creation of a new metric, called
connectivity. The main goal of this work is speeding-up the development of tests on
hardware platforms.

In the VCD work, the main goal was analyzing metrics such as the toggle activity
in as few time as possible, as VCD files grow very quickly in size. As soon as the
VCD analysis was ready, I focused on creating a testing environment based on VCD
files, creating a toolchain able to filter, merge, visualize and classify the faults that
may be present in the circuit.

In the connectivity work, however, the objective was creating metric that was
quick to compute, but that could give some information about the fault coverage of
the tests on a circuit, since the fault coverage itself requires a significative amount of
time to be computed. Connectivity, instead, is very quick to compute and provides
information on the propagation of possible errors during the execution of a test
program. Moreover, the connectivity metric can also be enhanced by the analysis of
bit-level propagation of the data, effectively making it a closer measure to the actual
fault coverage.

Chapter 3 focuses on the algorithmic work, namely the improvement of the
state-of-the-art algorithm for the Maximum Common Subgraph and the porting and
comparison of different Graph Coloring algorithms on GPU.

The state-of-the-art algorithm for computing the Maximum Common Subgraph
is called McSplit. Through the usage of the PageRank algorithm before the execution
of McSplit to classify the vertices of the graph, I was able to improve the solution of
the algorithm on a large set of graphs, either by reaching a good solution in less time
or by reaching a solution including more vertices of both graphs.

For the other subject, the objective is to improve the execution time of the Graph
Coloring task through the usage of a GPU. First, we ported the JPL algorithm as-is to
the GPU; then, we improved it by adding another step to each coloring cycle, which
made the algorithm perform much better than earlier. In the end, we compare against
different implementations of JPL both on GPU and CPU and against the algorithm
GM, both the CPU version and the GPU porting that uses the Atos framework. In
this case, we were able to improve on all the other variants of JPL, while GM is the
leading algorithm on larger graphs.

1.2 Technological introduction 3

Chapter 4, instead, focuses on the creation of an AI approach based on the theory
of the Core Knowledge. In particular, in this approach we define some concepts that
are known in advance and try to extrapolate some rules based on those concepts. In
our case studies, we chose 2 classic videogames to analyze: an Arkanoid clone and
a Pong clone. These games make use of some physical concepts, such as velocity,
bounces and collisions, and some more abstract concepts, such as the appearance and
disappearance of objects. The approach uses a genetic algorithm to detect the rules
through the analysis of a sequence of events, available by analyzing a gameplay video
of those games. Most of the analysis difficulties, however, reside in the translation
of the video to the events, as the video presents aliasing problems due to the pixel
sampling, which is a discrete interface, while the effective values of the games are in
the continuous domain. Despite this, the approach is able to infer some reasonable
rules, recognizing, for instance, the disappearance of a block once the ball bounces
on it.

1.2 Technological introduction

In this section, I will provide an introduction to the technologies used during my
Ph.D. In particular, I will focus on programming languages and paradigms that we
need for the following chapters, not considering domain-specific knowledge.

In Section 1.2.1 we will talk about C and C++ and their characteristics. In
Section 1.2.2 we will talk about the Rust programming languages and its features.
In Section 1.2.3 we will briefly describe the Python programming language. In
Section 1.2.4 we will describe concurrency and synchronization primitives both on
CPU and on GPU. In Section 1.2.6, we will talk about CUDA, a language used for
writing programs that run both on CPU and GPU.

1.2.1 Language: C++

C++ [1] is a programming language born as a superset of C with the intent of
providing compatibility with C and introducing the notion of classes, providing
an object-oriented approach. As C is a language well-known for its flexibility and
closeness to machine code, it provides a very limited standard library compared to
more modern languages. In particular, C++ provides elements such as fully-typed

4 Introduction

dynamic arrays, linked lists, hash maps, sets and much more. C++ also allows
for Resource Acquisition Is Initialization (RAII) paradigm, which is strongly used
from C++11 onwards; this paradigm exploits the scope of the variables to manage
resources, such as smart pointers or locks.

Moreover, as C revisions added few utilities over the years, C++ standards
brought many changes over 2 decades. The most noticeable C++ versions are
C++03, C++11, C++17 and C++20. While each version brought noticeable im-
provements, the leap from C++03 to C++11 is regarded as the largest one in
the community, as it added in-language support for multithreading, multitask-
ing and smart pointers. C++17 introduced a common interface for the filesystem
and the constexpr keyword, and C++20 added the concept of modules and the
consteval keyword. We are mostly interested in the changes performed by C++11,
and a limited subset of C++17, mostly including the constexpr construct.

In particular, for C++11, we are interested in:

• std::array : the C++ array is a statically sized array that acts as a C array
with the difference of having the information of the size included and accessible
through the container interface.

• std::vector : the C++ standard vector is a strongly typed dynamic array
with automatic resizing that provides a good trade-off between memory utiliza-
tion and performance. Moreover, it calls the constructor of the classes inserted
when resizing.

• std::unordered_map : it is an implementation of a hashmap, using hashable
elements as keys and elements of any type as value.

• std::thread : the C++ standard thread is an operating system independent
implementation of the thread library. It is a convenient abstraction over system
calls, that uses the pthread library on Posix systems and the Windows thread
library on Windows. More on threads and synchronization in Section 1.2.4.

• std::mutex and std::lock : the former is a mutual-exclusion (as the name
implies: mut-ex) synchronization primitive among threads. The latter is a
RAII container over synchronization primitives, in which locks depend on
the existence of the variable; as it locks a mutex on a thread, the lock is
automatically removed when the variable goes out of scope.

1.2 Technological introduction 5

For C++17 we are mainly interested in the constexpr keyword. This keyword
has two meanings, depending on its usage: if used on a variable, it declares the
variable as a constant and it forces the compiler to replace it with an immediate
number at compile time. Both C and C++ have the concept of a constant, but the
compile time substitution using the const keyword is merely a suggestion and
not a directive. The second usage of constexpr is in front of functions: in this
case it suggests the compiler to execute the function at compile time if possible.
However, if the function is not executed at compile time, no error is produced and the
compiler produces a non-constexpr function instead. C++20, with the introduction
of consteval , explicitly forces the compiler to execute the function at compile
time if possible, otherwise producing an error.

1.2.2 Language: Rust

Rust [2] is a modern programming language built around memory safety and modern
programming paradigms that are considered good practices, such as RAII. It differs
by C-like programming languages in some important ways, as this safety comes with
a shift in programming paradigm. It is divided in two modules: safe and unsafe; we
will discuss the safe part, as the unsafe one is mostly used to interface with C and
C++ libraries or for lower level programming. Some of the main characteristics of
Rust are:

• Memory ownership model: in opposition to C and C++ memory model, which
does not require the concept of ownership, as memory is considered as a large
contiguous array, Rust enforces the ownership concept: every data owns/is
owned by other structures, implying a single instance of that data exists. This
does not imply that data can not be copied among different structures, but it
has to be done explicitly.

• Move as default: due to the ownership memory model, the meaning of the
assignment operator among variables = is a move operation. Once data is
moved, the previous variable holding the data becomes invalid; this is true also
for parameter passing among functions. Instead, copies need to be explicit;
this ensures that the programmer understands that copying comes at a price,
and avoids useless copies as much as possible

6 Introduction

• Immutability by default: in opposition to most programming languages, vari-
ables are immutable by default. To mutate them, they have to be declared with
the mut keyword.

• Zero-cost abstractions: Abstractions through interfaces in most object-oriented
languages imply the concept of inheritance. Inheritance, however, comes
at a cost: in particular, in C++ a virtual methods table (v-table) is created
at compile time, and at runtime, based on the type of the data, the right
function is executed. However, the cost of the v-table is a dereferentiation
of function pointers together with multiple jumps through the code (one for
the v-table, another one for entering the desired function). Rust enforces
interfaces through the use of Traits, which define methods of the interface
belonging to the data structure. Traits are not treated as dynamically dispatched
functions, and their meaning is only programmer-sided: the compiler only
sees the implementations inside and compiles them as normal functions.

• Smart pointers: as ownership is the default memory model, smart point-
ers are the most common way to access data on the heap. There is over-
lapping among C++ std::unique_ptr and Rust’s Box , and among C++
std::shared_ptr and Rust’s Rc (Reference Counting) pointer. However,

for thread safety, Rust provides a new pointer: Arc (Atomic Reference Count-
ing), which allows for data to be shared among threads. Since all smart pointers
use the RAII paradigm as default, null or invalid pointers do not exist in safe
Rust. To deal with optional values, Rust provides a wrapper called Option ,
that needs to be explicitly checked before being dereferenced.

• Explicit result handling: as Rust does not have an exception system, it provides
the wrapper Result for code that may produce recoverable errors; this allows
for the error management to be both explicit and lightweight, often not even
requiring heap allocations.

• Fearless concurrency and thread safety: through the use of the traits Send and
Sync, Rust allows for objects to be shared among threads. However, as a single
instance of any object needs to exist, shared objects are often wrapped in
Arc if data needs to be accessed by multiple threads. However, by exploiting

both the Move as default and the Immutability as default paradigms, data inside
Arcs need to be immutable. However, synchronization data structures such

1.2 Technological introduction 7

as Mutex and even entire paradigms such as RwLock (Readers and Writers
Lock) can be used as wrappers for the data inside the Arc, providing both
mutability and thread-safety against data races.

• Standard build system: the program Cargo handles the projects in Rust, and
is responsible of managing all the external dependencies, downloading them
from the crates.io repository if needed. Its build system is also flexible and
allows for user-defined modifications to compile libraries that might need an
internal toolchain.

All of the points mentioned above provide what is called memory safety. More-
over, the move as default model is enforced by a part of the compiler called borrow
checker (as moving is often called "borrowing" in Rust slang). The borrow checker
analyzes loops and functions both for concurrent and sequential code to search for
use of invalid values; this is done at compile time, in contrast with C++, in which a
std::move function exists, but invalid references are allowed and must be checked
at runtime.

1.2.3 Language: Python

Python [3] is a scripting language that became famous for its ease of usage. It is
one of the most used programming languages in the world according to PYPL [4],
which uses data from Google Trends to perform each language popularity ranking.
However, this comes at the cost of performance, being much slower than lower-level
programming languages such as C or C++. However, due to its widespread usage and
its many libraries, it is mostly used for Machine Learning tasks and web development.
Its type system is often called "duck-typing", as “If it looks like a duck and quacks
like a duck, it must be a duck.” [5] This provides simplicity at the cost of safety and
performance.

1.2.4 Concurrency and synchronization

In this section, I will discuss about concurrency on modern CPUs. I will discuss
about how its different strategies, each with its pros and cons, synchronization
mechanisms and some common paradigms that can be implemented.

8 Introduction

Concurrency

Concurrency is the ability to execute programs in an out-of-order fashion. Histor-
ically, on single-core CPUs, concurrency was already performed by the various
operating systems. One of the main reasons for concurrency in single-core CPUs
was providing a way to perform work instead of waiting for resources to be available
(for instance: reading and writing in memory is an expensive operation, as it involves
synchronizing data between physically distant hardware pieces). However, concur-
rency can also be implemented as parallelism [6], although it is not a necessary
statement; however, in category theory, parallelism is a sub-category of concurrency.

In particular, parallelism is the ability to distribute execution units among dif-
ferent processing units (for instance, CPU cores). Today, parallel computing is
becoming more and more popular due to the increased parallel capabilities of CPUs;
it is not unusual for today’s CPUs to have 4 or more CPU cores even in mobile
devices, sometimes even divided between high-performance and high-efficiency
cores. In servers, we can have even thousands of CPU cores, and multiple CPUs, on
the same machine. Concurrent and parallel computing can take various forms:

• Multi-processing: as each process is possibly assigned to a different CPU,
and process execution is interleaved, it is possible to exploit having multiple
processes in execution cooperating towards an objective. The drawbacks of
this approach is that processes have a high overhead to be created and do not
share memory: inter-process communication needs to be set up. Moreover, as
processes can be cloned, terminating the parent process does not terminate the
child processes, which have to be terminated explicitly.

• Multi-threading: threads are lightweight concurrent routines that are executed
within a single process. Thread creation provides much less overhead than
process creation. Moreover, they can share memory and resources with each
others. This raises new problems with data access, such as data races, which
we will discuss.

• Task-based concurrency: a task is a lightweight routine running inside a thread.
Tasks are easily created and later assigned to threads. Tasks are often called
asynchronous functions, and the implementation of task-based concurrency
depends on the programming language and its libraries. For example, both

1.2 Technological introduction 9

C++ and Rust use a single thread to handle asynchronous tasks. However,
some libraries have been built for both languages to exploit the multi-threading
capabilities of the CPUs, providing concurrent and parallel tasks.

As parallel computing is often associated with multiprocessing or multithreading,
it also comes in form of Single Instruction on Multiple Data (SIMD) modules for
the CPU, such as the AVX on Intel, or Luna on ARM CPUs. Those modules are
often exploited by compilers if the code is mostly simple. These modules consists
in special contiguous registers and instructions that act on them. However, there
is a trade-off between portability and performance, as either assembly language
or intrinsic C functions are needed to use those modules explicitly. To avoid this
trade-off, we decided to design our data structures to help the compiler understanding
what can be performed using SIMD operations.

The performance gain, however, is not linear and is subject to Amdahl’s law [7].
This is due to the need of synchronization (more on this subject in Section 1.2.4) and
overheads due to the creation of the concurrency primitive (processes, threads and
tasks). However, there is a class of problems that performs close to the limit of this
law, called embarrassingly parallel problems [8], in which each concurrency primi-
tive is independent and work can be performed without need from synchronization,
with the exception of a barrier at the end of the computation.

Synchronization

Synchronization is a task that coordinates the execution of different concurrency
primitives. Synchronization also has many primitives; here we will discuss about
some of them:

• Semaphores [9]: they are the most general-purpose primitive. Theorized by
Dijkstra, semaphores allow for resource protection and avoidance of data races.
A semaphore has an internal counter that can be increased or decreased. When
it reaches 0, however, it stalls the current concurrency primitive (internally
asking the scheduler to switch to another process). Semaphores are usually im-
plemented for thread synchronization on Linux systems, although the standard
does not explicitly mention this.

10 Introduction

• Mutexes: the name stands for mutual exclusion, and can be implemented with
semaphores with a maximum count of 1. Mutexes can be either locked or
unlocked. If many synchronization primitives try to lock the mutex, only one
can lock it, while the others will wait until it gets unlocked.

• Spinlocks: a spinlock, also called busy waiting, is a synchronization primitive
that keeps performing a check on a variable until it reaches a certain value.
This allows for synchronization in its most basic form, but its usage is generally
regarded as a bad habit. However, they provide the advantage of not needing
to invoke the scheduler, which allows for a very fast response time.

• Atomic variables: an atomic variable is a variable on which operations are
always performed sequentially. In practice, they are implemented inside CPUs
in special registers, and allow for the existence of the other synchronization
mechanisms.

• Condition variables: often used together with a mutex, they provide a mutex
lock until a condition is satisfied.

Thanks to the synchronization mechanisms, parallel paradigms rose to solve
common problems. Among those, we use:

• Producer-Consumer: this paradigm is used to pass work among threads, dis-
tributing it and balancing each task. For instance, we can have a thread that
reads from a file partial data producing a string, and a second thread that
consumes that data creating a complex structure.

• Readers-Writers: when protecting a resource, we may want to lock it only
from destructive operation, such as a write, while reading data in parallel is
perfectly fine. This paradigm provides a lock of a resource only in presence of
writers. Variants of this paradigm exist, giving priority to readers or to writers;
however, the most common implementation prioritizes reading operations.

• Pipeline: a pipeline approach consists of more producer-consumers in se-
quence. This can balance consumers that need to deal with expensive opera-
tions.

1.2 Technological introduction 11

1.2.5 GPU parallelism

GPUs provide massive parallelism similarly to the SIMD paradigm. In this case,
we talk about Single Instruction on Multiple Threads (SIMT), as GPUs provide
thread scheduling out of the box. In particular, GPUs are very good at performing
the same work on a very large amount of data due to their design. Historically,
GPUs were designed to perform few operations, such as matrix multiplications. This
design was reflected by earlier graphics APIs, such as older versions of OpenGL
and DirectX. Most notably, with the advent of programmable shaders, researchers
such as Krüger et al [10] were able to perform general purpose computing on a
GPU, however resorting to a reformulation of the problem using graphics primitives.
This represented the first stone put towards high-performance computing, leading
to the creation of CUDA from Nvidia and OpenCL from the Khronos Group and
Apple [11]. However, CUDA only works on Nvidia GPUs, while OpenCL (and,
more recently, Vulkan [12, 13]), work across many GPU vendors. In our work, we
used CUDA, as its language is very similar to C++ and even allows for seamless
code interoperability through header files. However, the concepts and limitations on
the working principles of GPUs remain valid for all programming libraries.

Figure 1.1 shows the typical workflow between CPU and GPU: first, the CPU
provides the data and the program to be executed on the GPU; then the GPU executes
the program; in the end, the CPU retrieves the results from the GPU.

Fig. 1.1 An example of the typical workflow using CPU and GPU

GPUs provide many advantages in term of computation. In particular:

12 Introduction

• they provide massive parallelism, as mentioned above. Less recent Nvidia
GPUs of the GTX series provided 1024 cores. However, with the more
recent RTX, depending on the model we can get over 8192 cores working
simultaneously.

• Operations on small amounts of data are performed using a SIMD approach.
Thus, operations such as small vector addition are performed simultaneously,
providing further optimization possibilities.

However, GPU computing comes with many limitations [14]; in particular:

• Operations on a small amount of data tend to perform very poorly; this is
because of the hardware design of the GPUs, trading off raw single-thread
performance for multi-core performance.

• Copying data between CPU and GPU on non-unified memory architectures
is expensive; mechanisms cope with this limitation, such as asynchronous
data copy and execution, are present in all the most common programming
libraries.

• Due to its hardware architecture, branching on GPU is a potentially long
operation, as branching paths are executed sequentially, with the exception of
recent Nvidia GPUs that interleave the execution of different branches, trying
to save time from stalls.

• Moreover, GPU cores lack a branch prediction unit, so even the usage of loops
has to be evaluated when writing an algorithm to the GPU.

• Due to its hardware architecture, threads are spawned in multiple of 32 on
Nvidia or 64 on AMD graphics cards; in general, this is called a work group,
but each vendor has its own term (Nvidia uses the term warp, AMD uses the
term wavefront). This can lead to spawning threads that perform no work,
however providing more stress to the scheduler.

• Reading and writing operations on memory are usually slow compared to
computations. Thus, accessing memory should be avoided as much as possible.

This shows that porting parallel algorithms from CPU to GPU is not always
trivial, and it is difficult to analyze the advantages of one approach over the other.

1.2 Technological introduction 13

Synchronization primitives within are also mostly technology dependent. For
instance, CUDA 12 provides atomic operations and graph-based execution, in which
it is possible to declare an execution graph of various kernels. However, synchroniza-
tion mechanism keep changing even within CUDA as technology is evolving, thus
leading to very version-specific methodologies even within the same framework.

1.2.6 Language: CUDA

CUDA [11] is a language similar to C++ developed by Nvidia, which allows, with a
syntax similar to C, to perform general-purpose computing operations on a Nvidia
GPU. Its parallel functions are called kernels. Calling a kernel from the CPU
provides explicit control over the number of threads spawned on the GPU. However,
some operations, such as dynamic allocation of GPU memory, are allowed only on
CPU-side. As seen in Figure 1.1, CPU and GPU work uses a fork/join paradigm.
In CUDA, this is performed by default implicitly with a kernel call, for which the
syntax is similar to function calls.

However, CUDA also provides functions that allow for asynchronous operations,
enabling both streaming operations, such as copying and computing performed as
soon as data becomes available, and parallel operations among CPU and GPU. Those
operations can performed through the usage of the Async suffix in the function call
for memory allocations and copy, also providing a structure called CUDA Stream. A
CUDA Stream effectively tracks the execution of the GPU workflow for which it
has been used. CUDA Streams provide the capability of performing simultaneously
work on both GPU and CPU, at the cost of an explicit waiting operation on the
stream itself. Moreover, they provide the GPU enough information to perform even
partial work as soon as the data is ready, enabling increased concurrency capabilities
inside the parallel execution. Theoretically, there is no upper bound for the number
of operations in a stream or for the number of streams that the programmer is able to
create.

Chapter 2

Testing

This chapter describes the publications [15–20]. In particular, I will show a tool
for the analysis of large simulation dump files, a toolchain built around it and a
new metric for analyzing test programs. Those works share a common background,
which I will describe in Section 2.1. These works have been developed together with
my colleagues Francesco Angione and Lorenzo Cardone, and with professor Paolo
Bernardi. Moreover, in the evolution of the VCD tool, a special mention should go
to my colleagues Gabriele Filipponi and Giusy Iaria, who helped me finding bugs
and improving the tool over the time.

2.1 Background

2.1.1 Testing

Systems-on-Chip (SoCs) are becoming more and more large as technology advances,
including a huge number of gates. Together with those chips, we witness an increase
of failure mode strategies. Some of the issues that arise with this increase in scale
are the simulation time and analyses. In particular, fault simulations tend to be
very expensive, leading to entire weeks of computation. This is because modern
SoCs include computational units, co-processors, memories and many more modules.
Modules are verified and validated at each phase of development, from design to in-
field testing. We focus on the latter. However, even if it is only one phase, optimizing

2.1 Background 15

it may lead to a significant decrease of analysis time, as the computational effort is
significant [21].

In the automotive scenario, devices should also respect the safety requirements
dictated by the standard ISO-26262 [22], every defect potentially causing a harmful
failure should be avoided. Therefore, for automotive SoCs, the standard manufactur-
ing test flow, usually encompassing only wafer and package tests, is enhanced with a
Burn-In stress step, followed by a final package test, and eventually a System-Level-
Test phase [23–25]. In this article we essentially concentrate on the Burn-In phase.
Still, we show that our analysis flow can also provide useful feedback about final
test procedures and SLT.

Burn-In (BI) is a stress phase designed to remove the infant mortality of SoCs [26]
manufactured with some weakness, such as thinner metal oxide or metallization. The
BI phase provides both external and internal stress to a device. External overexertion
(such as thermal stress) is generated by a climatic chamber or at the socket level. Its
main objective is to age the device material [27]. Internal stress (such as electrical
stress) is produced by scan-based approaches [28], Built-In Self-Test (BIST) mod-
ules [29], or functional test programs [30, 31]. Its main target is to force device gates
to produce high internal activity and possibly exacerbate the insurgence of latent
defects not screened by the wafer and packaged test procedures, which could be later
captured by the successive test steps.

Nowadays, grading the quality of BI procedures is getting extremely impor-
tant [23, 32]. Unfortunately, grading activities are affected by the size and complexity
of modern SoCs. Moreover, modern devices present new defect types [33, 34] re-
quiring enhanced coverage metrics not fully supported by current Electronic Design
Automation (EDA) tools. For example, the most frequently used metric, i.e., the
so-called toggle coverage [35], represents the number of gates that make at least one
transition. Nonetheless, there is an increasing interest in also evaluating the average
number of times and how uniformly a signal is stressed [36]. To perform these
advanced tasks, it is necessary to simulate the stress patterns and post-process the
resulting simulation dump [16]; this approach may become prohibitively expensive
for large devices. Furthermore, the SoC layouts should be considered as gate density
may vary from area to area, affecting the accuracy of the stress measures [37] [35].

To perform different tests on SoCs, manufactures rely on Automatic Test Pattern
Generators (ATPGs) to generate test patterns and perform fault simulations using

16 Testing

those patterns on appropriate fault simulators [38–40]. ATPGs rely on few standard
stress metrics and can efficiently perform a first pass of tests, with a knowledge of the
chip layout. However, it is possible to perform tests even with pre-defined patterns
using fault simulators, that may be generated with a deeper knowledge of the chip
by the manufacturer. Moreover, on-line testing methodologies do not use ATPGs,
as the cost would be excessive for a real-time system, but rely on testing routines;
this is called functional testing, and it often requires a deep knowledge of the chip
architecture. Nonetheless, functional testing is a vital part of the testing procedure
and may be performed both for chip validation and for on-line testing.

2.1.2 Value Change Dump files

A Value Change Dump (VCD) [41] file is a trace of all the changes on the gates and
buses of a SoC during the test. The VCD file is logically divided in 3 main sections:

• Signal and hierarchical declaration of the SoC circuit, which introduces the
signals that the circuit will pass and assigns them an internal reference number.
The number of the signals is usually

• An initialization of the signals at time t0. This section is mandatory for all
signals.

• The changes of each signal divided by time frame. However, to save space,
the VCD standard provides, for each time frame, only the signals that change.

Moreover, the following year the Extended VCD (EVCD) [42] format was proposed.
The main difference between the two formats is the ability of the EVCD format to
express the strength of the signals, also providing information about the input and
output states using different symbols.

Figure 2.1 shows an example of the file structure generated by the tool SimVision
(also known as NCSim) by Cadence [43], which mixes VCD and EVCD syntaxes.
In Section 2.1.3 we will highlight the difference between various VCD formats.

Every VCD file is divided in 3 parts: first, the declaration and initialization of the
signals. The $scope module directive declares the beginning of a module, terminated
by an $upscope. In this case, each signal is declared using the $var port directive,
and it contains information about its size (thus, we can deduce if it is a bus or a gate),

2.1 Background 17

its internal reference number and the name of the signal within the hierarchy. The
second part and the third one share the same format, and are shown after the dotted
line on the image. Each timestamp is written on a line beginning with the character
’#’. Then, each line shows the new value of the signal before the character ’<’, and
the internal identifier of the signal after the separator.

Fig. 2.1 The file structure of the VCD file.

In the VCD standard, a signal can be a gate or a bus. The main difference is
that gates can hold only 1 value, while a bus can hold an arbitrary number of values.
Moreover, each value represents 1 bit, representing the state of the signal from the
simulation. Values can be:

• logical 1.

• logical 0.

• x: an unknown value among logical 1 and logical 0; this value means that the
gate is an undefined state.

18 Testing

• z: high impedance, usually meaning that that gate is not supplied.

2.1.3 Working with more VCDs

As VCD is a well-defined standard, in practical cases the standard must not be taken
from granted when working with different EDA tools. Open source and free tools,
such as GTKWave [44], are aware of this issue and choose to support a limited
number of formats. In particular:

• According to the VCD standard, signal IDs include symbols and alphanumeric
characters. This usually leads to more compact IDs for the signals.

• Gate changes do not provide a separator between the new value of the signal
and its ID, and are written in the format <change><ID>.

• Bus changes start with a ’b’ character and list all the values in the bus; then, the
ID is separated by a whitespace from the changes to avoid ambiguity, resulting
in the format b<changes> <ID>.

Instead, in the EVCD standard:

• Signal declarations use ’<’ as separator between the gate/bus size and the
signal ID.

• The signal ID is represented by continuously increasing integers.

• Each change starts with a ’p’ character.

• After the ’p’, a sequence of alphabetic characters terminated by a whitespace
provides information about the sub-signal state and it being in input or output
state.

• After the whitespace, we find the 0 drive strength for each sub-signal, varying
between 0 (weak) and 6 (strong); this section is terminated by a whitespace.

• Similarly to the 0 drive strength, we find the 1 drive strength for each sub-
signal, terminated by a whitespace.

• The last value is the gate or bus ID.

2.2 The VCD Analyzer 19

Please notice that, in this case, the only difference between a bus or a gate is the
number of sub-signals involved: in a bus, we find multiple sub-signals being part of
a single signal, while a gate only has 1 sub-signal. Otherwise, changes are treated
equally.

In section 2.1.2 we saw an example of a NCSim VCD file. In this case, the main
difference with the VCD standard is the usage of the EVCD signal declarations.
Moreover, the signal changes do not conform to any standard.

Recently, we included XCellium, also by Cadence [43], among our tools. XCel-
lium provides different VCD flavours, including the IEEE standard VCD [41] and
EVCD [42] files. However, EVCD standard files are relegated to small circuits, as a
large number of signals overflows the assigned IDs, according to the error messages
provided by the software. However, using VCD signal IDs solves the problem.
However, in this format, the changes are expresses in the EVCD format.

2.2 The VCD Analyzer

The reason behind the development of this tool is the need to analyze larger and larger
VCD files in the least amount of time possible. Moreover, EDA tool provide little to
no possibility of performing different analyses at their runtime, which leads to the
need of a post-simulation analysis. VCD files generated by long simulations can hold
even TeraBytes of data regarding signal changes in the circuit. In particular, the need
for this tool was born to perform a toggle activity study on a ST Microelectronics
SoC of the SP58 family, which included 20 million gates and 8 million buses.

However, this tool is extensible and performs different types of analysis:

• A Single Point Full Analysis, in which we transform the VCD file into a
SQLite [45] database. This is the first analysis introduced, and saves all the
status changes of signals contained in the VCD. As VCDs naturally group
signal changes by timestamps, we originally wanted to group changes by
signal. However, using a SQL database allows us to retrieve all the changes
with the desired grouping.

• A Single Point Statistical Analysis, in which we show the toggle coverage
among signals, optionally providing information about the duration of each

20 Testing

signal state. Please, notice that the toggle coverage considers only switches
between 0 and 1 values of the signal, as x is an undefined state that may be
discovered later and z means that the signal is in a high impedance state, not
allowing to pass data between various chip components.

• A Multiple Point Couple Analysis, in which we assert a causality relationship
on couples of signals. In particular, after detecting the couples that have a
causal relationship through the inspection of the circuit, we detect if there is an
influence between two or more signals. In particular, we check for couples of
signals having opposite values for at least a user-defined amount if time. This
leads to understand if there is a causality effect on the signals, which could
physically influence each other through electro-magnetic interferences.

To gather as much performance as needed, we focused both on the file reading
and on the file parsing areas. Moreover, to provide good performance, the tool is
fully written in C++.

2.2.1 File reading

When executing a program, reading a file is one of the slowest parts. This is both
due to physical constraints (Storage devices work at a much slower rate than volatile
memory) and the C++ standard library being very general-purpose and abstract.
In particular, the iostream library from C++ is much slower than the C stdio.h
counterpart, using an object-oriented design and polymorphism for input operations.
On one hand, polymorphism ensures that each streaming operation is performed
using the same C++ code. However, on the other hand, polymorphism involves a
virtual method table (also called vtable), which lead to dereferencing pointers that
may be anywhere in memory, both resulting in more jump instructions and effectively
provoking cache misses due to the jumps. As methods to perform polymorphism not
using the vtable have been developed [46], C++ compilers do not fully implement
them. As for the C library, the FILE* structure is an opaque type that needs to
be dereferenced. Moreover, the function fscanf performs itself parsing at runtime,
which makes it both versatile and not optimal at the same time.

However, operating systems come to the rescue: the program needs to be run on
a Unix-like operating system, such as Linux. Through the usage of the Unix system

2.2 The VCD Analyzer 21

calls, it is possible to open a file in binary mode and read it sequentially. However,
reading is a synchronous operation, this leads to the reading process effectively
halting the execution of instructions on CPU. However, reading operations are
expensive, as stated above. Thus, we developed a buffered reader. In the beginning
of the development, we had the idea that a double-buffered file reader could have
led to better performance, and the interface for the file reader still assumes a double-
buffered reading. However, the overhead due to the asynchronous reading resulted
much higher than we expected, effectively slowing the reading process compared
to the single-buffered file reading. Moreover, even the buffer size may lead to
different performance: intuitively, reading 1 KB of data is much faster than reading
1 GB of data. However, there is also a cost to performing a system call, which
is needed for reading operations. In our experiments, we found that, even among
different hardware configurations, a buffer of around 8 MB of data provides the best
performance for our file type.

Another possibility for reading the file could have been memory mapping, which
provides a way to perform reading operations on file in the same way as if it was a
C array. This leads to the file being loaded in pages, which are usually 4 KB large,
and through a clever usage of page faults the operating system manages the memory
it can use automatically. However, through our experiments, it resulted in a slower
reading of the file. We found the reason for this is a high number of page faults
triggered, which effectively need context switches between kernel and user space to
be solved.

2.2.2 Pipelined parsing operations

For parsing VCD files, we chose not to use any parser generator. As many of them
are available in the market, producing theoretically efficient C parsers [47, 48], they
make heavy use of dynamic memory allocation. This does not come as a surprise, as
they are general-purpose lexer (the lexical identifier) and parser generators, and are
often used to deal with the complexity of creating a language compiler. However,
VCD is not a complex standard. Thus, we resorted to manual parsing.

The parsing of the first and second parts and the building of the initial structure
of the VCD are performed sequentially, as they are usually the shortest parts of the
VCD. However, for the third part, we resort to a pipelined approach.

22 Testing

The pipelined approach provides the entire process being limited only by the
slowest stage, as shown in Equation 2.

Tproc = Tslowest ·N +
{all stages\slowest}

!
s

Ts (2)

Thus, stages must be balanced to reach a balance. To identify the balance, we
define a pipeline efficiency P, defined as shown in Equation 2.1. In this formula,
the wall-clock time is the time elapsed between the beginning of the pipeline to the
end of the pipeline; the sum of times, instead, is the sum of the time spent on each
pipeline stage. This efficiency value exists between 0 and 1. The closer to 1 it gets,
more the pipeline is balanced.

P = Wall→Clock Time
Sum O f Times (2.1)

Figure 4.1 shows the ideal pipeline workflow (Figure 2.2a). An unbalanced
pipeline is shown in Figure 2.2b, whole Figure 2.2c shows that with enough paral-
lelism we can improve the parsing stage, executing it much faster than the slower
stages.

(a) The ideal pipeline

(b) The state of the pipeline with 1 parsing thread

(c) The pipeline improved with 32 threads.

Fig. 2.2 The proposed pipeline with all the stages. Colors represent how fast is a certain
stage: green means faster, while red means slower.

In our pipeline, we have 5 stages working concurrently:

2.2 The VCD Analyzer 23

• The Discovery stage

• The Reading stage

• The Parsing stage

• The Execution stage

• The Writing stage

Between each stage there is a thread-safe queue for passing data to the next stage.
This way, the system is passing data between threads without data racing issues.
Between the Parsing stage and Execution stage, however, we may need data to be
sorted by generation time. In this case, we use a thread-safe priority queue.

In the Discovery stage, we perform an initial reading of the file and divide it in
blocks. In the beginning, the stage was different between the analyses: in particular,
in the statistical analysis it did not require the file to be read, and uses a default
block size. However, with the support of VCD formatted names, a rare bug could
occur where the block of the parsing stage could begin with the character ’#’. As the
block would begin with it and the parser would interpret it as a timestamp. Thus, the
Discovery stage was unified between the analyses, and search for each timestamp.
As we will see, the results do not change significantly, as the Reading stage already
took much of the time needed for the program execution.

In the Reading stage, we read data in the range defined by the previously defined
blocks. To improve performance, in the Reading stage also uses an array of pre-
allocated buffered file readers, as allocations and de-allocations slow down the
execution of the program significantly.

In the Parsing stage, operations may slightly change between different analy-
ses due to different requirements. However, the common theme is being able to
distinguish between changes of signals and timestamps.

In the Execution stage, the analysis operation is performed. Depending on
the configuration, however, there may be some exception: in particular, using the
statistical analysis, it is possible skip this stage by not detecting the duration of each
state.

In the Writing stage, usually performed in the end of the entire execution, the
result of the analysis is written back to the file. There is, however, an exception:

24 Testing

as the Full Analysis would saturate RAM for larger files, this is treated as a proper
pipelined stage.

2.2.3 Experimental results

In this section, we show the effectiveness and scalability of our tool in terms of
computation time and memory usage. In particular, as we focus on multi-thread
applications, we report the wall-clock time elapsed by all threads to perform our
analysis. We compare these values with the ones gathered from the purely sequential
version. The elapsed time is measured with a third-party profiling tool to be as fair as
possible. However, the times from the stages are measured with our program itself;
this may also lead to small slowdowns in the execution, but it also shows the inner
working of the pipeline and its correct implementation.

In our experiments, we limited the maximum central memory to 128 GB to avoid
memory being heavily swapped. Moreover, we run each experiment 5 times, and
we present average data on all these executions. Tests have been performed on a
machine equipped with 2 CPU AMD EPYC 7301, including 16 cores at 2.2 GHz
with hyperthreading and 128 GBytes of RAM. All the experiments were performed
under the Linux CentOS 7 operating system, using the compiler GCC 11.2 through
the package devtoolset-11.

Our experimental evaluation is performed on an automotive SoC from the SPC58
family produced by ST Microelectronics [49], using 40nm technology. It has 6 MB
of Flash memory and 128 KB of general-purpose SRAM It contains about 20 million
logic gates in the logic parts and about 700 k flip-flops. Therefore, it constitutes
a medium-high complexity case study for the proposed However, this approach is
portable to any SoC. This is true for both this section and Section 2.3.6, in which we
will talk about a toolchain built around the VCD analyzer.

Full analysis

Tables 2.1, 2.2 and 2.3 show the full time analysis performed on the VCDs of
increasing size. Where not specified, the time is reported in seconds.

In particular, in Table 2.1 we show the advantages of a multithreaded environ-
ment over the single-threaded one, using an increasing amount of threads for the

2.2 The VCD Analyzer 25

#THREADS DISCOVER READ PARSE WRITE-BACK TIME SUM WALL-CLOCK
Sequential → → → → → 1793

1 452 172 948 219 1792 1047
4 140 214 289 227 871 329
8 130 176 164 234 687 302
16 390 609 82 128 1211 662
32 124 185 35 215 561 293
64 393 665 22 171 1253 677

Table 2.1 Single point full timing analysis. Running times for the different pipeline stages,
with an increasing number of threads, for the smaller VCD file, i.e., the one of 38 GBytes.
All times are reported in seconds. The symbol → means that the data is meaningless in that
experiment.

VCD SIZE SINGLE THREADED PIPELINE + PARALLEL + OPT
[GBYTES] TIME SUM Discover Read Parse Write-Back TIME SUM WALL-CLOCK

10 355 18 50 9 62 141 83
20 711 35 92 17 109 255 150
38 1792 124 185 35 215 561 293
57 5094 654 735 55 487 2933 916
80 5.50 h 2.06 h 1.92 h 48 107 4.03 h 2.08 h

100 6.95 h 2.65 h 2.47 h 58 151 5.17 h 2.67 h
124 6.40 h 2.92 h 2.72 h 72 295 5.74 h 2.94 h
140 8.39 h 3.59 h 3.34 h 78 245 7.11 h 3.61 h
156 9.21 h 3.71 h 3.45 h 88 285 7.26 h 3.72 h
179 10.30 h 4.66 h 4.34 h 102 435 9.14 h 4.68 h
207 11. 77 h 4.58 h 4.26 h 118 423 9.00 h 4. 60 h
243 14.12 h 5.50 h 5.12 h 140 618 10.84 h 5.52 h

Table 2.2 Single point full timing analysis. Running times for the different pipeline stages,
with 32 threads (our most efficient configuration) for VCD files with increasing size (from
10 to 243 GBytes). All times are reported in seconds or hours (when explicitly stated).

26 Testing

VCD SIZE WAITING TIMES PIPELINE SPEED-UPS
[GBYTES] Read Stage Parse Stage EFFICIENCY Parse Stage Entire Process

10 26 16 0.59 12.61 2.80
20 49 14 0.59 12.46 2.72
38 65 24 0.52 26.55 6.10
57 162 616 0.47 36.67 5.56
80 10 2.05 h 0.52 31.12 2.65
100 18 2.64 h 0.52 32.71 2.61
124 36 2. 90 h 0.51 28.99 2.18
140 29 3.57 h 0.51 29.87 2.32
156 52 3.67 h 0.51 29.47 2.48
179 54 4.62 h 0. 51 28.85 2.20
207 50 4.54 h 0.51 28.99 2.56
243 66 5.44 h 0.51 28.71 2.56

Table 2.3 Single point full timing analysis. In-depth analysis of our approach: Waiting
times for the two most critical phases (the Read and Parse stages), pipeline efficiency, and
speedups for the Parse phase and the entire process. All times are reported in seconds or
hours (when explicitly stated).

parsing operations; the sequential version is not pipelined and provides a baseline
for comparing the approaches. Experimentally, we can see that 32 parsing threads
provide a sweet spot between the number of parsing threads and the execution time.
However, notice that the best pipeline efficiency we get is close to 0.5. This is due to
the write-back stage effectively stalling the other operations due to the limited queue
space. We will see also in the next results that the disk slowing down operations is a
common theme between the analyses, with a different prominence.

In Table 2.2 we show the full analysis performed with 32 parsing threads on files
of increasing size, up to 243 GB of data. In those files, we also change the testing
program between the file of 57 GB and the one of 80 GB. Below the 80 GB file
size, the testing program is generated by an ATPG. For the other files, however, the
type of analysis is a functional one, using a real-time operating system (RTOS). This
means that there are much less changes between each timestamp, in favour of more
fine-grained changes.

In Table 2.3, we show the sum of the waiting times between the most critical
stages: the Reading stage and the Writing stage. We see that the Reading stage waits
almost no time from the previous stage, while the parsing stage is almost always
waiting for the reading stage. We can also see, as previously stated, that the pipeline

2.2 The VCD Analyzer 27

efficiency is always close to 0.5. This is why the entire process sees a speed-up of at
most around 6x, while the parsing stage provides a speed-up up to around 36x.

Statistical analysis

Tables 2.4, 2.5 and 2.6 show the single-point statistical analysis performed on the
VCDs of increasing size. Where not specified, the time is reported in seconds.

#THREADS DISCOVER READ PARSE WRITE-BACK TIME SUM WALL-CLOCK
Sequential → → → → → 231

1 0 7 221 0 229 222
4 0 6 63 0 70 63
8 0 8 33 0 41 33

16 0 11 23 0 35 23
32 0 20 20 0 40 21
64 0 45 12 0 58 47

Table 2.4 Single point stress timing analysis. Running times for the different pipeline stages
of our chain, with an increasing number of threads for the smaller VCD file, i.e., the one
of 10 GBytes. All times are reported in seconds. The symbol → means that the data is
meaningless in that experiment.

VCD SIZE SINGLE THREADED PIPELINE + PARALLEL + OPT
[GBYTES] TIME SUM Discover Read Parse Write-Back TIME SUM WALL-CLOCK

10 229 0 20 20 0 40 21
20 470 0 34 34 0 69 36
38 1,132 0 123 45 0 169 126
57 2,656 0 324 129 0 454 327
80 3,634 0 731 149 0 880 735
100 3,985 0 928 218 0 1,146 932
124 5,461 0 1,156 258 0 1,415 1,162
140 5,680 0 1,305 283 0 1,589 1,311
156 4,438 0 1,459 346 0 1,805 1,463
179 1.77 h 0 1,661 391 0 2,053 1, 668
207 1.99 h 0 1,867 481 0 2,349 1,875
243 2.49 h 0 2,286 565 0 2,852 2,296

Table 2.5 Single point stress analysis. Running times for the different pipeline stages, with
32 parsing threads (our most balanced configuration) for VCD files with increasing size
(from 10 to 243 GBytes). All times are reported in seconds or in hours (when explicitly
stated).

In Table 2.4 we show the advantages of a multithreaded environment over the
single-threaded one, using an increasing amount of threads for the parsing operations,
similarly to Table 2.1; also in this case, the sequential version is not pipelined and
provides a baseline for comparing the approaches. Experimentally, we can see that

28 Testing

VCD SIZE WAITING TIMES PIPELINE SPEED-UPS
[GBYTES] Read Stage Parse Stage EFFICIENCY Parse Stage Entire Process

10 0 1 0.54 10.90 10.50
20 0 1 0.52 13.25 13.05
38 0 45 0.75 21.85 8.94
57 0 197 0.72 15.72 8.11
80 0 585 0.83 19.46 4.94
100 0 713 0.81 14.07 4.27
124 0 903 0.82 16.81 4.70
140 0 1027 0.83 15.58 4.33
156 0 1118 0.81 9.47 3.03
179 0 1276 0.81 12.12 3.82
207 0 1392 0. 80 11.11 3.82
243 0 1729 0.81 11.88 3.90

Table 2.6 Single point stress analysis. In-depth analysis of our approach: Waiting times
for all threads of the two most critical phases (read and parse stages), pipeline efficiency
P (Equation 2.1), and speed-ups for the Parse phase and the entire process. All times are
reported in seconds.

32 parsing threads provide a sweet spot between the number of parsing threads and
the execution time. Here we used a smaller file, a 10 GB one, but the proportions
remain similar also for bigger files. However, here the pipeline efficiency is at around
0.5 in this small file.

In Table 2.5 we show the statistical analysis performed with 32 parsing threads
on files of increasing size, up to 243 GB of data, using the same files that we used in
Table 2.2.

In Table 2.6, we show the sum of the waiting times between the most critical
stages: the Reading stage and the Writing stage, similarly to Table 2.3. We see that
the Reading stage waits no time from the previous stage, while the parsing stage
is almost always waiting for the reading stage. We can also see that the pipeline
efficiency grows up to around 0.8, showing that a single stage (in this case, the
Reading stage) is holding back the speed of the whole execution The entire process
sees a speed-up of around 4x with larger files, while the parsing stage provides a
speed-up up to around 10x.

2.2 The VCD Analyzer 29

Multiple point couple analysis

Tables 2.7, 2.8 and 2.9 show the multiple-point couple analysis performed on the
VCDs of increasing size, similarly to the previous tables. Where not specified, the
time is reported in seconds.

#THREADS PIPELINE STAGES TIME SUM WALL-CLOCK
Parse Execute Discover Read Parse Execute Write-Back

Sequential Sequential → → → → → → 5884
1 1 15 36 1453 4372 0. 0 5877 4385
1 64 17 43 1321 481 0.0 1863 1818

32 32 21 95 64 306 0.0 487 320
32 64 34 135 83 284 0.0 537 309
16 64 29 145l 152 269 0.0 596 292

Table 2.7 Multiple Point Stress Analysis. Running times for the different pipeline stages,
with different thread configurations, for the smaller VCD file, i.e., the one of 10 GBytes.
All times are reported in seconds. The symbol → means that the data is meaningless in that
experiment.

VCD SIZE SINGLE THREADED PIPELINE + PARALLEL + OPT
[GBYTES] TIME SUM Discover Read Parse Execute Write-Back TIME SUM WALL-CLOCK

10 5887 29 145 152 269 0 596 292
20 5.32 h 60 285 294 481 0 1121 524
38 12.32 h 118 526 564 868 0 2077 957
57 18. 23 h 174 684 811 1374 0 3044 1473
80 391.36 h 9.04 h 4.53 h 6.50 h 5.81 h 0 25. 89 h 9.02 h
100 524.45 h 10.62 h 5.14 h 7.64 h 6.74 h 0 30.14 h 10.71 h
124 528.31 h 12.76 h 6.34 h 9.15 h 7.96 h 0 36.21 h 12.84 h
140 587.56 h 14.56 h 7.55 h 10.54 h 9.77 h 0 42.42 h 14. 67 h
156 716.79 h 15.61 h 7.41 h 11.20 h 9.68 h 0 43.91 h 15.70 h
179 801.82 h 17.72 h 8.39 h 12.70 h 11.06 h 0 49. 87 h 17.80 h
207 957.45 h 19.86 h 9.81 h 14.21 h 11.79 h 0 55.67 h 19.94 h
243 1076.56 h 23.65 h 11.14 h 16.97 h 15. 06 h 0 66.82 h 23.74 h

Table 2.8 Multiple Point Stress Analysis. Running times for the different pipeline stages.
with the 16/64 threads configuration (the most efficient one in our experiments) for VCD
files with increasing size (from 10 to 243 GBytes). All times are reported in seconds or hours
(when explicitly stated).

In Table 2.7 we show the advantages of a multithreaded environment over the
single-threaded one, using different amount of threads for the Parsing and Execution
stage; the sequential version is not pipelined and provides a baseline for comparing
the approaches. Experimentally, we can see that 32 or 16 parsing threads provide a
sweet spot between the number of parsing threads and the execution time. However,
the rule of thumb for the execution stage is "the more threads you feed it, the better it
is". We capped it at 64 threads, but for many couples it can go as high as the number
of CPUs in the host system.

30 Testing

VCD SIZE WAITING TIMES PIPELINE SPEED-UPS
[GBYTES] Read Stage Parse Stage EFFICIENCY Execute Stage Entire Process

10 72 128 0.49 16.24 20.12
20 166 218 0.47 32.59 36.51
38 335 381 0.46 42.68 46.29
57 684 653 0.48 37.27 44.53
80 4.33 h 2.61 h 0.35 42.32 43.13
100 5.26 h 3.06 h 0.36 45.45 49.32
124 6.13 h 3.67 h 0.35 39.61 41.76
140 6.69 h 4.09 h 0.35 38.78 40.93
156 7.83 h 4.47 h 0.36 44.33 46.23
179 8.90 h 5.07 h 0.36 42.96 45.62
207 9.55 h 5.69 h 0.36 45.46 48.73
243 11.9 h 6.73 h 0.36 44.89 45.98

Table 2.9 Multiple Point Stress Analysis. In-depth analysis of our approach: Waiting times
for all threads of the two most critical phases (read and parse stages), pipeline efficiency, and
speed-ups for the Parse phase and the entire process. All times are reported in seconds or
hours (when explicitly stated).

In Table 2.8 we show the multiple-point couple analysis performed with 32
parsing threads and 64 execution threads on files of increasing size, up to 243 GB of
data with 2’000’000 couples. Those are the same files used for the previous analyses.
In this analysis, the execution stage takes care of analyzing the couples and detecting
if they have been in opposite values for a certain time. Moreover, the discovery
stage performs heavier calculations to lower the pressure on the execution stage, as it
divides the file based on the timestamp difference. Although we were not completely
satisfied with this balance, we found this combination was the best trade-off we
could come up with. Thus, in this case, the discovery stage is the bottleneck of the
operation. However, this is due to few couples being analyzed. The execution time
grows linearly with the number of couples to analyze. Using 10 times the couples,
the bottleneck becomes the execution stage.

In Table 2.9, we show the sum of the waiting times between two critical stages:
the Reading stage and the Parsing stage. We see that the Reading stage waits a
significant amount of time from the previous stage, and the Parsing stage is almost
always waiting for the reading stage. We can also see that the pipeline efficiency
is around 0.36 for larger files. However, the entire process sees a speed-up of at
around 45x, while the parsing stage provides a speed-up up to around 45x for larger
files. This is due both to the pipeline approach and the Execution stage being split

2.3 The VCD Toolchain 31

between multiple threads. Moreover, since the Execution stage analyzes every couple
independently, the problem can be massively parallelized. However, as we tried to
make it work on a GPU, we found that the number of signals and changes that need
to be passed between CPU and GPU is so large that the data transfer takes up most
of the time of the execution stage.

2.2.4 Conclusions

With this methodology, we were able to analyze large VCD files in a small amount
of time. As circuits become larger, the single-point approaches scale linearly with
the duration and size of the chip. However, the multiple-point analysis may need
more and more computational power depending on different factors: the number of
multiple-point subjects to be analyzed (in our case, couples), the complexity of the
analysis and the file size.

A common issue is that the amount of time spent is also dependent on the program
that generates the changes. A lower number of changes for each timestamp leads
to increased time for the analysis, an this is especially true for the Execution stage
our couple analysis, since it works with precise timestamps to gather the durations
needed.

However, the VCD tool and, in particular, the statistical analysis, are now part of
a toolchain we developed for the analysis of larger programs.

2.3 The VCD Toolchain

This section follows this paper [20], also giving as granted the previous section for
what concerns the VCD tool.

While the VCD tool started being used, the need for support tools raised. Since
a first step was available. This led to a standardization of the output file format,
together with the creation of tools aimed to analyze the results of the VCD analyzer.
In particular, the following tools were developed:

• A layout-aware analysis tool to weight the results.

32 Testing

• A set-theory based tool to compare and potentially merge more VCD results;
it will be called, from now on, the set tool.

• A tool for the visualization of the chip with its coverage.

• A tool for computing sub-coverages among different modules.

Those tools became parts of a toolchain, depicted in Figure 2.3. With this
toolchain, we are able to build a funnel that starts from the chip simulation and ends
with the desired results, both visually and with formal information about the desired
modules under test.

Fig. 2.3 The toolchain built around the VCD

2.3.1 The standard file

We designed the toolchain in such a way that steps can be executed interchangeably.
This is because we may not know if we need any tool from the start, and we might
even exclude some tools from the analysis if needed. For instance, if we only have
one test, the set tool does not provide interesting insights. Thus, we needed a file
that has all the information needed for every step.

Luckily, the set tool is the most avid of information, mostly due to its merging
capabilities. In our file, we can find the following data collected for each signal:

2.3 The VCD Toolchain 33

• The name of the signal.

• The ID and sub-ID of the signal, to trace it back to the VCD.

• Its statistical toggle coverage (0.0, 0.5 or 1.0).

• Whether the signal toggled from 0 to 1.

• Whether the signal toggled from 1 to 0.

• The initial value of the signal, which is important for the result merging
operation.

• The times that the signal spent at states 1, 0, z and x, together with the relative
percentages over the total time.

The last information is somewhat new, however, and not handled by the following
tools, as it did not yet prove useful to them.

2.3.2 Layout-aware analysis

In this phase of the proposed toolchain, a set of scripts is included to provide layout-
awareness capabilities. This toolchain elaboration step is exploited to link the stress
evaluation with the actual SoC physical characteristics.

The sub-steps are summarized in Figure 2.4, and three main components can be
individuated:

• Virtual node elimination: it eliminates virtual nodes and signals that do not
have a physical implementation.

• Topology analysis: it analyzes the floor plan of a given SoC to generate helpful
information on the neighbor gates used for multi-point stress metric analysis
in the VCD file analyzer.

• Metrics Weighting: the stress metrics can be weighted using a bi-dimensional
density by exploiting layout information.

In the following subsections, I will go into details on every component of the
Layout-aware elaboration analysis tools.

34 Testing

Fig. 2.4 The workflow for the layout-aware analysis

Virtual Node Elimination

A significant issue in the stress coverage evaluation process comes from the pure
VCD analysis of the simulation dump. As a matter of fact, by looking at the VCD
header part, the number of signals saved in the dump includes many replications. As
shown in Figure 2.5, a circuit connection traversing hierarchies is memorized several
times in the VCD.

In particular, the path to and from the not gate ports includes physical circuits
points a to d and f to i. However, the VCD dump also includes points b, c, g,
and f , which are not corresponding to any real circuit point but are inherited as
simulation artifacts. Including extra points leads to longer computations and affects
the stress metric value because an unexcited gate may reflect in many VCD signals,
thus polluting the final stress metric value.

In order to eliminate the excess of information given by the artifact and not affect
stress metrics, we use a layout-aware tool is used to filter signals in excess. Such a
method is similar to a collapsing strategy, however it is not based on a netlist analysis,
but on the layout information, as shown in Algorithm 1, only preserving the signals
that we find in the layout.

2.3 The VCD Toolchain 35

Fig. 2.5 An example of the circuit as described in the VCD file.

Algorithm 1 Virtual node elimination
Require: Layout information, VCD file

Read and save physical gates into a hash table.
for signal in VCD do

if signal in the hash table then
Preserve the signal.

end if
end for

36 Testing

Topology Analysis

When dealing with a complex System-on-Chip, it is fundamental first to understand
its topology, i.e., how gates are physically placed across the layout to gather valuable
insights that can help understand the meaning of the computed stress metrics and
devise tests to cover all the parts of the SoC adequately and uniformly.

Modern SoCs do not show a uniform distribution of gates on the layout front-
end [35]. Traditional stress metrics are usually gate-based, as they consider the
behaviour of a gate or a set of gates regardless of how the SoC is structured. Moreover,
they are unweighted: they consider each gate to have the same contribution to the
final metric. However, the stress per unit of the area varies across the layout, and it
may lead to different aging scenarios depending on the density of gates in a given
area. For instance, a more dense area can lead to faster aging, due to the heat being
propagated among neighbour gates. Thus, knowledge of the device topology is
crucial to assess the quality and uniformity of the stress imposed by a test. Thus, we
need to cross information between the layout and the VCD analysis. This allows us
to:

• Introduce gates aggregation when measuring multiple-point stress metrics.

• Reach a high level of accuracy by weighting the stress measurement according
to the SoC density, individuating critical areas on the SoC.

• Generate SoC stress heatmap plot by providing information about gate coordi-
nates.

It is essential to mention that exhaustive methods exist for computing the 2D
density. However, when we use exhaustive methods, the computing time grows with
the dimension of gates, making the exhaustive methods unfeasible for larger SoCs.
In this case, to overcome computing time limitations, we use a very well known
Machine Learning algorithm: the Density-based spatial clustering of applications
with noise, or DBSCAN [50]. The idea of DBSCAN is to generate a set of clusters,
grouping data in the same group with some similarities, aiming to divide the good
data from the outliers. DBSCAN is a density-based clustering algorithm. Given a
set of points, it groups closely packed points (points with many nearby neighbors),
highlighting outliers in the low-density region. As DBSCAN distinguishes the "good

2.3 The VCD Toolchain 37

data" based on closeness and a configurable threshold, we are able to gather different
density levels through the repeated use of the algorithm.

With a fixed inter-gate distance, all the logic gates of the SoC can be organized
into sets of neighbors for performing multiple-point analysis. In the toolchain flow,
a gate pair located at a distance smaller than a selected threshold on the layout is
considered of interest and extracted to feed the VCD analysis tools for the multiple-
point analysis.

However, the computation time costs to extract a couple of gates close enough
to each other are traded off with accuracy; a classification method that implements
clustering is proposed to abate the timing costs while guaranteeing sufficient accuracy
in the selection. In particular, the clustering technique is based on the individuation
of clusters of nodes, where every cluster contains the nodes located in a sufficiently
dense area of the layout.

Fig. 2.6 An example of the clustering method (DBSCAN) executed on a generic layout

38 Testing

Figure 2.6 illustrates with an example how the algorithm works on a generic
front-end layout: The classification process divides SoC gates into core points
(in red), border points (in yellow), and noise points (in blue), and it analyzes the
neighborhood within a fixed inter-gate distance (red dashed circle). Once the clusters
are identified over the SoC surface, the list of couples (or sets) can be performed in
a little computation time. Furthermore, the method is helpful for successive steps
of the flow, particularly for weighting the stress activity based on the SoC density,
which can vary from one region to another in the SoC layout.

Metrics Weighting

As mentioned in the previous subsection regarding the topology analysis, the stress
per unit of area differs across the layout in modern SoC. Depending on the density of
gates in a given area, it may lead to different aging scenarios. Therefore, knowledge
of the SoC topology is crucial to assessing the quality and uniformity of the stress
and enhancing the stress metric with density awareness as proposed in [35]. This
sub-step of the toolchain provides formulas and considerations presented in [35].

Consequently, a layout-aware stress metric is crucial for both the single and the
multiple-point stress metrics to weigh the stress over denser areas of the SoC instead
of considering all the gates equal among them.

2.3.3 The Set Tool

During the BI, different stress approaches of various natures can be used. For
example, a BI phase can run scan-based patterns, logic or memory BISTs procedures,
and functional programs. Distinguishing which coverage is granted by which method
(i.e., which pattern covers a specific section of the SoC) is crucial, as it allows an
understanding of which approaches provide more remarkable improvements.

Therefore, the proposed toolchain includes a tool for implementing a set covering
analysis. This tool receives the stress results collected by adopting patterns of
different natures, generating all possible set interactions, and providing insights
about the stress percentage for each stress approach. Moreover, it is also able to
merge the results of subsequent analyses.

In particular, the set tool provides the following features:

2.3 The VCD Toolchain 39

Signal Rising transition-Coverage Falling transition-Coverage
Name C1 C2 C3 C1 C2 C3

a 1 0 0 1 0 0
b 0 1 0 0 1 0
c 1 0 1 1 0 1
d 1 1 1 1 1 1
e 0 0 1 0 1 1
f 0 0 1 0 1 0

1

C3

C 2C

b

e

f

a

d

c

1

C3

C 2C

d

c e

f
b

a

Fig. 2.7 Rising and falling transition set cover: from file to set interacts

• A confusion matrix of toggle coverages among different stress approaches.

• The list of unique toggle coverages for each stress approach.

• The number of times that a signal toggles.

• The possibility to merge different results, using the different coverages as a
subsequent superimposition of stress approaches.

• The possibility to identify raising or falling transitions of a given gate for each
stress approach.

In this tool, the main challenge was lowering the memory footprint while also
performing a parallel analysis among the signals provided by different files. To lower
the memory usage, we exploited the fact that signal names are unique and immutable
and tend to be referenced by many files. This allowed us to use a technique called
string pooling or string interning to avoid having equal strings in memory, as strings
tend to have the largest memory usage in the program (a Rust String object consists
of: 8 bytes for the pointed memory, 8 bytes for its capacity and roughly 1 byte
per character located in the heap). Using string pooling, signals in different files
share references to their names instead of having more instances of the same string.

40 Testing

However, reading the input files is the slowest part of the process, string pooling
is enabled when moving the signals to an appropriate data structure; in this way,
we avoid slowing down the file reading stage, as string pooling requires a mutex to
avoid data races among threads. In the beginning, the application reads all covering
sets directly from the file and stores them in hash tables using the identifiers of the
signal as a hash key. Later, as we identify the sequence of signals, we move them to
a dynamic array.

Figure 2.7 show an example of the entire process. The upper table shows the
original set covering representation, which stores each rising and falling transition
covering for each signal. The bottom Venn diagrams show the set interpretation and
highlighting per-pattern subsets.

Suppose to have N signals (with N potentially very large) and M set covering
(with M limited by the number of different covers), the application has an O(N ·M2)

time complexity and memory complexity. As the value of M is usually limited to a
few units, the time required by the entire process is restricted to a few tens of seconds
in the worst case. Moreover, using a single bit for each signal value reduces the
memory usage to a few GBytes.

2.3.4 The Hierarchical Analysis Tool

The divide et impera approach in digital design has increased the overall complexity
of SoCs, allowing teams to focus more on a design of a single entity instead of the
whole SoC. Following this approach, today’s SoCs comprise several subunits with
a variable number of other nested subunits up to the leaves, i.e., the logic gates.
Therefore, considering metrics on SoCs with millions of gates, it becomes evident
that coarse metrics on the overall device have less meaning than thorough computed
metrics on modules below the average coverage of the whole SoC.

The stress analysis frequently focuses on some specific module, usually the ones
showing low coverage. To support this analysis, the flow includes a selection process
implemented as a tool that extracts critical modules below a given threshold and a
per-module stress coverage.

The hierarchical analysis tool analyzes a stress pattern, or a set of them, to
produce a module-based coverage file where the module and its sub-modules have
their coverage coupled together with their design hierarchy.

2.3 The VCD Toolchain 41

The hierarchical analysis starts from the standard human readable text-based
input file of coverage described in Section 2.3.1. Table 2.10 presents an example of
a coverage file, where signal names contain the hierarchy with the associated stress
coverage.

Signal Name . . . Coverage . . .
a/b/c . . . 1.0 . . .
a/b/d . . . 0.5 . . .

a/b/f/g . . . 0.5 . . .
a/h . . . 1.0 . . .

Table 2.10 A simplified view of the coverage file, highlighting the information looked by
the hierarchical analysis tool

The tool is independent of the SoC and analyzes the input file sequentially to
avoid non-deterministic access to data structures. Consequently, it analyzes only
the coverage file recreating the hierarchy by decomposing the path. In other words,
using as an example the design represented in Table 2.10, the top-level unit a is
decomposed into a subunit called b and h; b is further decomposed into its children,
i.e., c, d, f, and the leaf g.

Internally, it works on parsing strings in such a way as to create a tree of modules
and sub-modules, starting from the top entity; for each node of the tree, it calculates
and saves the list of signals and their coverages in the internal data structure. The
tool creates the tree-coverage structure depicted in Figure 2.8.

An important aspect to mention is that the coverage of a general parents node in
the tree hierarchy follows the recursive formula:

Cov(node) =

#children(node)
!

i=0
Cov(i)

n
(2.2)

Where n is the number of leaves in the sub-tree, if the number of children of the node
is 0, meaning the node is a leaf, then the node coverage is returned. The formula can
generate, given a module, its related stress coverage by computing the average on all
the children nodes.

In particular, the tool generates warnings on those modules in the hierarchy
that does not reach the acceptable level of coverage, given as an input parameter.
Moreover, it produces a file containing every module with its associated level in the

42 Testing

Fig. 2.8 A high-level view of the tree data structure containing the coverage for each node

hierarchy and the related stress coverage. Instead of searching for a not satisfied
coverage module, the tool also accepts a module name (a string) to extract the stress
coverage and generate a coverage file within the module hierarchy.

A hierarchical decomposition of SoC modules eventually allows for test engineers
to focus on the desired module, which would more likely give a more significant step
up into the coverage than modules that have already reached an acceptable level.

2.3.5 The Chip-Surface Stress Plotter

Although an essential aspect of the stress approach is a quantitative information
provided by the hierarchical analysis tool and the set covering tool, a qualitative
visualization of stress plays a crucial role in understanding which modules lack
testing effort. Qualitative visualization of stress over the SoC layout allows locating
stress pattern weaknesses and easily highlighting the coverage abilities of different
stress patterns.

The plot tool uses as input the standard file described in Section 2.3.1 to generate
a heatmap of the stress over the SoC layout.

Figure 2.9 presents an example of such a heatmap over a generic SoC.

2.3 The VCD Toolchain 43

Fig. 2.9 An example of stress heatmap over a generic SoC layout

Fig. 2.10 Experimental setup

44 Testing

All signals are mapped into pixels that summarize the stress applied to the device
gates, while white zones are embedded memories that are not part of the BI grading.
Gate stress coverage resides between 0% (red pixel) and 100% (green pixel), with
values in the middle represented by a color gradient.

As it can be seen from Figure 2.9, there exist portion of red that correspond
to non-stressed modules, portions of green (stressed modules) in different shades
depending on the resolution of the image, and islands of white that correspond to
memories, analog and power modules (outside the scope of BI).

Since images of arbitrary resolutions can be generated, it is important to speed up
the drawing process depending on the level of detail we need in parallel. GPUs are
usually the way to go for image elaboration, as their parallel computation capabilities
vastly surpass the ones of the CPU. However, to guarantee compatibility with every
device, we perform computations on CPU, resorting to the widely used SDL2
libraries [51] for saving the image into the standard BMP format. SDL2 libraries
provide APIs for image creation and manipulation on the CPU and GPU. It also
provides methods to color the image pixel-by-pixel. Since every pixel is independent,
this tool assigns each pixel to a different thread. In this case, we use OpenMP [52],
a widely used library for easing parallel patterns implementation to perform image
generation. Moreover, as we may not need a precision based on cells, the tool is also
able to generate smaller images with average data between neighbour cells. This
way, even with larger chips, it is possible to conceptually zoom out the image and
have a faster generated heatmap.

2.3.6 Experimental results

In this section, we use the same setup as in Section 2.2.3. However, here we will
focus on real tests developed for the chip, in opposition to the previously mentioned
section, as we want to perform an experimental evaluation on a real case. The target
device is a 40 nm Automotive SoC [49] belonging to the SPC58 family manufactured
by ST Microelectronics and compliant with the standard ISO26262 ASIL-D. In the
following, it is referred to as DUT. The DUT has a multi-core architecture with three
32-bit cores using the PowerPC Variable-Length Encoding (VLE) instruction set. It
has 6 MB of Flash memory and 128 KB of general-purpose SRAM. It contains about
20 million logic gates in the logic parts and about 700 k flip-flops, as mentioned in

2.3 The VCD Toolchain 45

Section 2.2.3. Due to its characteristics, it constitutes a medium-high complexity
case study for the proposed toolchain. As far as the stress flow during the BI phase
is concerned, the DUT is stimulated by:

• A configurable scan chain stimulates the DUT from regular pins using scan-
based patterns.

• A logic and memory Built-In Self-Test (BIST) activated from inside or outside
the device.

• Some functional programs are executed by the DUT.

To perform our analyses, the RTL and gate-level description of the DUT, as
well as the layout, must be known. Furthermore, the manufactured DUT must be
available to speed up the development process of functional and structural stress
approaches [53].

Acronym Stress Pattern Execution Exhaustive Deductive VCD
time simulation simulation file size

32 ATPG 32 ATPG scan patterns 2.5 ms 5,376* h 45 m 8.4 GB
12 ATPG+ 12 ATPG scan patterns (additional) 2.0 ms 4,122* h 39 m 4.0 GB
1024 PR 1,024 Pseudo-Random scan patterns 7.0 ms 172,032* h 567 m 251 GB
LBIST Logic BIST 3.0 ms 14 h N/A 182 GB
MBIST Memory BIST 52 ms 240 h N/A 3,300 GB
FUNCT Functional (RTOS boot) 2.1 ms 8.5 h N/A 184 GB

Table 2.11 The logic simulation phase: CPU times and size of the VCD files generated. The
symbol “*” means the time is estimated. “N/A” means that the value is Not Available.

2.3.7 Experimental setup

Figure 2.10 illustrates our simulation and analysis setup designed to evaluate BI stress
effectively and mitigate the computational costs of the evaluation. The experimental
setup includes two different phases on different platforms:

• A development phase. In this phase, we use the manufactured SoC to run and
verify quickly structural and functional stress patterns. A average-performance
desktop computer executes the local stress pattern validation phase by com-
municating with the evaluation board and an ad-hoc developed tester [54, 53].
Our computer is equipped with a quad-core Intel Core i7 running at 2.8 GHz,
and 16 GBytes of main memory.

46 Testing

• An analysis phase. In this stage, we evaluate the structural and functional stress
patterns. We run the toolchain, from the simulation phase to the extraction of
final BI metrics, on a high-performance multi-processor server. The server has
an Intel Xeon Gold 6238R processor with 112 CPUs. These processors have
64 bits architecture, allow two hardware threads per CPU, and run at 2.2 GHz.
Moreover, the system has 256 GByes of RAM, a storage system of 8 TB, and
a network disk of an additional 10 TBytes. The operating system orchestrating
the server is CentOS Linux 7.

We use the manufactured SoC during the developing phase to boost the validation
phase with stress patterns coming from different sources, such as ATPG (using
single or multiple scan ports), LBIST engines (using compressed test patterns),
firmware controlled MBIST engine and pure functional programs. The validation
step is supported by a tester, which applies scan-oriented stress, whereas a hardware
debugger supports the development of functional procedures.

For example, validating a stress pattern requires a few seconds (functional stress
pattern) to minutes (structural stress pattern), depending on the type of pattern
to be executed on the manufactured SoC. More in detail for the time-consuming
structural stress patterns, during this phase, they may be applied by resorting to a
low-cost micro-controller [54] or a more complex tester based on a Zynq Ultrascale+
MPSoC ZCU104 evaluation board by Xilinx [53]. The application time of structural
stress patterns is higher than functional stress patterns due to a large amount of
provided data to the high number of scan cells (around 700k); the low-cost electrical
connections impact the maximum application frequency of structural patterns.

Downstream of the developing phase, the evaluation process starts on the server,
where it must guarantee enough resources to:

• Store huge files on disk, up to Terabytes, generated by the initial simulation
and then post-processed to collect refined results.

• Keep in the main memory all required information, up to tens of Gigabytes
while running the post-process phase.

• Distribute parallel tasks to CPUs.

2.3 The VCD Toolchain 47

2.3.8 The Logic Simulator

The logic simulator is the first step in the proposed toolchain. It is based on a
commercial logic simulator capable of generating a VCD file, which stores all the
signal events during the logic simulation.

As mentioned, during the BI phase, the DUT is exposed to structural and func-
tional stress patterns. Therefore, the logic simulator phase can apply structural and
functional stress patterns to the DUT and dumps the related VCD file. The simulation
of a structural or a functional stress pattern is substantially different.

In the functional case, the simulation exactly reproduces the behavior of the
functional test program. Therefore, a functional test program should be as short as
possible from the perspective of execution time.

Fig. 2.11 Coverage difference between exhaustive and deductive structural simulation for
OpenRisc 1200.

Regarding the structural patterns logic simulation, as already proved in [35], the
exhaustive simulation of a complete shift of the scan chain may require an extremely
high number of clock cycles. Exhaustive simulations have been executed on the open-
source benchmark OpenRisc 1200, which is small enough to allow the exhaustive
simulations to be performed. When 200 patterns are applied, the full results show
that the difference in terms of stress coverage between the two strategies amounts

48 Testing

to less than 0.2% as Figure 2.11 shows, whereas the difference in terms of time
is, on average, around 1700x more for the complete simulation, and it depends on
the number of applied stress vectors. Therefore, the deductive simulation has the
tradeoff of a slight decrease in the final coverage but strongly affects the computing
time.

Following this strategy, Table 2.11 shows the simulation time for all stress pat-
terns considered in the given case study. Case in point, the simulation of a 32 ATPG
stress vector lasts about 45 minutes using our deductive approach, whereas the esti-
mated time required to run the exhaustive approach would be about 5,376 hours (i.e.,
seven months). These data prove the validity of the deductive approach, which, as
expected, can provide precise and conservative results with reasonable computational
effort.

In Table 2.11, simulation times for the deductive approach regarding Logic and
Memory BISTs and functional test programs are not calculated since they are not
based on shifting patterns along the entire scan chain.

2.3.9 The VCD File Analyzer

This tool is the tool described in Section 2.2. The VCD analysis performs a trans-
formation of the original VCD file from a time-based view to a signal-based view.
Experimental results presented in [15, 16, 18] are updated with VCD files ranging
from a few GBytes to TBytes. The execution time bottleneck, as stated in [18], is
always the file reading from the disk.

Input File Execution Out File Rt Memory
VCD size time size Usage

32ATPG 8.5 GB 51 s 3.2 GB 11.4 GB
12ATPG+ 4.0 GB 18 s 3.2 GB 11.4 GB
1024PR 251 GB 38 m 50 s 3.2 GB 11.4 GB
LBIST 182 GB 21 m 52 s 3.2 GB 11.4 GB
MBIST 3300 GB 10 h 37 m 27 s 3 GB.2 GB 11.4
FUNCT 184 GB 28 m 58 s 3.2 GB 11.4 GB

Table 2.12 Profiled execution for the VCD Analysis for the single-point stress metric.

Table 2.12 shows single-point analysis elaboration times for each stress pat-
tern; the size of input and output files is reported. Main memory occupation is

2.3 The VCD Toolchain 49

constant between the stress patterns, as each signal contains only trivially copyable
elements [55] regarding the analysis; thus, memory occupation only depends on the
signal names and the number of signals themselves. On the other hand, the output
file size is always constant and directly proportional to the number of signals in the
VCD file.

On the other hand, in Table 2.13, elaboration times for multi-point analysis of
different stress patterns are presented, with input and output file sizes and runtime
memory usage.

Input File Execution Out File Rt Memory
VCD size time size Usage

32ATPG 8.5 GB 4 m 19 s 307 MB 11.4 GB
12ATPG+ 4 GB 3 m 5 s 307 MB 11.4 GB
1024PR 251 GB 4 h 47 m 45 s 307 MB 11.4 GB
LBIST 182 GB 4 h 36 m 44 s 307 MB 11.4 GB
MBIST 3300 GB 63 h 1 m 40 s 307 MB 11.4 GB
FUNCT 184 GB 42 h 51 m 4 s 307 MB 11.4 GB

Table 2.13 Profiled execution for the VCD Analysis for the multi-point stress metric.

As Table 2.13 shows, the runtime memory usage is constant across different stress
patterns due to the internal data structure containing the signals. The output file size
is reduced since the couples are saved as an incremental, unique index. Regarding the
execution time, experimental results in Table 2.13 depict the advantages of resorting
to parallel programming for analyzing multi-point metrics in a reasonable amount of
time.

2.3.10 Layout-Aware Elaboration Scripts

In this phase of the proposed toolchain, a set of scripts provides layout-awareness
capabilities to the entire toolchain. Consequently, the following experimental results
depend on the analysis of the DUT layout. In the following subsection, experimental
results on the Layout-aware elaboration scripts are presented in detail.

50 Testing

Virtual Node elimination

The layout information is extracted, in advance, from the physical design of the DUT,
generating a file that contains the physical positions of logic gates within the layout.

The aforementioned preliminary step allows refining the stress metric produced
by the VCD analysis tool in such a way as to correctly consider only physical,
implemented logic gates.

As time and memory usage depend mainly on the output size of the VCD
elaboration the result, this step has a fixed cost (proportional to the number of signals
present in the input file) for each analyzed DUT as Table 2.14 shows.

Stress Input Output Execution Runtime
Pattern File Size File Size Time Memory Usage
1024PR 3.2 GB 2.3 GB 365 s 16.9 GB
MBIST 3.2 GB 2.3 GB 365 s 17.0 GB
FUNCT 3.2 GB 2.3 GB 401 s 17.0 GB

Table 2.14 Profiled execution of Virtual node elimination script.

Topology analysis

The topology analysis on the layout of the DUT is performed as a preliminary step
of the toolchain to generate all the required data.

The DUT layout used as a case study can be seen in Figure 2.12, where an
important concept can be highlighted: typically, an SoC does not show a uniform
distribution of gates. The differences in the gate density distribution of the various
parts of an SoC are further highlighted in the Figure 2.12; a brighter shade of green
describes parts with a higher gate density, while a darker shade of green indicates
low gate density.

Following the aforementioned consideration, in order to extract the neighbor
gates of a given gate for being used in the toolchain, there exist two different
approaches:

• The exhaustive method is based on elaborating the list of all gates. Each gate is
analyzed by comparing its Euclidean distance with its layout physical position.

2.3 The VCD Toolchain 51

Fig. 2.12 Density-colored heatmap for the DUT

52 Testing

• The heuristic method is based on the DBSCAN algorithm to extract the neigh-
bors for a given logic gate by using as internal metric the Euclidian distance
with a fixed internode distance of 6µm.

Table 2.15 compares the execution time of the Exhaustive method and the heuristic
one.

Table 2.15 Comparing the execution time of the exhaustive and the heuristic approach.

Analysis approach Execution Time
Exhaustive 20 days

Heuristic (DBSCAN) 654.13 s

As seen from Table 2.15, the execution time of the exhaustive method is 1000
orders of magnitude more than the heuristic one. This substantial reduction in the
execution time allows for analyzing more complex DUT.

Regarding the exhaustive method, the runtime memory consumption is stable,
and it is less than 4 GBytes due to the elaboration of a single gate at the time. An
important aspect to mention, rather than the execution time of the heuristic method
is the runtime memory consumption as Figure 2.13 depicts. Due to the nature of

Fig. 2.13 Runtime memory consumption of the heuristic method.

the heuristic method, it can analyze more than one gate in parallel. Therefore, its
memory consumption is unstable, as seen from Figure 2.13. The initial ramp-up is

2.3 The VCD Toolchain 53

due to the file reading where the physical positions of gates are stored. On the other
hand, the peak in memory consumption is when the DBSCAN starts its computation.
It creates for each gate a cluster, thus the peak in the memory usage, and it gradually
merges neighborhood clusters until a stable configuration.

Whereas a heuristic method is used, it dramatically relieves the execution time,
but it impacts the accuracy of the analysis compared to the exhaustive method.
Therefore, it is fair to report the accuracy of the analysis by utilizing a confusion
matrix shown in Table 2.16.

Exhaustive Heuristic Close Far
Close 30 M 1 M

far 75M/8 M 200 K
Far 75 M 200 K

Table 2.16 Confusion matrix showing the accuracy of the heuristic method compared to the
exhaustive.

It can be observed that the heuristic method returns a larger set of close nodes,
i.e., about 30 million pairs. On the contrary, the heuristic method returns 75 million
close pairs and misses almost 1 million far pairs. Overall, the exhaustive and the
heuristic methods discard coherently 200 thousands of pairs. Therefore, the accuracy
of the heuristic method is 95,9%, which is acceptable for the other analysis.

Metrics Weighting

Downstream the topology and VCD analyses, the single or multi-point metric can
be enhanced with layout awareness capabilities. As for the evaluation of the stress
metrics, experiments have been performed to show how layout awareness affects the
metrics and their computational costs regarding time and memory consumption.

Table 2.17 details results starting from the single point metric, the toggle activity,
which is enhanced with layout awareness coverage, i.e., weighting the metric based
on the density surrounding a given logic gate.

As seen from Table 2.17, the required execution time and runtime memory usage
remains constant across different stress patterns. The reason behind the constant
values of memory and execution time is the nature of the input file containing the
list of signals and their toggle activity. Those files have the same number of signals.

54 Testing

Stress Toggle Layout-aware Execution Rt Memory
pattern coverage coverage time Usage

32ATPG 82.49 % 82.5 % 473.69 s 31 GB
12ATPG+ 83.21 % 83.14 % 492.75 s 31 GB
1024PR 91.53 % 90.32 % 508.43 s 31 GB
LBIST 85.49 % 87.5 % 478.88 s 31 GB
MBIST 10.08 % 7.9 % 510.60 s 31 GB
FUNCT 10.59 % 8.56 % 612.38 s 31 GB

Table 2.17 Single point stress metric coverage.

Thus the same size and the script introducing layout awareness in the simple stress
metric is independent of the stress pattern.

On the other hand, Table 2.18 reports the results on the multiple-point metric
enhanced with the layout awareness.

Stress Neighbors Layout-aware Execution Rt Memory
pattern coverage coverage time Usage

32ATPG 80.47 % 80.48 % 328.42 s 15 GB
12ATPG+ 79.87 % 79.84 % 331.10 s 15 GB
1024PR 87.04 % 87.04 % 278.38 s 15 GB
LBIST 83.96 % 83.96 % 335.18 s 15 GB
MBIST 3.11 % 2.78 % 289.64 s 15 GB
FUNCT 28.58 % 28.56 % 286.61 s 15 GB

Table 2.18 Multiple point stress metric coverage.

Table 2.18 confirms the same results seen in Table 2.17, i.e., the execution time
and the runtime memory usage are constant across different stress patterns, and they
only depend on the input file size and its nature.

Furthermore, in order to prove the effectiveness of layout awareness metrics, Fig-
ure 2.14 visually represents how the weighted and unweighted activity metrics evolve
concerning the number of applied structural patterns in the OpenRISC 1200 [35].

When just a few patterns are used, the layout-aware metric is lower than the
unaware one, whereas when more than eight patterns are applied, the layout-aware
metric tends to have higher values. Consequently, a much more significant part of
the denser areas of the DUT is being covered.

2.3 The VCD Toolchain 55

Fig. 2.14 Evolution of BI metrics.

This kind of behavior captures the way the patterns stimulate the different parts of
the DUT. Indeed, with just a few patterns applied, the stimulation is nicely “spread”
across the DUT. On the contrary, when many patterns are applied, the activity
concentrates on the denser parts of the DUT. In this way, the contribution to the
layout-aware metric tends to increase. Eventually, the layout-aware metric values
exceed those provided by the unaware ones.

2.3.11 The Set Tool

The time and memory costs required by the Set tool mainly depend on the number
of signals analyzed and the number of input files compared and merged. File reading
is the slowest step of this stage, whereas analyzing the sets require fewer resources
than the file reading step.

Table 2.19 shows the memory and time consumption trend over an increasing
number of files of a fixed size of 2.3GB, performing all the available operations on
the tool, which includes comparing and merging capabilities.

56 Testing

Number of Execution Average
Input files Time Memory Usage

4 459 s 26.1 GB
6 500 s 37.1 GB
8 544 s 48.2 GB

10 676 s 59.3 GB
Table 2.19 Profiled execution of the Set Covering tool.

Memory increases proportionally with the number of files involved. However,
the execution time increases only by a small amount. As more and more files get
added, profiling shows that moving them to the proper data structure is the most
costly operation, with the operation of saving the results. On the other hand, the
output file size is always the same as the input file.

2.3.12 The Hierarchical Analysis Tool

In order to analyze the stress pattern and its strength in terms of coverage in the
entities and sub-entities composing the DUT, a hierarchical analysis is performed.

Table 2.20 presents a profiled execution of the tool for a different number of
entities for which the coverage is extracted. Moreover, runtime memory usage and
execution time for different execution is presented, as well as the size of the output
file.

Extracted entities Output Execution Rt Memory
File Size Time usage

2 172 MB 1,140 s 36.7 GB
4 172 MB 1,119 s 36.7 GB
6 172 MB 1,245 s 36.7 GB
8 172 MB 1,124 s 36.7 GB

Table 2.20 Profiled execution of Hierarchical analysis tool.

Table 2.20 depicts a constant execution time and memory consumption indepen-
dently from the stress pattern. Therefore, its execution time, output file size, and
memory usage is directly proportional to the number of signals in the input file,
hence, in the DUT.

2.3 The VCD Toolchain 57

The high memory consumption is due to the internal data structure of the tool
holding all the information for each entity within the DUT.

2.3.13 The Chip-Surface Stress Plotter

A plotter tool is used for troubleshooting, visually, the eventual coverage loss of a
stress pattern or showing weaknesses due to the superimposition of different stress
patterns. A stress-colored heatmap is produced by exploiting the physical placement
of logic gates in the DUT layout.

Table 2.21 shows the runtime memory usage and execution time and how they
are affected by the resolution of the image. Regarding the input files, they are most
of the same size (around 2.3 GBytes for the analyzed stress pattern and 2 GBytes for
the file containing the physical placement of gates as coordinates).

Most of the time cost to build images is the file reading, which, again, it strongly
depends on the number of signals and the number of gates in the DUT.

Up-scaling or down-scaling the image between resolution values of 1,000x1,000
to 10,000x10,000 does not impact performance as much as the file reading, due to
the intrinsic parallelism of the drawing operation, despite the image generation being
performed on the CPU rather than on GPU.

For example, Figure 2.17 contains output images representing the stress coverage
from different stress patterns. In addition, Figure 2.17 highlights unstressed and
stressed regions for different patterns. Figure 2.17a depicts a non-stressed region
better strained by the pattern in Figure 2.17b. Similarly, the pattern in Figure 2.17d
focuses on a module not well stressed by the pattern represented in Figure 2.17c.
On the other hand, the same pattern does not activate enough memory ports and
some functional units, i.e., the upper and lower left zooms in Figure 2.17d. Finally,
Figure 2.17e and Figure 2.17f show how to adequately stress memory ports and
functional units, respectively.

2.3.14 Wrapping up the flow

The BI for safety-critical devices includes different patterns, ranging from structural
to functional. Therefore, as represented in Table 2.11, single patterns are superim-

58 Testing

Resolution Average Execution Rt Memory
File Size Time Usage

1000x1000 pixels 4 MB 535 s 3.9 GB
2000x2000 pixels 16 MB 537 s 3.9 GB
4000x4000 pixels 62 MB 559 s 3.8 GB
8000x8000 pixels 245 MB 532 s 4.8 GB
Table 2.21 Profiled execution of Chip-surface stress plotter.

posed and analyzed to understand their weaknesses and ability. This activity allows
the generation of the stress-colored heatmap plot for the overall BI phase displayed
in Figure 2.15. From these images, it is straightforward to distinguish the zones
where the stress level is adequate from those needing additional patterns (such as the
area inside the dotted red circle).

Fig. 2.15 Visualization of the overall stress provided by the superimposition of all stress
patterns.

As pinpointed from Figure 2.15 and confirmed from the hierarchical analysis
tool (Tool E), an unstressed zone exists that does not reach an acceptable level of

2.3 The VCD Toolchain 59

stress coverage. Therefore, we develop an additional functional stress pattern that
can provide additional stress as represented in Figure 2.16.

Fig. 2.16 Visualization of the overall stress provided by the superimposition of all stress
patterns, plus the additional functional stress pattern targeting the identified unstressed
module

As shown from Figure 2.16, the ad-hoc developed functional pattern stresses the
region of interest, effectively increasing the stress coverage.

2.3.15 Conclusions

With this toolchain, we are able to perform a testing flow starting from the logic
simulation, up to the visualization of its results. Moreover, we are able to merge more
simulations, gathering an effective insight on multiple tests performed subsequently,
while being able to save disk space by removing old VCD files.

60 Testing

(a) Results from 32ATPG (b) Results from 12ATPG

(c) Results from 1024 Pseudo-random (d) Results from LBIST

(e) Results from MBIST (f) Results from the functional test

Fig. 2.17 Stress-colored heatmaps in terms of toggle coverage with detailed zoom on some
regions.

2.4 Connectivity: A new metric 61

2.4 Connectivity: A new metric

In this section, I will present the new metric we developed, called Connectivity. This
section will talk about the work developed and published in [19], with some details
and future work that will be presented.

2.4.1 The Proposed Methodology

The methodologies analyzed in Section 2.3, such as SBST, TDBI, and SLT, have
extremely long evaluation times. Logic and fault simulation are the most expensive
phase of creating high-quality functional test programs. Therefore, reducing the
number of fault simulations is very important in the testing area. Our methodology
addresses these aspects.

Two of the most adopted methodologies in the security research domain are
“symbolic execution” and “dynamic taint analysis” [56–59]. Both these strategies
analyze some software piece of code and grade it from the security perspective.
Symbolic execution automatically builds a logical formula describing a program
execution path, and it reduces the problem of reasoning about a program to a logic
domain. Dynamic taint analysis runs a program and observes which computations
are affected by predefined taint sources, such as the user inputs.

Following the dynamic taint analysis paradigm, we propose a technique to
perform a preliminary evaluation of a functional test program without the necessity
of a logic or fault simulation step in the early development phases. The flow of our
methodology is illustrated in Figure 2.18, which major product is the computation of
a novel metric called "connectivity". The connectivity value is fast to compute and
can effectively guide the development, especially during the early stages.

Previously designed programs in C language or Assembly code [60, 61] are used
as benchmark tests (top-left corner of Figure 2.18). These test programs are compiled
and executed on the silicon device and the instruction traces are generated by adopting
advanced debugging tools. Each trace contains the list of executed instructions, with
all selected branches, all loops properly unrolled, and all actual registers and memory
values generated by the chip during the execution of the machine code. Test programs
are developed to exercise functional blocks of the device and their characteristics have
a direct relationship with the verified functionalities and, as a consequence, with their

62 Testing

Fig. 2.18 The logic flow of our testing framework

final coverage. We consider their traces as gold functional executions (bottom-right
block of Figure 2.18). Once they are produced, each trace is parsed and transformed
into a Control and Data Flow Graph (CDFG) by the connectivity tool (bottom-center
block of Figure 2.18). Portability between different architectures and ISA is achieved
by the CPU information file (bottom-left block). An important aspect to highlight is
the independence of the proposed approach from single and multi-core executions of
the functional test programs. The connectivity analysis is performed from a CPU
register perspective, meaning that we investigate how the data propagates within CPU
registers and across instructions of test programs. Therefore, even with a multi-core
execution, the functional routines can be divided and analyzed based on the CPU
running them. Moreover, a multi-core program shares common resources and data,
and consequently, it needs some synchronization mechanism and atomic operations
in order to avoid non-deterministic values in memory which are taken into account
by the CPU information file. In the connectivity step, every instruction is represented
by a vertex and the information flow is represented by directed edges. We focus on
writing and reading operations and their temporal dependency, independently from
the sequence of operations and the program complexity in terms of lines of code.
Thus, given a data value d in the trace (either a register or a memory location), we
introduce two types of edges:

2.4 Connectivity: A new metric 63

• WAW (Write-After-Write) edges represent two write operations on d back-to-
back with no reading instructions in between.

• RAW (Read-After-Write) edges represent a write operation followed directly
by a read operation on d.

Once it has been built, the CDFG is analyzed to extract the “connectivity” metric. The
connectivity measures potential code weaknesses and guides test engineers to grade
the quality of the functional procedures, rectify their problems, and insert proper
signature checks to improve their quality. The main advantage of this procedure is
that the entire process is extremely fast (up to seconds) when compared to a standard
logic and fault simulation phase (requiring up to hours or days). Our analysis relies
on the following observation.

Write-after-Write (WAW) instruction sequences occurring during the instruction
flow over a shared addressable location causes the previously computed values to
be overwritten and most likely lead to a loss of fault coverage. Conversely, Read-
after-Write (RAW) instruction sequences propagate values along with the execution
flow, and they can reach an observation point, possibly leading to an increase in fault
coverage.

The following example illustrates the main concepts of our process.

example Let us consider the code segment reported in Table 2.22. The code
includes three instructions belonging to PowerPC VLE Instruction Set Architecture
and the operation they perform.

Cycle Instruction Operation
1 e_add2i r19, r18, 192 r19 = r18 + 192
2 subfme r6, r18 r6 = r6 - r18
3 e_add16i r6, r19, 35 r6 = r19 + 35

Table 2.22 An example of instruction sequence with the operation performed.

For the sake of simplicity, we may suppose to represent each instruction with a
vertex node as shown in Figure 2.19a. The data written in r6 by instruction number
2 is immediately overwritten by instruction number 3. In our representation, this is
represented by a WAW edge incident from vertex 2 and in vertex 3 (Figure 2.19b).
Vice-versa, the write operation on register r19 performed by instruction one is

64 Testing

preserved by the reading operation of instruction 3 and this is represented by a RAW
edge incident from node one and in node 3 (Figure 2.19b). Even if there are cases
in which WAW edges may have a specific meaning, they somehow correspond to
undesirable situations with information flow disruptions. These situations should
never appear in ASM or compiled C/C++ functional programs. On the contrary,
RAW edges indicate the standard operation flow and are beneficial.

(a) (b) (c)

Fig. 2.19 A graphical representation of Example 2.4.1.

From a testing point of view, instructions 1 and 3 have may provide a positive
effect of the fault coverage when the destination registers is propagated to an observ-
able point. On the contrary, instruction 2 is not beneficial to fault coverage as the
value of r6 is overwritten and cannot be propagated. As a consequence, instruction
2 is useless and can be canceled, or the program needs to be modified to unlock a
possible propagation of r6. To sum up, WAW and RAW edges allow us to color the
vertices of the graph as illustrated in Figure 2.19c and described in the following
paragraphs.

The analysis we perform on the golden instruction dump verifies the presence of
blocking situations similar to the one illustrated in the previous example. Analyzing
the presence of WAW and RAW edges is essential, at least in the following contexts:

1. Randomization and evolutionary methods to automatically generate functional
programs may naturally introduce WAW edges. Therefore, it would be benefi-
cial to tune the generation of programs to minimize WAW edges and reach a
high coverage faster.

2.4 Connectivity: A new metric 65

2. Bugs may constantly be introduced in assembly software, i.e., even simple
typos may introduce unwanted WAW sequences when writing low-level ASM
code. Discovering an error after a fault simulation is frustrating, and a quick
preliminary check would significantly reduce time loss.

3. It is often unfeasible to grade the fault coverage achieved by very long pro-
grams, such as benchmarks directly compiled in C/C++ language or OS boot
procedures. In this case, checking potential weaknesses can be one of the few
feasible measures in short time.

As shown in the following subsection, every instruction node of the CDFG
is classified as blocked (black) or not blocked (green), depending on whether it
propagates or not. We compute our connectivity metric as the fraction of non-
blocked instructions over the total number of investigated instructions. A program
with very high connectivity can be considered promising from the perspective of
its potential fault coverage. Conversely, if the program shows a lot of blocked
instructions and a low connectivity, it needs to be revised to avoid useless and time-
expensive fault simulation stages. Furthermore, the connectivity measure locates the
blocked instructions and may guide the designer to fix the proper components along
the development process.

2.4.2 The Basic Algorithm

Although static and dynamic code analysis is performed in other fields [62, 56–59],
in our approach, we process the code generated with a hardware debugger during
the execution of functional programs on real silicon. Similarly to the taint analysis,
our approach statically elaborates the instructions flow executed by the program
to identify blocking situations within the golden instruction trace. Therefore, the
proposed methodology recognizes critical edges in the CDFG, i.e., it identifies WAW
edges preventing information to be forwarded along the program flow.

Table 2.23 reports a short snapshot of a golden instruction dump extracted from
a manually developed test routine for the CPU adder unit. The first column indicates
the order of execution; the second and third columns report the address and the
mnemonic code of the relative instruction; columns SRC and DST specify the
sources and destinations of each instruction.

66 Testing

Table 2.23 Instruction sequence, source, and destination operands.

Cycle Address Instruction SRC DST
1 0x0000_0000 subfme r19, r6 r19, r6 r19
2 0x0000_0004 e_add16i r6, r19, 35 r19 r6
3 0x0000_0008 e_add2i r6, r19, 192 r19 r6
4 0x0000_000C e_add2i r6, r6, r1 r6, r1 r6
5 0x0000_0010 subfme r19, r6 r19, r6 r19
6 0x0000_0014 subfze r6, r3 r6, r3 r6
7 0x0000_0018 e_add16i r6, r19, 35 r19 r6

Based on this information, the basic algorithm runs through the steps illustrated
in Figure 2.20:

1. In the first step, the one represented by Figure 2.20a, we build a CDFG in
which each instruction is mapped onto a vertex and the data flow is represented
through edges. We use two types of edges, namely RAW (reported on the
left-hand side of the graph) and WAW (reported on the right-hand side of the
graph).

2. During the second stage, Figure 2.20b, we perform a visit of the CDFG
following WAW edges. Vertices are colored either in red or green color.

3. During the third and last step, Figure 2.20c, we perform a visit of the CDFG
following RAW edges. Red vertices may become green or black.

To build the CDFG, we use the function reported in Algorithm 2. For each node
(i.e., instruction) of the graph (line 1), we visit all subsequent nodes (instructions)
of the graph (function Search) looking for the destination of the current node as
source or destination of one instruction. WAW edges are inserted to connect “victim”
instructions to “aggressor” instructions (line 6). Aggressor instructions overwrite
the result of victim instructions. RAW edges are inserted to connect a predecessor
and a successor instruction (line 8). Building the graph has a cost that is linear in the
number of instructions of the gold model.

Function Build_Graph is followed by Algorithm 3 which visits the graph for
the first time, considering only WAW edges. For each node of the graph G (line 1),
we check the existence of an outgoing WAW edge: Each vertex with an outgoing

2.4 Connectivity: A new metric 67

(a) (b) (c)

Fig. 2.20 The CDFG of the code snippet of Table 2.23 in represented in Figure (a). Figure (b)
illustrates the vertex-coloring process obtained following WAW edges, and Figure (c) the
colors obtained at the end of the RAW visit.

68 Testing

Algorithm 2 Phase 1 of Figure 2.20a: From the gold trace to the CDFG. The
procedure elaborates the execution dump and creates the graph with all WAW and
RAW edges.
Build_Graph ()

1: for node in G do
2: Search (G, node)
3: end for

Search (G, node)
4: for n in G > node do
5: if nodedst = nsrc then
6: nodeRAW = n
7: else
8: if nodedst = ndst then
9: nodeWAW = n

10: break
11: end if
12: end if
13: end for
14: return

WAW edged is colored in red (i.e., dark gray in the black-and-white reproduction
of the picture) or in green (i.e., light-gray) if they do not present an outgoing WAW
edge. For example, in Figure 2.20b instruction 4 is red (dark-gray) because it has
an aggressor in instruction 6. On the contrary, instruction 5 is green (light-gray)
because its computed value will reach the end of the program. Function WAW_Visit
has a linear cost in the number of vertices of the graph.

Algorithm 3 Phase 2 of Figure 2.20b: The WAW visit.
Write_After_Write_Visit (G)

1: for node in G do
2: if nodeWAW ↑= /0 then
3: nodecolor = RED
4: else
5: nodecolor = GREEN
6: end if
7: end for

The second visit essentially traverses RAW edges to finalize the color of all red
nodes. The corresponding pseudo-code is reported in Algorithm 4. The structure of
the code is similar to the one of the function Build_Graph in Algorithm 2. During the

2.4 Connectivity: A new metric 69

visit, a red node can turn green (line 8) if there is a RAW edge connecting it ahead to
a green vertex (line 7). On the contrary, the block suspect is confirmed, and the red
color is updated to black (line 12). For example, in Figure 2.20b, instruction 4 is a
case of a red node evolving into a green one, whereas instruction 6 is confirmed as
a blocking vertex, and it becomes black. Function RAW_Visit, as all the previous
procedures, has a linear cost in the number of vertices of our CDFG.

Algorithm 4 Phase 3 of Figure 2.20c: The RAW visit.
Visit (G)

1: for node in G do
2: RAW_Visit (node)
3: end for

RAW_Visit (node)
4: if (nodecolor = RED) then
5: for RAW_destination in RAW_edges of node do
6: ret = RAW_Visit (RAW_destination)
7: if ret = GREEN then
8: nodecolor = GREEN
9: return GREEN

10: end if
11: end for
12: nodecolor = BLACK
13: end if
14: return nodecolor

Once all graph nodes are colored, we evaluate the connectivity of the code. The
connectivity value is computed as the percentage of green (light-gray) nodes over
all nodes in the CDFG, and it indicates the percentage of the instructions that are
beneficial in terms of fault coverage. For example, in Figure 2.20, as 5 out of 7
instructions are finally green, the connectivity is 71.42%. The remaining two black
vertices bring no valuable information to the assertion/check part of the code. Indeed,
instructions 2 and 6 will never contribute to the fault coverage since their results are
overwritten before propagating elsewhere.

2.4.3 Optimized Algorithm

The algorithm previously described can be optimized by removing the WAW edges
and the WAW visit. The method illustrated in Section 2.4.2 creates WAW arcs to

70 Testing

find problematic instructions. However, WAW arcs are not necessary to obtain the
final result, and we can perform the WAW visit while we build the CDFG, reducing
the computation cost and improving the memory efficiency.

More specifically, when building the CDFG, instead of linking two nodes with
a WAW edge, we evaluate an initial coloring of the node from which the edge
leaves. To detect this preliminary color we check whether the node which would
be overwritten also contains a RAW edge. In the positive case we set its color to
red, otherwise we set it to black. For example, in Figure 2.20, instruction 6 could
be set to black already during the construction of the CDFG as the destination is
overwritten, and none of the following nodes has a RAW dependency from it.

The optimized procedure building the CDFG, i.e., Algorithms 2, is reported in
Algorithm 5.

Algorithm 5 The optimized algorithm for phase 1 (originally, Algorithm 2). Several
nodes are colored up-front, saving subsequent computation time.
Build_Graph (G)

1: for node in G do
2: Search (G, node)
3: end for

Search (G, node)
4: for nextNode in G > node do
5: if nextNodesrc = nodedst then
6: nodeRAW = nextNode
7: end if
8: if nextNodedst = nodedst then
9: if nodeRAW ↑= /0 then

10: nodecolor = RED
11: else
12: nodecolor = BLACK
13: end if
14: break
15: else
16: nodecolor = GREEN
17: end if
18: end for

2.4 Connectivity: A new metric 71

2.4.4 Load/Store Instructions

When we find a load or a store instruction in the code, we have to modify the
previous analysis to take into consideration memory locations. Memory values are
manipulated as virtual registers. The golden instruction sequence is first enriched
with information related to registers to locate memory locations. Then, the current
values of these registers is used to compute the virtual register address of the memory
location. The following example clarifies this strategy.

example The code snippet reported in Table 2.24 includes load and store instruc-
tions from and to memory locations in addition to arithmetic operations. For the
sake of simplicity, all memory locations have a size of 1 byte.

Table 2.24 Instruction sequence, source and destination operands.

Cycle Instruction SRC DST
1 e_stb r0, 0(r1) r0, r1 mem(0+r1)
2 e_add16i r2, r0, 35 r0 r2
3 e_lbz r2, 0(r1) mem(0+r1), r1 r2
4 e_add2i r2, r1, r2 r1, r2 r2
5 e_stb r2, 0(r1) r2, r1 mem(0+r1)
6 subfze r1, r3 r1, r3 r1
7 e_add16i r1, r0, 35 r0 r1

Figure 2.21a reports the corresponding graph and Figure 2.21b the final coloring
scheme returned by the RAW visit. The example shows as we handle memory
addresses as registers. For example, instruction one stores a value in the location
pointed by register r1. A load instruction accesses the same location at position
3. Therefore, instruction one is finally labeled as green (light-gray). Moreover,
instruction 5 is marked as green because the value written in memory is propagated
until the end.

2.4.5 Branch Instructions

Another extension to our initial algorithm is required to manage branch instructions.
In order to analyze and classify branches as green or black, we modified our algorithm
in the following directions: dified the algorithm in the

72 Testing

(a) (b)

Fig. 2.21 An example including arithmetic operations and load/store instructions.

2.4 Connectivity: A new metric 73

• During the regular visit, conditional branches are left undecided and temporar-
ily colored in orange.

• An additional visit is performed to find the alternative branch destination
among the instructions executed after the conditional statement.

If the branch’s alternative destination address cannot be found, then, the
branch is colored in black.

Conversely, when the branch alternative destination is in the traced instruc-
tion flow, the visit checks whether the incorrect branch execution leads to a
different signature or not and color the branch in black or green.

However, notice that just some cases can be resolved by this strategy as our algorithm
can color the branches in green or black only when also the alternative branch can
be found in the code.

example The code reported in Table 2.25 includes a branch generated by a simple
if-then-else construct.

Table 2.25 Instruction sequence, source and destination operands.

Cycle Address Instruction SRC DST
1 0x0000_0000 e_li r0, 0 r0
2 0x0000_0004 cmpl r0, 1 r0 cr
3 0x0000_0008 e_beq jump cr
4 0x0000_000C cmpl r0, 0 r0 cr
5 0x0000_0010 e_add16i r1, r2, r3 r2, r3 r1
6 0x0000_0014 jump: e_add16i r1, r0, r1 r0, r1 r1

Figure 2.22a reports the result of a first visit, leaving the branch node as unde-
cided. The second visit, whose result is represented in Figure 2.22b, evaluates the
signature under the hypothesis of taking the wrong branch path. In this specific case,
the instruction that would be reached if the branch decision was wrong is included
within the instructions that follow the branch itself. A new orange-colored edge is
added to the figure to highlight this situation, and it appears that some instructions
would not be executed if the branch was wrongly executed (taken if it was not taken,
and vice-versa).

74 Testing

(a) (b)

Fig. 2.22 A graph example including a branch instruction.

2.4 Connectivity: A new metric 75

The instructions that may be skipped are green. Therefore, the value of the
final register may change, and the signature value may potentially be compromised.
Indeed, the branch node is labeled with a green color. Conversely, if all skipped
instructions had been labeled as black nodes, they would not contribute to the
signature value. In this case, the branch would be colored black, as illustrated in
Example 2.4.5.

example 2 Let us focus on the code reported in Table 2.26. Following Exam-
ple 2.4.5, our first visit leaves the branch node undecided. The second visit deter-
mines that the signature would not change under the hypothesis of taking the wrong
branch path, i.e., all skipped instructions are labeled as black nodes. As a conse-
quence, the branch is colored black. The outcomes of the two visits are illustrated in
Figure 2.23.

Table 2.26 Instruction sequence, source and destination operands.

Cycle Address Instruction SRC DST
1 0x0000_0000 e_li r0, 0 r0
2 0x0000_0004 cmpl r0, 1 r0 cr
3 0x0000_0008 e_beq jump cr
4 0x0000_000C e_add16i r1, r2, 1 r2 r1
5 0x0000_0010 e_add16i r1, r0, 1 r0 r1
6 0x0000_0014 jump: e_add16i r1, r0, r2 r0, r2 r1

2.4.6 Multiple Destination Instructions

To complete the functionalities of the proposed method, we need to consider one
last extension, as the code can include instructions with multiple destinations. In
this case, we extend our analysis to target destinations instead of instructions as
illustrated in Example 2.4.6.

example Table 2.27 reports a code snippet where several instructions have more
than one operand destination.

For the sake of completeness, Figure 2.24 shows our initial graph (Figure 2.24a),
the one with WAW and RAW edges (Figure 2.24b, introduced in Section 2.4.2), and

76 Testing

(a) (b)

Fig. 2.23 Another branch instructions example.

Table 2.27 Instruction sequence with multiple destinations.

Cycle Address Instruction SRC DST
1 0x0000_0000 subf r0, r1 r0, r1 cr, r0
2 0x0000_0004 e_add16i r1, r0, 35 r0 r1
3 0x0000_0008 e_add2i r1, r0, 192 r0 cr, r1
4 0x0000_000C e_add2i r1, r1, r1 r1 cr, r1
5 0x0000_0010 subf r0, r1 r0, r1 cr, r0
6 0x0000_0014 subf r1, r2 r1, r2 r1
7 0x0000_0018 e_add16i r1, r0, 35 r0 r1

2.4 Connectivity: A new metric 77

the one obtained after the final coloring phase (Figure 2.24c). Coloring is performed
considering “single” destinations. Consequently, each graph vertex includes a color
for each of the destination fields considered by the instruction.

(a) (b) (c)

Fig. 2.24 A code snippet with instructions with multiple destinations: Our instruction-
oriented analysis is modified to be destination-based.

Algorithms 6 and 7 report the modified functions to build and visit the CDFG
in case of multiple destinations. The data structure of a node has been changed to
manage multiple destinations. Moreover, if a node has at least one green destination,
i.e., the instruction propagates at least some partial result, we consider the data as
propagated. When we consider multiple destinations, the metric connectivity needs
to be computed in a slightly different way. We first assign a connectivity percentage
to every node. Then, we evaluate the overall connectivity value as the average of the
connectivity of all nodes.

For instance, in Example 2.4.6, node 1, 3 and 4 are 50% connected, instruction 5
is 100% connected, and instructions 2 and 5 are not connected at all. Therefore, the
overall connectivity metric value is computed as (3 ·50%+2 ·100%)/7 = 50%.

78 Testing

Algorithm 6 Build graph function that elaborates the execution dump considering
multiple destinations.

Build_Graph ()
1: for node in G do
2: for dst in node do
3: Search (G, node, dst)
4: end for
5: end for

Search (G, node, dst)
6: for n in G > node do
7: if nsrc = dst then
8: nsrcRAW = dst
9: end if

10: if ndst = dst then
11: if dst is never read then
12: dstcolor = BLACK
13: else
14: if dst is read then
15: dstcolor = RED
16: end if
17: end if
18: return
19: end if
20: end for
21: if dst never found then
22: dstcolor = GREEN
23: end if

Algorithm 7 RAW visit considering multiple destinations.
Visit (G)
1: for node ↓ G do
2: RAW_visit (node)
3: end for

RAW_visit(node)
4: for dst in node do
5: if dstcolor = RED then
6: for RAW edge i do
7: if dstcolor ↑= GREEN then
8: dstcolor = RAW_visit (RAW edge[i])
9: end if

10: end for
11: end if
12: end for
13: if Any of dst in node = GREEN then
14: return GREEN
15: end if
16: return BLACK

2.4 Connectivity: A new metric 79

Program name Code Execution Executed Connectivity Grading Stuck-at Stuck-at fault Fault simulation
size [bytes] Time [cc] instructions [%] Time [s] fault [#] coverage [%] CPU time [h]

Adder 2,708 3,388 1,037 91.38 40 19,760 92.56 24.39

Multiplier original 5,612 7,002 1,256 68.96 33 64,004 92.3 46.09
improved 5,584 6,981 1,249 72.03 33 64,004 92.3 43.14

Floating Point 13,948 78,286 17,644 96.4 680 70,300 90.78 1,407.11

Shifter original 6,344 7,226 2,080 92.38 80 17,128 86.19 169.61
improved 6,344 7,226 2,080 92.63 80 17,128 89.48 39.86

Count-zeros 1,408 3,823 1,112 94.49 43 3,096 86.81 12.19
Bit-wise Logical 680 513 146 97.63 5 2,828 95.00 5.65
Load-Store 3,016 4,228 1,051 53.28 40 12,865 52.54 11.19
Branch Target Buffer 4,476 31,135 3,462 68.45 133 19,990 71.16 66.86

Random 1M 4M 4M 1M 38.5 NA NA NA NA
10M 40M 40M 10M 76.0 NA NA NA NA

RTOS original 130,024 210,816 28,736 75.61 1,108 1,528,461 NA 7,154.92 (est.)
enhanced 131,906 467,840 34,998 76.91 1,349 1,528,461 NA 10,655.26 (est.)

Table 2.28 Test programs evaluation. All branches without an alternative are marked as
black in our analysis. NA means the data is not available.

2.4.7 Experimental Results

The experimental evaluation embraces several testing scenarios sharing the same
automotive device, i.e., a micro-controller of the SPC58 family, manufactured by
STMicroelectronics. Section 2.4.8 details the characteristics of the chip. Sec-
tion 2.4.9 reports our evaluation of SBST programs belonging to a Core Self-Test
library [60]. Section 2.4.10 describes how to use the connectivity metric to rapidly
generate stressful functional programs that also own fault coverage capabilities.
Section 2.4.11 reports some experiments to evaluate SLT applications.

2.4.8 The Industrial Device under Analysis

Our test programs are executed on an automotive microprocessor belonging to the
SPC58 family from STMicroelectronics. This micro-controller features multiple
cores, many modules (such as timers), and several communication modules. The
microprocessor is usually employed in safety-critical applications in modern vehicles.
Overall, the unit includes about 20 million gates. Each one of its CPUs incorporate
about 1.5 million stuck-at faults. Figure 2.25 illustrates the experimental setup,
including the micro-controller and the hardware debugger, adopted to validate our
methodology.

80 Testing

Fig. 2.25 The experimental setup including a development board with the SPC58 micro-
controller and a hardware debugger.

2.4.9 Evaluation of SBST Programs

During the first set of experiments, we analyze SBST programs belonging to a Core
Self Test library developed by skilled test engineers. SBST programs are used during
standard working operations to target all potential stuck-at faults incorporated by
several components within the CPU core.

The first section (the one on top) of Table 2.28 reports our findings in this
area. In order to understand the complexity of each program, we include their size
(in bytes), their execution time (in clock cycles), and the number of instructions
executed. Columns 4 and 5 (i.e., columns “Connectivity” and “Grading Time”,
respectively) indicate the connectivity (as defined in Section 2.4.1) and the running
time of our methodology. The computation time is mainly due to the extraction of the
instruction dump. The last three columns are dedicated to fault-related information
and report the number of stuck-at faults, the fault coverage, and the single-threaded
fault simulation time for each program.

The benefit of using the connectivity metric are manyfold. The test programs that
show high fault coverage, most frequently reflected in a high connectivity. Similarly,
programs with a mediocre coverage also return a weak connectivity. Experimental
results encourage to report that there is a correlation among fault coverage and

2.4 Connectivity: A new metric 81

connectivity metric when evaluating mature SBST programs. Such a correlation
could not be true at the very beginning, with short programs that can be well
connected but poor in terms of testing abilities. It never happens that a program with
high coverage shows low connectivity.

The implemented flow allowed us to improve some of the test programs. In
particular, for the Shifter test program, we identified a lack of connectivity due to
a single instruction affected by a WAW hazard. Once this issue was rectified, the
connectivity increased from 92.38% (line “original”) to 92.63% (line “improved”).
Similarly, the fault coverage increased by more than 3%, from 86.19% to 89.48%.
For the Multiplier test program, a few instructions were marked as useless by our
analysis, i.e., the code did not propagate the value they compute to an appropriate
signature point. Therefore, we canceled these instructions. In this way, we reduced
the execution time and the memory footprint of the program, and we maintained its
original fault coverage (i.e., 92.3%) at the same time. The memory reduction was
about 1%, and it was proportional to the number of executed instructions.

However, this program includes hand-written routines and randomly generated
parts that may have introduced redundant instructions. Therefore, removing redun-
dant instructions could speed up the program by maintaining the same fault coverage.
This process leads to a smaller program able to test the multiplier faster, saving CPU
time.

2.4.10 Evaluation of BI Programs

In this section, we describe how to use our methodology to improve the quality of
functional programs created for the Test during BI (TDBI). To generate stressful
functional programs, we use the Evolutionary Optimizer microGP [63] to maximize
the switching activity of the cores. Such an optimizer is provided with a set of
instructions and operands, and it evolves a set of candidate assembly programs from
one generation to the next one, Each program is simulated and ranked to increase its
switching activity progressively as the algorithm gives more weight to individuals
with a high connectivity value. In fact, for TDBI we would also like to have a certain
level of fault coverage. Indeed, a high connectivity value imply an increased the
possibility of detecting errors during the execution of the stress program.

82 Testing

Fig. 2.26 Evolution of the population of ASM programs generated by the optimizer microGP.

Figure 2.26 illustrates the overall evolution of the generated stress programs
addressing the adder unit of the chip. Every evaluated program is represented with
two dots on the chart. Blue dots are related to the produced toggle activity, whereas
red ones indicate the connectivity. The number of generated individuals along the
evolutionary process is reported on the X-axis. The right-hand side Y-axis reports
the average toggle activity per gate value achieved by the program on every gate of
the adder. The left-hand side Y-axis reports the metric connectivity value. Evolution
trends are characterized by a slow but constant increase of the toggle activity and fast
growth from low to decent connectivity values. Arrows pinpoint the best individual,
i.e., the most stimulating program, and its measured connectivity.

To measure the scalability of the methodology, we use randomly generated
stress programs counting up to millions of instructions. The second section of
Table 2.28 reports data on two very long stress programs. The first one is composed
of one million sequential instructions with a limited set of registers used by each
instruction. The second one is a random program with 10 million instructions, using
only arithmetic instructions in which few registers are used to pass values along
the logic flow. Overall, the analysis takes a few seconds for the 1M instruction

2.4 Connectivity: A new metric 83

program and less than 5 minutes for the 10M instruction program. In the first case,
the connectivity is quite low because of the large set of registers used, making it
more difficult to have high intrinsic connectivity, as the random generator has more
freedom for possible mistakes. The second program is more connected because of
the smaller number of registers used.

2.4.11 Evaluation of SLT programs

The last section of Table 2.28 (the bottom section marked as “RTOS”) reports an
analysis of an RTOS used for SLT programs. The device can run a basic and an ad-
vanced version of the Micrium-C OS III [64]. In this case, our analysis is motivated
by the fact that the fault simulation of the original RTOS and, more generally, of
extended test programs, is practically unfeasible [23], due to the enormous computa-
tion times (estimated to be around one year or more). Consequently, we apply the
connectivity analysis to the original version of the RTOS. As the table shows, we
obtain a connectivity value of 75.61%. We also analyze a different version of the
RTOS, enhanced with a signature computation in every context switching between
tasks. The signature in every context switching is used to propagate and catch errors
due to physical defects and also to verify the effect on the connectivity measure. As
expected, the connectivity of the enhanced RTOS (last line of Table 2.28) increases a
little more than 1%, reaching a value of 76.91%. The absolute low value of connec-
tivity is mainly motivated by the high number of branches in the RTOS code, due
to the verification points concentrating on data and control flow. Nevertheless, the
increase in the connectivity metric of SLT application may also lead to an increase
in the fault coverage of the same test program.

2.4.12 Conclusions and Future Works

Fault coverage for functional programs has become more complex and time-consuming
with the advent of complex SoCs. Nevertheless, the industry uses more and more
functional tests. As a consequence, there is a rising necessity to abate the evaluation
process cost. Based on the dynamic taint analysis paradigm, the proposed method-
ology recognizes critical edges in the control and data flow graph of functional
code. Starting from the instruction sequence generated by the SoC, we first build
a graph, and then we analyze it. The returned results could guide test engineers in

84 Testing

developing fault coverage effective programs. The proposed approach early and
quickly highlights potential issues that can impact the fault coverage. The defined
connectivity metric helps in both automated and manual generation flows to reduce
fault simulation runs and guide random-based test program generation. Moreover,
as the instruction sequence is obtained in seconds, we may be orders of magnitude
faster than the standard fault simulation. Our results highlight an exciting correlation
between the connectivity metric and the fault coverage of functional test programs.

2.5 Conclusions

In synthesis, in these years we worked for optimizing and speeding up the testing
process. First, by creating a toolchain for analyzing VCD files. Then, providing a
new metric for the analysis of test programs performed before the execution of the
full fault simulation that can help catching obvious mistakes.

One of the lessons we can learn is that writing programs in machine-code com-
piled programming languages such as C, C++ and Rust does impact on the feasibility
of analyses of large data, despite what most software engineers may say.

However, methodologies count too: while exact methods provide the best analysis
types, significant results can be obtained by less accurate analyses, provided that
they are correlated with the desired metric.

This chapter is at its end, and in the next one we will face my works on algorithms.

Chapter 3

Algorithms

In this chapter, I will talk about the works available in [65], in which we describe
a parallel implementation of a graph coloring algorithm called JPL. This work has
been developed and published together with the student Alessandro Borione and
my colleague Lorenzo Cardone. Then, I will present the work available in [66],
where we describe an improvement over the state-of-the-art algorithm McSplit and
its variants for calculating the Maximum Common Subgraph. This work has been
developed together with the students Salvatore Licata and Marco Porro, and my
colleague Lorenzo Cardone.

3.1 Graphs

A graph is a pair of vertices (nodes) and edges (links). Links represent connections
with nodes, making this structure well-suited for representing relationships between
objects. In our notation, we use G and H to represent two graphs and V (G) (V (H))
to represent the vertices belonging to G (H). Furthermore, we use E(G) (and E(H))
to represent the set of all the pairs of vertices connected by an edge. We use |G| or
|V (G)| to indicate the number of vertices belonging to G, referring to it as its size. In
contrast, we refer to the number of edges of a graph as |E(G)|. Given v1,v2 ↓V (G),
we denote E(v1,v2) the edge that links v1 to v2.

Graphs can come in various flavors: Labeled or unlabeled, weighted or un-
weighted, directed or undirected. In labeled graphs, vertices have additional informa-

86 Algorithms

tion described by the label; in many applications, the labels classify the vertices as
sharing specific characteristics. In our notation, L(v) is the label of the vertex v.

We say that the graph is weighted if edges present different weights associated
with them. For example, a weight might represent the distance between two nodes.
Unweighted graphs can be seen as weighted graphs with every weight equal to one.

We say that G is undirected if

↔v1,v2 ↓V (G) ↓ E(G) ↗↘
{v2,v1} ↓ E(G) & E(v1,v2) = E(v2,v1)

In other words, if a link exists between v1 and v2, the opposite link must exist and
have the same weight.

3.1.1 Notation

We refer to a graph G as G = (V,E), where V = {v1,v2, . . .vn} is the set of vertices,
and E ≃V ⇐V the set of edges. More specifically, we will manipulate undirected
graphs, where an edge e ↓ E is an unsorted pair of vertices

(v,u) ↓ E ↗↘ (u,v) ↓ E ↔v,u ↓V

We also refer to the cardinality of V and E with n and m, respectively. Moreover, we
use the notation

ad j(v) = {u | (u,v) ↓ E}

to indicate the adjacency list of v, i.e., the set of nodes that share an edge with v.

Given a graph G, an independent set of nodes I is defined as:

I = {v,u | (v,u) /↓ E,↔v,u ↓V,v ↑= u}

that is, the independent set I includes vertices that are not adjacent. A maximal
independent set is an independent set that is not a subset of a larger independent set.

In our implementations, we store a graph G adopting the so-called Compressed
Sparse Row (CSR) representation. CSR is particularly efficient when large and
sparse graphs must be represented since it is a matrix-based representation that stores

3.2 Graph Coloring on GPU 87

only non-zero elements of every row. Using this strategy, we can offer fast access
to the information related to each row, avoiding useless overhead for very sparse
matrices at the same time. Essentially, in the CSR format, edges are represented as a
concatenation of all adjacency lists of every node. One additional array is used to
index the adjacency list of each vertex in the main array. It is also possible to use
a third array to store information about the weight of each edge. We will not use
this additional array since we work with non-weighted graphs. Figure 3.1b reports
the CSR representation for the graph of Figure 3.1a. As an example, in order to
iterate through the neighbors of node 1, we would have to access the elements of
the adjacency list array starting from the node at position 3 and ending at position 4,
since the next node would start at position 5. In general, ad j(v) is the sub-array of the
adjacency list array starting from indexes[v] included, and ending at indexes[v+1]
excluded.

0

1 2

3

(a)

-

0 3 5 6

1 2 3 0 3 0 0 1

8

0 1 2 3 4

0 1 2 3 4 5 6 7 8

indexes

adjacency
list

(b)

Fig. 3.1 An example of the Compressed Sparse Row (CSR) format: Graph (a) and corre-
sponding CSR representation (b).

3.2 Graph Coloring on GPU

3.2.1 Introduction

The rapid accumulation of massive graphs from a diversity of disciplines, such as
social and biological networks, geographical navigation, Internet routing, databases,
and XML indexing, among others, requires fast and scalable graph algorithms.

Graph coloring is one of the many problems applied to graphs that benefit from
algorithms that can produce reasonable solutions quickly. Graph coloring is useful

88 Algorithms

in many different fields, such as timetable scheduling [67, 68], register allocation in
compiler optimization [69], Sudoku solving [70], parallelization of tasks [71], and
many others. Graph coloring aims to assign a label (i.e., a color) to every vertex
of the graph, such that adjacent vertices never have the same label. The problem
of generating the best solution, i.e., the solution with the least number of labels,
is known to be NP-hard [72]. Luckily, many applications that benefit from graph
coloring do not strictly require an optimal solution, and a good approximation is often
enough. As a consequence, many scalable heuristics [73–76] have been proposed
over the years to approximate the perfect coloring in a reasonable time. However,
heuristics typically present a tradeoff between the time to find a solution and the
quality of the coloring process such that very often, the fastest heuristics produce
the worse results and vice-versa. Moreover, data is being produced and collected
faster, encompassing more information than ever, and graphs are also getting larger,
causing the need for scalable algorithms to keep up with the times. Thus, researchers
are focusing on solving graph coloring on huge graphs, derived from current data, in
a faster and more scalable way.

Interestingly, general-purpose computing on GPUs (Graphical Processing Units)
is increasingly used to deal with computationally intensive algorithms coming from
several domains [77, 78]. The advent of languages such as OpenCL and CUDA has
transformed GPUs into highly-parallel systems which scale gracefully, have a con-
siderable bandwidth, and possess enormous computational power. As a consequence,
there has been a continuous effort to redesign graph algorithms to exploit GPUs
and CUDA, both from NVIDIA, with its NVIDIA Graph Analytic library, and from
independent projects, such as the recent Gunrock library.

We compare our versions against two state-of-the-art GPU implementations,
NVIDIA’s cuSparse library [76] and the Gunrock framework [79], and against a task-
based approach for solving graph-related problems, i.e., Atos [80]. We present the
number of colors used and the time required to perform the pre-processing, coloring,
and post-processing phases on publicly available benchmarks. When we concentrate
on the core (coloring) phase, we illustrate that our fastest implementation presents
geomean (harmean) speedups of 3.16x (3.05x) against Gunrock, 4.09x (3.06x)
against cuSparse, and 4.45x (2.21x) against Atos on graphs with low average degree.
Nonetheless it is slower on scale-free graphs and ones with high average degree,
presenting geomean (harmean) speedups of 2.76x (2.71x) against Gunrock, 0.13x
(0.11x) against cuSparse, and 0.03x (0.01x) against Atos. When we concentrate on

3.2 Graph Coloring on GPU 89

the entire process (pre-processing, processing, and post-processing phases, including
transfer times), we present geomean (peak) speedups of 7.43x (61.07x) against
Gunrock. Moreover, our fastest technique produces 47% fewer colors than cuSparse
and 7% fewer colors than Gunrock, based on the same JPL approach. Furthermore,
it generates 63% more colors than Atos based on the GM approach, which is known
to be slower but produces better coloring results.

3.2.2 Graph Coloring

Given a graph G, the target of graph coloring is to assign a color color(v) to every
vertex v ↓ V , such that if u ↓ ad j(v) then color(v) ↑= color(u). It is worth noting
that the graph coloring problem is well-defined only for undirected graphs; given that
no pair of adjacent vertices can have the same color, it is required that the property
of being adjacent is symmetric. In other words, if vertex v is adjacent to vertex u,
vertex u must also be adjacent to vertex v. For this reason, we run our experiments
on graphs that are either undirected or are directed but have been pre-processed to
double all their edges.

The classical approach to graph coloring sequentially visits all vertices v ↓V , and
assigns to each of them the color identified by the lowest number not yet assigned
to its neighbors. Algorithm 8 reports the pseudo-code of this greedy approach. The
quality of the solution depends on the order in which the nodes are considered. There
exists a specific ordering that generates the optimal solution with the least number
of colors possible, but finding this ordering is NP-hard [72]. Different heuristics
have been proposed as approximate orderings. For example, the Largest-Degree
First (LDF) heuristic [68], which colors vertices in order of decreasing degree,
usually produces surprisingly good results. Unfortunately, albeit very simple, the
greedy algorithm is inherently sequential and difficult to parallelize without major
modifications.

We developed two versions of the Gebremedhin-Manne and one of Jones-
Plassmann-Luby algorithm for multi-core CPUs. We also present two versions
of the Jones-Plassmann-Luby approach for many-core GPU architectures.

We compare our versions, architecturally and experimentally, with the csrColor
routine from the cuSparse library [81], the graph coloring program distributed with
the Gunrock library [82], and the task-based approach implemented in Atos [80].

90 Algorithms

Algorithm 8 Greedy Graph Coloring example
GREEDY (G = (V,E),colors)
1: V ⇒ ⇑V
2: for i = 1 to n do
3: Choose a vertex vi from V ⇒

4: color(vi)⇑ minc ↓ N\{colors(u) | u ↓ ad j(vi)}
5: V ⇒ ⇑V ⇒ \{vi}
6: end for

We analyze these algorithms in the following sections.

3.2.3 Jones-Plassmann-Luby

Luby [74] suggests that an independent set of nodes can be colored in parallel
with the same color without conflicts, and develops an algorithm to find maximal
independent sets in a graph.

Jones and Plassmann [75] develop Luby’s approach using independent sets. Their
strategy finds non-maximal independent sets by assigning a random number to each
vertex, and selecting all nodes whose random numbers are local maxima. Each node
in the independent set is then colored separately in parallel with the lowest color not
assigned to one of their neighbors.

We define the Jones-Plassmann-Luby procedure (JPL) as a middle ground be-
tween Jones-Plassmann and Luby’s algorithm. First, we find non-maximal indepen-
dent sets using the random values approach from the Jones-Plassmann algorithm.
Then, we color each independent set with a single color like Luby’s algorithm. The
process is repeated until all nodes are colored. The JPL procedure is reported in
Algorithm 9. First, every node v is assigned a random number !(v). Then, the
algorithm iterates until all nodes are colored. At each step, i of the iteration, an
independent set Ii is computed using random numbers. More specifically, a node
v is part of Ii if and only if it is yet to be colored, and every one of its neighbors
u ↓ ad j(v) is assigned a random value !(u) so that !(v)> !(u). We can say that, if
v ↓ Ii, v is a local maximum because its assigned random value is a maximum in the
locality of its (non-colored) neighbors. The iteration ends when all members of Ii

are assigned with the color i.

3.2 Graph Coloring on GPU 91

Algorithm 9 Jones-Plassmann-Luby coloring heuristic
JPL-COLOR (G = (V,E))
1: N ⇑V
2: i ⇑ 1
3: for v ↓ N do
4: !(v)⇑ random number
5: end for
6: while N ↑= /0 do
7: I ⇑ /0
8: for v ↓ N in parallel on GPU do
9: I ⇑ I ⇓{v}

10: for u ↓ (ad j(v)⇔N) do
11: if !(v)↖ !(u) then
12: I ⇑ I \{v}
13: end if
14: end for
15: end for
16: for v ↓ I in parallel do
17: color(v)⇑ i
18: end for
19: N ⇑ N \ I
20: i ⇑ i+1
21: end while

Following this logic, Algorithm 9 is divided into two main loops. The first
iteration (starting at line 3) contains the initialization of the random values associated
with each node in the graph. The second cycle colors the graph, and it is divided into
two more sections, i.e., the computation of an independent set (lines 8–15), and the
actual coloring (line 17). The introduction of independent sets allows coloring nodes
in parallel without risking inconsistencies in coloring adjacent nodes. However,
this procedure quickly computes each independent set, but then colors each one of
them independently; thus, it may require a large number of iterations. This situation
presents itself when sets of nodes with increasing random identifiers are adjacent
and form a linear sequence. For example, let us suppose that a node with label 1 is
adjacent to a node with label 2, which, in turn, is adjacent to a node with label 3. As
a consequence, only one node per iteration will be colored, as node 3 will be colored
first, followed by node 2 during the second iteration, and node 1 during the last loop.

Figure 3.2 shows the JPL algorithm applied to an example graph. Each random
number !(v) is displayed inside the corresponding node v that is not colored. For the
sake of simplicity, we use random integer numbers between 0 and 99. Figures 3.2b,

92 Algorithms

3.2c, 3.2d, 3.2e, and 3.2f show the state of the coloring after each iteration. In
Figure 3.2a, when all nodes are yet to be colored, we can notice the linear sequence
of nodes with random numbers 78 ↙ 62 ↙ 57 ↙ 40 ↙ 13, and how the length of
the chain (5) is equal to the number of iterations required to complete the coloring.

78

4762

57 40

56
47

16

1364

(a) Before 1st iteration.

4762

57 40

56
47

16

13

(b) Before 2nd time
frame.

57 40

56 16

13

(c) Before 3rd iteration.

40

16

13

(d) Before 4th itera-
tion.

13

(e) Before 5th iteration.
(f) Colored in 5 itera-
tions.

Fig. 3.2 Application of the Jones-Plassmann-Luby algorithm on a small graph of 10 nodes.

3.2.4 Gebremedhin-Manne

Gebremedhin and Manne [73] propose a parallel graph coloring algorithm whose
core idea is to allow inconsistencies in the coloring process. Specifically, they first
divide the vertices into p blocks. Then, they mock-color the vertices of all blocks in
parallel. We use the term “mock-color” because the resulting coloring may present
a conflict every time two (or more) adjacent vertices are colored by two (or more)
different threads simultaneously. Thus, the mock-coloring phase is followed by a
parallel phase to discover all conflicts and a final sequential phase where the conflicts
are rectified. They also present an improved version of the same algorithm to reduce
the number of colors generated during the mock-coloring step.

Algorithm 10 and Algorithm 11 show the standard and an improved algorithms,
respectively.

Algorithm 10 is formed by three sections, each corresponding to one for-loop. In
the first part (line 1), every graph node is colored in parallel, allowing for coloring
errors, i.e., two adjacent nodes can be assigned the same color. In the second part
(line 6), the errors generated in before are found. Each pair of neighboring nodes

3.2 Graph Coloring on GPU 93

is checked in parallel so that conflicting pairs are saved to be managed later. The
number of pairs to check can be reduced by only considering pairs of nodes that
were colored at the same time frame during the first part of the process. Time frames,
or steps, are a consequence of using a barrier in the first part. As only the nodes that
are colored at the same time can present a conflict in the colors assigned, and race
conditions between the working threads cause these conflicts, the authors suggest
to reduce the pairs of neighbors to avoid coloring inconsistencies. In Algorithm 10,
this is shown in the set of nodes S colored in the same step as the current node on
line 7, and on the intersection ad j(v)⇔S on line 8. Thus, K represents the nodes that
need to be recolored. In the third part (line 14), the nodes that were in conflict are
recolored, this time sequentially, to avoid adding more coloring errors that would
need to be discovered and corrected in the same way. The standard algorithm is
relatively slow, as the slowest thread, i.e., the one that colors the node with the most
neighbors each time frame, blocks the other threads on the barrier synchronization
on line 3. Experimentally, this is shown to take up between 80% and 90% of the
execution time.

Algorithm 10 Gebremedhin-Manne Standard Algorithm.
GEBREMEDHIN-MANNE-STANDARD (G = (V,E),colors)
1: for v ↓V in parallel do
2: colors(v)⇑ minc ↓ N\{colors(u) | u ↓ ad j(v)}
3: Barrier wait
4: end for
5: K ⇑ /0
6: for v ↓V in parallel do
7: S ⇑ nodes colored in the same step as v in line 2
8: for u ↓ (ad j(v)⇔S) do
9: if colors(v) = colors(u) then

10: K ⇑ K ⇓min{v,u}
11: end if
12: end for
13: end for
14: for v ↓ K do
15: colors(v)⇑ minc ↓ N\{colors(u) | u ↓ ad j(v)}
16: end for

Figure 3.3 shows a simple graph being colored following Gebremedhin-Manne
standard formulation using two blocks. Nodes with the same border color (red or
green) belong to the same block. We also assume that processors color the nodes
based on the status of the previous time frame, without entering race conditions

94 Algorithms

within the same frame. This assumption is a simplification, as the actual behavior
depends on how the processors are scheduled at runtime. Nodes within a block
are colored in lexicographical order, which we assume is clockwise, outer to inner,
starting from the top-most node. We report the state of the coloring after each time
frame in Figures 3.3b, 3.3c, 3.3d, 3.3e, and 3.3f. Figure 3.3g shows the state after
the conflict search step, which only detects a single conflict. Lastly, Figure 3.3h
reports the final coloring after the conflict correction step is completed. The solution
produced uses three colors, which we know is the lower bound to the number of
colors for this graph.

(a) Before 1st iteration (b) After 1st iteration (c) After 2nd iteration (d) After 3rd iteration

(e) After 4th iteration (f) After 5th iteration (g) Conflict search (h) Conflict resolution

Fig. 3.3 Application of the Standard Gebremedhin-Manne algorithm on a 10 nodes graph

Algorithm 11 tries to reduce the number of colors produced by Algorithm 10. It
can be logically divided into four parts. Parts one, three, and four are equivalent to the
ones appearing in the standard algorithm, in parts one, two, and three, respectively.
Part two performs a second coloring, still allowing for mistakes. The coloring is
performed by first dividing the nodes into color classes. A color class is the set
of nodes assigned the same color in part one of the algorithm. Then the coloring
from part one is deleted, and all nodes are recolored in parallel, starting from the
ones belonging to the color class that was assigned the largest color in part one,
and continuing with the color classes assigned with lower colors, until all nodes
are colored a second time. At the end of part four, the improved algorithm finds a
solution using a number of colors lower or equal to the number of colors used during
the first coloring at the end of part one [73]. Despite producing better coloring,
the improved algorithm is slower than the standard algorithm, as the coloring is
performed twice. The conflicts after part two are fewer than with the standard
algorithm, as shown empirically in the original research.

3.2 Graph Coloring on GPU 95

Algorithm 11 Gebremedhin-Manne Improved Algorithm
GEBREMEDHIN-MANNE-IMPROVED (G = (V,E),colors)
1: colors⇒ ⇑ colors
2: for v ↓V in parallel do
3: colors⇒(v)⇑ minc ↓ N\{colors⇒(u) | u ↓ ad j(v)}
4: Barrier wait
5: end for
6: for k from maxv↓V colors⇒(v) down to minv↓V colors⇒(v) do
7: ColorClass ⇑ {v ↓V | colors⇒(v) = k}
8: for v ↓ColorClass in parallel do
9: colors(v)⇑ minc ↓ N\{colors(u) | u ↓ ad j(v)}

10: end for
11: Barrier wait
12: end for
13: K ⇑ /0
14: for v ↓V in parallel do
15: for u ↓ ad j(v) do
16: if colors(v) = colors(u) then
17: K ⇑ K ⇓min{v,u}
18: end if
19: end for
20: end for
21: for v ↓ K do
22: colors(v)⇑ minc ↓ N\{colors(u) | u ↓ ad j(v)}
23: end for

96 Algorithms

The two previous procedures can be considered as “synchronous” as all threads
wait on a barrier (Algorithm 10 on line 3, and Algorithm 11 on lines 4 and 11)
before proceeding to the next iteration. Unfortunately, in these algorithms, 90% of
the time is spent waiting on the barriers. Thus, Algorithm 10 can be converted to
an asynchronous version by removing the barrier wait synchronization on line 3;
consequently, line 7 is substituted with S ⇑V as, without the barrier, there are no
more time frames. Similarly, Algorithm 11 can be made asynchronous by removing
the barrier wait call on lines 4 and 11. The asynchronous formulations run faster
than their synchronous counterpart as the bottleneck on the barrier synchronization
is removed. However, the coloring produced by the asynchronous algorithm is
more affected by the execution schedule and generally uses more colors than the
synchronous algorithm.

In their paper, Gebremedhin and Manne propose to divide the n nodes to be
colored in p blocks of n/p nodes. Each block Vi is then assigned to a processor pi,
with (1 ↖ i ↖ p), that works on that block alone. The paper fails to address how the
nodes are distributed across the blocks. The chosen distribution rule determines how,
in cases where (n/p) is not an integer, the remaining (n mod p) nodes are distributed
into the partitions. In our implementation of the algorithms, we decided to assign
the nodes to the blocks based on their lexicographical ordering. The first p nodes
are assigned one to each block, then the second p nodes, and so on. Each block Vi is
composed of the nodes:

{vk∝p+i | 1 ↖ k ↖ ′n/p∞}

like in the example of Figure 3.3a. With our distribution policy, if (n/p) is not
an integer, we consider (n mod p) more nodes that are not part of the original set
V . We call these “ghost” nodes, and they are distributed so that all blocks are of
the same size ′n/p∞. Ghost nodes are dummy nodes and do not belong to the
original graph, so they do not need to be colored. Instead, in the synchronous
versions of the algorithm, they serve the purpose of keeping all processors inside
the first for-loop (Algorithm 10 line 1 and Algorithm 11 line 2). In this way, all
processors leave the for-loop after ′n/p∞ iterations, and there is no need to resize the
barrier to accommodate processors that would exit earlier. For the sake of brevity
and simplicity, we did not add the block-separator steps in Algorithm 11, since
the algorithm itself still implies that the concurrency is limited by the number of
processors.

3.2 Graph Coloring on GPU 97

3.2.5 Atos

Chen et al. [80] propose Atos, i.e., a parallel task-based methodology applicable to
GPUs that derives from the GM approach. Atos proposes to run a pair of GPU kernels
split over two different algorithms. The first kernel works on a frontier consisting
of the non-colored nodes and assigns a color to it in a Gebremedhin-Manne-like
manner. In practice, the kernel selects a color based on the node’s neighborhood, and
then adds the node to the frontier of the second kernel. The second kernel checks
the correctness of the assignment, making sure that two adjacent nodes never have
the same color. It then consumes the nodes newly colored by the first kernel and
treats them differently based on the success or failure of the check. In the case of
no conflict, the node is removed from the frontier and is permanently colored; on
the contrary, in the case of a conflict the node is reassigned to the frontier of the
first kernel, forcing it to a new coloring phase. The process continues until all nodes
have been permanently colored and no conflict is present anymore. The approach
has been designed to prevent the two main problems of Bulk Synchronous Parallel
algorithms, i.e., programs that fully utilize the GPU launching a single GPU-wide
kernel. The two problems are Load Imbalance and Small Frontier. The former of the
two occurs when some threads are faced with significantly more computations than
others. The latter happens when there are fewer processes available than the number
of threads available.

3.2.6 Cohen-Castonguay

Cohen and Castonguay [76] present a GPU-based algorithm for graph coloring
derived from the JPL algorithm. They suggest three critical modifications to the
original algorithm.

The first suggestion consists in improving the number of nodes that can be
concurrently colored at each iteration. To maintain the efficiency of the original
algorithm, they propose a way to select two independent sets that are disjointed with
little or no extra complexity. In each iteration, the authors search the set of local
maxima IM

i , as shown in Section 3.2.3, and the set of local minima Im
i . These two

sets are independent, which means that there are not adjacent node pairs belonging
to the same set. This property holds because it is not possible for two adjacent nodes
to simultaneously share the property of having the highest (for the set IM

i) and the

98 Algorithms

lowest weight (for the set Im
i) weight among all their neighbors. Moreover, except

for nodes with no neighbors, the two sets are also disjoint since it is not possible for
a node with neighbors to possess a weight simultaneously larger and smaller than
the weights of every other adjacent node. These two properties allow us to color the
two sets in parallel with two distinct colors in a single pass [83]. Furthermore, they
prove that a parallel algorithm cannot select more than two disjoint independent sets
per iteration in the JPL function [83].

The second modification is based on the observation that the vector of random
values resides in memory, and each access to one of its element is inherently slow.
They suggest that it is possible to disregard the necessity to have the vector of random
values by using the hash function H : V ↙ K, where K is a general set where its
members can be ordered. A hash function can compute seemingly random values if
given the node identifiers as input. The results can be maintained in registers for fast
access, then discarded, and recomputed on the fly when needed again. Even if each
number must be recomputed several times, the strategy is faster than accessing the
value in the main memory.

The third modification is based on the idea of using k hash functions H1, . . .Hk,
thus finding more than two sets per iteration. It must be noted that a function Hi

generates two disjoint independent sets, but the two sets, generally, are not disjoint
from the two sets generated by another function Hj. Thus the hash functions must
be sorted, and a lower-ranking function can consider only nodes not colored by
the higher-ranking functions. By using k hash functions, it is possible to color 2k
sets at a time, significantly reducing the number of iterations needed to color the
whole graph. However, the number of hash functions k must be carefully chosen.
Having too many hash functions may reduce the speed of the algorithm and hinder
the quality of the solution as overlapping independent sets need to be made disjoint
before coloring, adding overhead to the algorithm.

These observations make the algorithm perfect for SIMT architecture, where
the main bottlenecks are often the memory bandwidth and global synchronization
needed to run an algorithm like JPL. Since the hash functions implemented in the
algorithm do not change, Cohen-Castonguay is a deterministic algorithm, meaning
that given the same input, the output will always be the same as well. Among the
algorithms that we considered, this is the only one to have this property intrinsically
implemented. The Jones-Plassmann-Luby algorithm can also be adapted to ensure a

3.2 Graph Coloring on GPU 99

deterministic result by using a seed for the random number generation. Similarly,
Gunrock and our implementation, based on JPL, can be modified accordingly. The
Cohen-Castonguay algorithm is made available through the csrColor routine of the
cuSparse library [81].

3.2.7 Gunrock

Gunrock [82] is an open-source library designed to solve graph processing problems
on CUDA-enabled GPUs. Gunrock is distributed with a wide variety of graph
primitives, among which there is a graph coloring primitive. Gunrock’s graph
coloring algorithm follows the research by Osama et al. [79]; the implementation,
described in Algorithm 12, follows a variation of the JPL algorithm. Similar to the
Cohen-Castonguay algorithm presented in Section 3.2.6, Gunrock searches for two
independent sets per iteration. However, it retains the vector of random values, called
rand in Algorithm 12. Moreover, their algorithm does not need any form of load
balancing that would imply conspicuous time overheads. Their tests show that their
implementation is the fastest one on GPUs.

In our experiments, we adopted the Gunrock library within the development
branch dated 15 November 2021. This version of the coloring algorithm has a
flaw [84], causing infinite loops and preventing the program from finishing with
a correct solution. The problem is caused by the management of the rand vector.
Initially, the vector is populated with random, single-precision floating point values.
In lines 15 and 18 of Algorithm 12, the process compares two values of the vector
to choose the node v to remove from the corresponding independent set. However,
if rand(v) = rand(u), nodes v and u are both removed from both sets by their
respective threads. As a consequence, both v and u are never part of an independent
set, meaning that they will never be colored, thus leading to an infinite loop as the
algorithm terminates when all nodes are colored.

We propose two different approaches to fix this problem.

Our first approach follows the observation that a simple tie-breaking condition
would solve the issue when comparing the two values. Thus, we substitute the
conditional on line 15 with rand(v)< rand(u) or (rand(v) = rand(u) & v < u) and
the conditional on line 18 with rand(v)> rand(u) or (rand(v) = rand(u) & v > u).
In this new version, the tie is broken with a comparison of the two node indexes,

100 Algorithms

Algorithm 12 Gunrock coloring procedure.
GUNROCK-COLOR (G = (V,E),rand,colors)
1: i ⇑ 0
2: N ⇑V
3: while N ↑= /0 do
4: if i mod 2 = 0 then
5: for v ↓ N in parallel on GPU do
6: rand(v)⇑ random number
7: end for
8: end if
9: c ⇑ 2∝ i+1

10: k ⇑ 2∝ i+2
11: for v ↓ N in parallel on GPU do
12: IM ⇑ IM ⇓{v}
13: Im ⇑ Im ⇓{v}
14: for u ↓ (ad j(v)⇔N) do
15: if rand(v)↖ rand(u) then
16: IM ⇑ IM \{v}
17: end if
18: if rand(v)∈ rand(u) then
19: Im ⇑ Im \{v}
20: end if
21: end for
22: end for
23: for v ↓ IM in parallel on GPU do
24: colors(v)⇑ c
25: end for
26: for v ↓ (Im \ IM) in parallel on GPU do
27: colors(v)⇑ k
28: end for
29: N ⇑ N \ IM

30: N ⇑ N \ Im

31: i ⇑ i+1
32: end while

3.2 Graph Coloring on GPU 101

which are unique by definition. In other words, a node v is considered a local
maximum if rand(v)∈ rand(w) & v > u,↔w ↓ N,↔u ↓ M, where N = {w1, . . .wk}
is the set of the non-colored nodes adjacent to v, and M = {u1 . . .ub} ≃ N is the
subset of N where rand(v) = rand(ui). Similarly, a node v is considered a local
minimum if rand(v)↖ rand(w) & v < u,↔w ↓ N,↔u ↓ M.

Our other approach takes inspiration from previous versions of the coloring
primitives where the rand vector had its values regenerated every other iteration. This
approach fixes the issue because if v and u are assigned the random values randi(v) =
randi(u) at iteration i, it is expected that at iteration j ∈ i+2, rand j(v) ↑= rand j(u).
In this way, two adjacent nodes can share the random maximum or minimum at
some point, but will be colored at a later iteration, when the random values are
eventually different. We get confirmation from the Gunrock developers that this
second approach enables the intended behavior of their tool [84]. In Section 3.2.9,
we refer to the Gunrock implementation complete with this approved fix. The
regeneration happens in the block on line 4 of Algorithm 12.

In Figure 3.4, we report an example of a graph colored with the JPL implemen-
tation from Gunrock. The graph used and the associated random numbers are the
same as adopted in Figure 3.2, to simplify the comparison of the two algorithms.
Figures 3.4b, 3.4c, and 3.4d show the state of the graph after each iteration of the
algorithm. The chain of nodes with random numbers 78 ↙ 62 ↙ 57 ↙ 40 ↙ 13
is colored from both ends simultaneously, thus reducing the number of iterations
needed to complete the coloring. Moreover, after 2 iterations, the random numbers
of the nodes are recomputed. Figure 3.4c shows the state of the graph before starting
the 3rd iteration, after the recomputation is finished; however, only one node remains
to be colored. The recomputation is inconsequential in this small example, but it
helps in reducing the number of colors and iterations on larger graphs. The graph is
colored using the same number of colors as in Figure 3.2, but using half the number
of iterations rounded up.

3.2.8 Our Coloring Procedure

Our implementation follows the Jones-Plassmann-Luby algorithm described in
Section 3.2.3. We designed our code to be compiled in two versions: One finding
a single independent set for each iteration, and the other finding two independent

102 Algorithms

78

4762

57 40

56
47

16

1364

(a) Before 1st iteration

4762

57 40

56
47

(b) Before 2nd iteration

1

(c) Before 3rd iteration (d) Fully colored

Fig. 3.4 Application of the Gunrock implementation of the JPL algorithm on a 10 nodes
graph

sets. The two versions enable us to verify the speedup reported by Osama et al. [79],
that can be achieved finding two independent sets per iteration. We will show in
Section 3.2.9 that our speedup of the Min Max approach against the Max approach
ranges between 1.5X and 2X on average. We declare the kernel function COLOR_JPL,
which takes as input the entire graph in CSR format, the pre-initialized array of
random values rand, and the array where to store the colors. The total memory
occupancy on the GPU is of

!
4⇐ (3n+m+1)

"
bytes, assuming the architecture

uses 32 bit integers. When working with graph instances that do not fit in the limited
memory of the GPU, we partition the nodes of the graph in lexicographical order so
that they fit in memory; thus, we perform multiple colorings to color each partition
separately. The pseudo-code for the kernel function is shown in Algorithm 13.

To solve the problem of two neighboring nodes being assigned the same random
value, as described in Section 3.2.7, we proceed as follows. In the first phase, to
obtain the array rand received as a parameter by the function COLOR_JPL, we pre-
generate a random permutation of a set of unique items such as V . We call this
technique value permutation. Generating permutations is a simple yet powerful
way to solve the problem of two neighboring nodes being assigned the same random
value. Thus, our rand array contains a permutation of V , unlike Gunrock’s rand
array, which includes random floating point numbers. To perform this task, we
initially adopted the randomization function std::shuffle

1 available in the C++
standard library. Unfortunately, even though this function has linear complexity in the
size of the array (i.e., the number of nodes in the graph), a close investigation of the
entire execution time (not just the coloring phase), showed us that the computational
overhead on large graphs could obfuscate the advantage of our approach. Although
the array generation requires only the number of nodes of the graph to be performed,
and its time could be entirely masked by other algorithmic phases performed in

1https://en.cppreference.com/w/cpp/algorithm/random_shuffle

3.2 Graph Coloring on GPU 103

Algorithm 13 Our implementation of the Jones-Plassmann-Luby algorithm
COLOR_JPL (G = (V,E),rand,colors)
1: i ⇑ 0
2: N ⇑V
3: while N ↑= /0 do
4: c ⇑ 2∝ i+1
5: k ⇑ 2∝ i+2
6: for v ↓ N in parallel on GPU do
7: IM ⇑ IM ⇓{v}
8: Im ⇑ Im ⇓{v}
9: rv ⇑ rand(v+ i (mod n))

10: for u ↓ (ad j(v)⇔N) do
11: ru ⇑ rand(u+ i (mod n))
12: if rv ↖ ru then
13: IM ⇑ IM \{v}
14: end if
15: if rv ∈ ru then
16: Im ⇑ Im \{v}
17: end if
18: end for
19: end for
20: for v ↓ IM in parallel on GPU do
21: colors(v)⇑ c
22: end for
23: for v ↓ (Im \ IM) in parallel on GPU do
24: colors(v)⇑ k
25: end for
26: N ⇑ N \ IM

27: N ⇑ N \ Im

28: i ⇑ i+1
29: end while

104 Algorithms

parallel (such as allocating, building, or loading the graph itself), we decided to
investigate faster solutions. We reduced the generation time of the rand vector to
a fraction of the original time by randomly generating the array using a custom
fast_rand function. The fast_rand function is a multiply-with-carry pseudo-
random number generator, that allows to produce sequences of pseudo-random
values with very long period, by using simple integer arithmetic logic. The function
generates a weaker scattering of the generated values but this feature does not
decrease the quality of the solution. This consideration may raise the question of how
much quality of the randomness we can give away to speed up the vector generation
process while not losing the quality and speed of the color computation. This area
may be interesting for a future study on the subject. Moreover, inspired by our fix of
the Gunrock implementation, we also change the random values assigned to each
node every iteration. As in the Gunrock approach, regenerating the random values
has a positive impact on the number of colors, since it helps split long chains of
monotonic random values that would need many iterations to be colored. To avoid the
overhead required by the generation of new arrays, we simulate a new permutation
by accessing the same array circularly. In this way, the array still contains the same
values, but each vertex v is assigned a new “random” value randk(v) after k shifts,
and the regeneration cost is meager. Shifting a n-element array in the device’s global
memory is an operation that requires synchronization between the threads of the grid,
and programming a GPU to perform it requires some care. However, the random
value of vertex v after k iterations, i.e., randk(v), is the random value of vertex

!
v+k

mod n
"

after 0 iterations, i.e., rand0
!
v+k mod n

"
. In other words, shifting an array

by k positions to the left is equivalent to increment the index of the same amount k
and performing the proper modulo operation to remain within the array’s bound. We
call this technique index shift, as it simulates an array circular shift by manipulating
the index used to access the array. To simulate subsequent circular left shifts, one
after each iteration, we decide to increase by one the indexes used by each thread
cumulatively to access the rand array. Shifting the index does not add any significant
overhead to the computation, as we do not write nor move data in memory. This
technique is reported in Algorithm 13 on lines 9 and 11. Further experiments show
that while the shift itself is always effective in reducing the number of colors; in
some situations, this reduction can be further optimized by a full regeneration of the
vector of random weights. By investigating the nature of these cases, we discovered
that the probability that two adjacent nodes share an arc is higher than the probability

3.2 Graph Coloring on GPU 105

that any pair of nodes share an arc. Although this proved to be valid only on some
graphs, the non-correlation between nodes with neighboring indices could not be
taken for granted. Given the nature of the problem, we increase the shift in the vector,
such that the probability that the two nodes separated by a number of elements equal
to the shift have a relationship is reduced considerably, Precisely as in the case of
shifting a single element, this operation adds almost no computational cost, since it
only changes the memory access address.

Section 3.2.9 shows that our approach reduces the number of iterations needed
to compute the final coloring. Consequently, our code runs faster and solves all our
benchmarks with fewer colors than all previous implementations. Moreover, our
experiments unveil that shifts greater than four rarely give any benefit. Although this
value has been evaluated experimentally, its meaning is the following. Shifting the
vector of random numbers changes the relationships between the nodes possessing
the various weights. An extremely simple analysis, which can be performed at
almost no additional cost when reading the file, is calculating the highest number of
consecutive nodes that form adjacency chains. A shift of a length greater than this
chain would allow us to avoid having the same random number assigned to another
element of the same chain. However, this would still be a superficial analysis, since
the values don’t need to leave the chain in which they are located, as it is sufficient
to vary the configuration of the adjacent nodes. Consequently, the size of the shift
can be expressed as a function of the size of the graph and how dense or sparse it is.

Figure 3.5 shows how our implementation of the JPL algorithm colors the same
small graph used in all other examples. The numbers we permute after each iteration,
the ones stored in the array rand, are displayed inside their corresponding node
v. The numbers are unique and included in the range of integers between 0 and 9.
Figures 3.5b, 3.5c, and 3.5d show the state of the graph after each iteration of the
algorithm. The unique numbers move according to the technique of index shifting.
In the picture, we assume the nodes are ordered clockwise, outer to inner, starting
from the top-most node. Each permutation moves those numbers corresponding to
the circular left shift of the array. The final solution of Figure 3.5d is congruent
with the one obtained by the original Gunrock implementation (and represented in
Figure 3.4), but the algorithm runs faster and uses fewer colors, as we illustrate in
the next section.

106 Algorithms

7

15

3 4

2
8

6

90

(a) Before 1st iteration

1

48

5 3

7
6

9

02

(b) Before 2nd iteration

4

36

8 5

1
9

0

27

(c) Before 3rd iteration

4

36

8 5

1
9

0

27

(d) Fully colored

Fig. 3.5 Application of our implementation of the JPL algorithm on a 10 nodes graph

3.2.9 Experimental Results

We perform our experiments on an i9 10900KF CPU running at 3.7 GHz, with 10
cores, 20 threads, and 64 GB of RAM, coupled with a GPU NVIDIA RTX 3070
with 5888 CUDA cores and 8 GB of dedicated memory. The operating system is
Linux Ubuntu 22.04.1 LTS. The code was compiled using Clang version 16.0.4 for
the CPU implementations, and NVIDIA’s CUDA Compiler (NVCC) version 12.0
for the GPU programs.

We run the coloring implementations described in Sections 2.4.1 and 3.2.8 on
the set of graphs reported in Table 3.1. The set contains the same graphs used by
Osama et al. [79], plus some extra graphs, namely, email_Enron, twitch_gamers,
qg.order100, hollywood-2009, indochina-2004, and soc-LiveJournal1 For each graph,
the table reports the number of vertices and edges. Column Type indicates whether
the graphs are real (r) or generated (g), and undirected (u) or directed (d). Moreover,
the last part of the table includes graphs showing a power-law degree distribution
(p). These five graphs marked with letter (p) are kept separated because the coloring
algorithms have different behavior (and performances) on these instances. We gath-
ered the graphs through the Sparse Matrix Collection website [85], if not otherwise
specified.

If we consider the larger test graph, i.e., rgg_n_2_24_s0, with more than 16
million nodes, our implementation requires a GPU memory of

4⇐ (3n+m+1)
= 4⇐ (3⇐16,777,216+265,114,400+1)
∋ 1.18 GB

As a consequence, memory is not an issue, as the most extensive graph occupies
less than 15% of the total memory available in our GPU. To take into consideration
runtime fluctuations and provide a better estimate of the number of colors used by all

3.2 Graph Coloring on GPU 107

Graph Nodes Edges Avg degree Type
1 af_shell3 504,855 17,588,875 34.8 ru-
2 apache2 715,176 4,817,870 6.7 ru-
3 ecology2 999,999 4,995,991 5.0 ru-
4 G3_circuit 1,585,478 7,660,826 4.8 ru-
5 offshore 259,789 4,242,673 16.3 ru-
6 parabolic_fem 525,825 3,148,801 6.0 ru-
7 thermal2 1,228,045 8,580,313 7.0 ru-
8 ASIC_320ks 321,671 1,827,807 5.7 rd-
9 atmosmodd 1,270,432 8,814,880 6.9 rd-

10 cage13 445,315 7,479,343 16.8 rd-
11 FEM_3D_thermal2 147,900 3,489,300 23.6 rd-
12 thermomech_dK 204,316 2,846,228 13.9 rd-
13 rgg_n_2_15_s0 32,768 320,480 9.8 gu-
14 rgg_n_2_16_s0 65,536 684,254 10.4 gu-
15 rgg_n_2_17_s0 131,072 1,457,506 11.1 gu-
16 rgg_n_2_18_s0 262,144 3,094,566 11.8 gu-
17 rgg_n_2_19_s0 524,288 6,539,532 12.5 gu-
18 rgg_n_2_20_s0 1,048,576 13,783,240 13.1 gu-
19 rgg_n_2_21_s0 2,097,152 28,975,990 13.8 gu-
20 rgg_n_2_22_s0 4,194,301 60,718,396 14.5 gu-
21 rgg_n_2_23_s0 8,388,608 127,002,786 15.1 gu-
22 rgg_n_2_24_s0 16,777,216 265,114,400 15.8 gu-
23 qg.order100[86] 10,000 1,980,000 198.0 gd-
24 twitch_gamers [87] 168,114 13,595,114 80.9 rup
25 email_Enron 36,692 367,662 10.0 rdp
26 hollywood-2009 1,139,905 112,751,422 98.9 rup
27 indichina-2004 7,414,866 301,969,638 40.7 rdp
28 soc-LiveJournal1 4,847,571 85,702,474 17.7 rdp

Table 3.1 The main characteristics of the benchmark graphs used during our experimental
analysis. The graphs are numbered from 1 to 28 to find an easy correspondence in the
following plots. Column Type indicates the main characteristics of each graph: Real (r) or
generated (g), undirected (u) or directed (d), following a power-law degree distribution (p)
or not (-). Notice that power-law graphs, which have distinct characteristics and on which the
different approaches behave differently, have been inserted in the second part of the table.

108 Algorithms

non-deterministic algorithms, we run each implementation 20 times on each graph.
Thus, our tables report the average time spent coloring the graph and the average
number of colors used, rounded to the nearest integer.

Graph
CPU-based GPU-based

State-of-the-art Our Methods
GMs-imp GMa-std JPLmin-max cuSparse Gunrock Atos JPLmax JPLmin-max

1 af_shell3 1387.70 63.39 29.31 5.97 28.09 12.15 10.14 5.63
2 apache2 1888.60 30.10 7.67 3.89 1.19 12.30 1.67 0.32
3 ecology2 2679.50 36.73 6.99 3.22 0.87 16.56 1.54 0.32
4 G3_circuit 4267.00 58.88 9.06 4.16 1.18 52.09 1.97 0.49
5 offshore 695.62 18.70 9.36 3.48 3.29 3.93 1.68 0.98
6 parabolic_fem 1371.00 22.76 5.94 2.79 1.06 0.84 1.22 0.43
7 thermal2 3285.30 59.97 9.37 4.52 2.03 3.83 2.00 0.88
8 ASIC_320ks 833.46 13.29 5.17 3.75 3.42 0.93 3.23 1.84
9 atmosmodd 3434.60 58.63 10.76 4.57 1.72 20.48 2.32 0.56

10 cage13 1182.90 32.68 15.14 4.70 5.72 2.47 2.78 1.76
11 FEM_3D_thermal2 396.37 13.58 11.85 4.29 3.48 6.03 1.87 0.84
12 thermomech_dK 540.76 13.36 6.56 3.44 2.04 1.42 1.09 0.73
13 rgg_n_2_15_s0 87.68 2.14 4.06 3.11 0.60 0.89 0.37 0.30
14 rgg_n_2_16_s0 174.27 3.90 4.71 3.20 0.76 1.02 0.47 0.31
15 rgg_n_2_17_s0 342.79 7.93 5.83 3.25 1.16 1.50 0.73 0.37
16 rgg_n_2_18_s0 684.74 15.60 8.24 4.45 2.10 2.39 1.18 0.72
17 rgg_n_2_19_s0 1397.50 31.94 11.53 3.91 4.43 4.47 3.03 0.78
18 rgg_n_2_20_s0 2806.80 66.06 19.35 5.71 8.38 7.95 5.02 2.10
19 rgg_n_2_21_s0 5814.40 139.64 32.26 8.68 16.90 16.70 9.83 4.23
20 rgg_n_2_22_s0 11988.00 285.03 56.44 15.29 35.85 35.21 18.95 12.14
21 rgg_n_2_23_s0 24789.00 592.69 113.59 38.11 77.22 70.82 45.29 19.64
22 rgg_n_2_24_s0 52785.00 1221.10 230.46 75.73 167.91 140.41 103.40 45.07
23 qg.order100 51.98 15.65 98.24 12.99 35.51 3.94 21.61 10.66
24 twitch_gamers 525.55 51.39 143.25 75.60 2774.60 2.54 2112.30 1012.20
25 email_Enron 99.69 3.16 19.98 9.50 36.74 1.48 23.30 12.79
26 hollywood-2009 80926.00 579.20 1250.26 268.14 8526.83 69.42 7215.19 3263.75
27 indochina-2004 1266230.00 4105.95 2382.04 1450.90 55313.78 642.28 32072.10 14824.90
28 soc-LiveJournal1 7954.65 593.27 648.35 98.61 2083.13 119.15 1910.77 1003.30

Table 3.2 Average coloring time for each one of our implementations. Columns’ headers
have the meaning described in the itemization included in the main text. On the CPU-side,
we indicate with GMs-imp and GMa-std our implementations of the GM synchronous
and asynchronous algorithm, and with JPLmin-max the JPL procedure. On the GPU side,
we report the results of cuSparse, Gunrock, and Atos. The last two columns include our
implementations on GPU. Once more, the graphs after the horizontal line (used as a separator)
follow a power-law degree distribution.

Table 3.2 reports the coloring times (in milliseconds) for each graph, and the
following algorithms:

• GMs-imp, our improved synchronous version of Gebremedhin-Manne (Algo-
rithm 11), running on the CPU.

• GMa-std, our standard asynchronous version of Gebremedhin-Manne (Algo-
rithm 10), running on the CPU.

3.2 Graph Coloring on GPU 109

• JPLmin-max, our implementation of the JPL min-max procedure (Algo-
rithm 9) executing on CPU.

• cuSparse [76], i.e, the csrColor Cohen and Castonguay procedure (Section 3.2.6),
running on the GPU.

• Gunrock [79], Gunrock’s algorithm (Algorithm 12), running on the GPU,

• Atos [80], a custom implementation of GM on GPU originally running on
Volta architectures.

• JPLmax and JPLmin-max, our index-shift implementations (Algorithm 13)
running on the GPU.

Notice that Table 3.2 considers only the coloring times and ignores all pre-processing
and post-processing overheads, as done by the authors of all other approaches. We
present results including pre- and post-processing times (comprising transfer times)
in Table 3.3.

For the majority of the graphs, our two implementations of the Gebremedhin-
Manne algorithm, running on parallel CPU, are slower compared to the implementa-
tions (both our own and state-of-the-art) executing on the GPU. The synchronous
implementation is between 1 and 4 orders of magnitude slower than the best result we
obtain on the GPU, while the asynchronous implementation is between 0 and 2 orders
of magnitude slower. However, it is interesting how these slower implementations,
especially the asynchronous one, perform comparably or even better on specific
graphs, such as, twitch_gamers, email_Enron and qg.order100, hollywood-2009,
indochina-2004, and soc-LiveJournal1, which for the most part are the ones to show
a power-law degree distribution. The Cohen-Castonguay implementation, which
on the other graphs shows the worst performance on the GPU, performs the best
on these six graphs out of the GPU algorithms. To better understand this peculiar
behavior, we analyze the topology of these graphs. All graphs share a large maxi-
mum degree: twitch_gamers has a maximum degree of 35279, email_Enron of 1383,
hollywood-2009 of 11467, indochina-2004 of 256425, soc-LiveJournal1 of 20333,
and all nodes of qg.order100 have a degree of 198. Furthermore, all graphs, except
for qg.order100, have a power-law degree distribution, which implies the presence
of a minimal number of nodes with an enormous number of edges. These degrees
are very high when compared to the other benchmark graphs; among the others, the

110 Algorithms

highest degree is presented by ASIC_320ks, which has a maximum degree of 412,
but an average degree of 5.7, meaning that the majority of its nodes have a much
lower degree. On the implementations of the JPL algorithm for GPU, including
the Gunrock implementation, nodes with these large degrees cause many issues of
memory read instructions inside the loops on line 10 of Algorithm 13 and on line 14
of Algorithm 12, to fetch the random number associated with each neighbor. On
graphs twitch_gamers and email_Enron, where node degrees vary, this also causes
load imbalance, as threads assigned to color small-degree nodes are idle, while
threads coloring large-degree nodes take a longer time to check all the neighbors. As
the process of checking all neighbors is repeated at each iteration until the node with
the most significant degree is colored, the total runtime of the algorithm becomes
longer.

On the other hand, the Cohen-Castonguay algorithm does not suffer as much
when running on these graphs because it computes the random values at runtime
using hash functions, and the implementation assigns a larger number of colors for
each iteration, ultimately completing coloring in fewer iterations. Similarly to the
Gebremedhin-Manne CPU implementation, Atos shows excellent performance on
these graphs. As Atos can assign a color reading the list of neighbors only once for
each node, it potentially creates many conflicts; however, it also severely improves
the overall performance when it converges faster. We can see this behavior both
on the GPU and the CPU, except for the graph indochina-2004 in which the JPL
CPU implementation outperforms the GM program. However, this is due to the poor
thread scheduling that causes a huge oscillation in execution time over multiple runs,
negatively impacting the average performances. GM-based methods still outperform
JPL-based ones on this graph in the best case.

Table 3.3 compares wall-clock times considering the entire process, comprised
of the pre-processing, coloring, and post-processing phases. The table illustrates
the impact of our array generation process and the transfer time (to and from the
GPU) on the overall execution time. The time required by our algorithm is divided
into five steps such that the only time ignored are the ones required to read and
write the graph to disk. The first three execution steps can be merged in Gunrock’s
pre-process time. Even though the transfer time is usually more significant than
the execution time, we can still show that our implementation is able to solve all
of our instances in less time than Gunrock. Speedups vary from 2.17x to 61.07x
with a geomean speedup of 7.43x. Moreover, please notice that, to the best of

3.2 Graph Coloring on GPU 111

#
G

raph
G

unrock
JPLm

in-m
ax

Speedup
Preprocess

Process
Postprocess

Total
Preprocess

Process
Postprocess

Total
R

andom
ization

A
llocation

Transfer
1

af_shell3
74.74

28.09
6.04

108.87
2.91

0.34
6.44

5.50
0.24

15.43
7.06

2
apache2

57.60
1.19

6.54
65.33

4.10
0.26

2.23
0.39

0.32
7.30

8.95
3

ecology2
51.02

0.87
8.95

60.84
5.75

0.26
2.51

0.36
0.41

9.29
6.55

4
G

3_circuit
58.78

1.18
13.93

73.89
9.01

0.31
3.95

0.57
0.61

14.45
5.11

5
offshore

53.98
3.29

2.95
60.22

1.50
0.28

1.76
0.82

0.17
4.53

13.29
6

parabolic_fem
50.16

1.06
4.99

56.20
2.96

0.27
1.66

0.38
0.26

5.53
10.16

7
therm

al2
52.59

2.03
10.77

65.39
7.02

0.32
4.78

0.74
0.59

13.45
4.86

8
A

SIC
_320ks

58.98
3.42

3.11
65.50

1.81
0.27

0.94
1.29

0.20
4.51

14.53
9

atm
osm

odd
53.23

1.71
11.76

66.71
7.31

0.31
4.00

0.64
0.51

12.77
5.22

10
cage13

53.14
5.72

5.20
64.07

2.48
0.25

2.94
1.60

0.24
7.51

8.53
11

FEM
_3D

_therm
al2

49.73
3.48

2.02
55.23

0.86
0.27

1.32
0.95

0.10
3.50

15.78
12

therm
om

ech_dK
54.49

2.04
2.32

58.85
1.17

0.27
1.19

0.51
0.14

3.28
17.94

13
rgg_n_2_15_s0

53.26
0.60

0.49
54.35

0.20
0.27

0.20
0.19

0.03
0.89

61.07
14

rgg_n_2_16_s0
61.82

0.76
0.76

63.34
0.39

0.27
0.35

0.24
0.05

1.30
48.72

15
rgg_n_2_17_s0

48.31
1.16

1.27
50.74

0.82
0.28

0.66
0.37

0.09
2.22

22.86
16

rgg_n_2_18_s0
61.40

2.10
2.71

66.21
1.59

0.28
1.39

0.63
0.17

4.06
16.31

17
rgg_n_2_19_s0

51.60
4.43

5.04
61.08

3.18
0.28

2.88
1.11

0.26
7.71

7.92
18

rgg_n_2_20_s0
69.09

8.38
10.06

87.53
6.38

0.49
6.25

2.24
0.45

15.81
5.54

19
rgg_n_2_21_s0

71.55
16.90

18.47
106.92

12.70
0.40

11.64
4.69

0.79
30.22

3.54
20

rgg_n_2_22_s0
105.89

35.85
32.93

174.66
23.34

0.61
24.03

9.79
1.52

59.29
2.95

21
rgg_n_2_23_s0

149.53
77.22

62.62
289.37

38.21
0.94

49.69
22.38

2.88
114.10

2.53
22

rgg_n_2_24_s0
246.17

167.91
122.67

536.76
60.34

1.59
81.43

52.24
6.38

201.98
2.65

23
qg.order100

49.59
35.51

0.64
85.75

0.06
0.27

0.74
9.01

0.01
10.09

8.50
24

tw
itch_gam

ers
66.67

2774.63
3.77

2845.08
1.00

0.32
4.97

1012.45
0.11

1018.85
2.79

25
em

ail-Enron
62.16

36.74
0.49

99.39
0.25

0.26
0.18

14.56
0.03

15.28
6.50

26
hollyw

ood-2009
141.02

8086.35
12.41

8239.78
0.26

0.75
38.61

3510.13
0.47

3550.21
2.32

27
indochina-2004

273.73
58306.92

57.27
58637.92

39.28
1.70

104.76
15933.30

2.52
16081.56

3.65
28

soc-LiveJournal1
119.12

2230.96
39.58

2389.66
1.08

0.68
30.56

1066.01
1.67

1100.00
2.17

Table 3.3 Detailed comparison of our JPL min-max approach against Gunrock. Notice that
Gunrock pre-processing times are roughly equivalent to the sum of our times, including
the vector randomization, the GPU allocation, and the CPU-to-GPU transfer time. The
post-processing phase includes the GPU-to-CPU transfer time.

112 Algorithms

our knowledge, the transfer time is rarely considered in literature when comparing
CPU and GPU performances. After all, it is more an architectural issue than an
algorithmic one, and it can currently be reduced by compression and decompression
strategies, the Zero-Copy memory approach, or by reading the data directly from
disk, which are methodologies available on the newest NVIDIA cards. Furthermore,
in an environment in which CPUs and GPUs collaborate to solve a set of problems,
it is unclear whether the memory transfer time has to be “added” to the GPU and not
to the CPU performances.

Notice that we show the transfer times for our JPLmin-max approach, but at
the same time, our measurements are also valid for JPLmax. The only difference
between the two is the coloring time. Moreover, we put effort into optimizing
the transfer times using CUDA Streams. This optimization allowed us to reduce
the memory transfer costs and avoid useless synchronizations that proved to be
small bottlenecks. However, as we used CUDA streams to gather precise timings,
we performed GPU-CPU synchronizations after each phase. Furthermore, for this
comparison, we add all of the times together to compute the speedup; operations
like the randomization of the weights vector that is performed on the GPU using the
f ast_rand function detailed before can be performed while reading the graph itself
from the disk since the number of nodes is known from the beginning of the process.

Figure 3.6 plots the speedups of all GPU implementations over the Gunrock
implementation. We evaluate the ratio between the computation time of the Gunrock
strategy and all other methods X, i.e., t(Gunrock)/t(X), and displayed these values
on a logarithmic scale on the y-axis.

Obtaining the minimum and the maximum speedups with our JPL implementa-
tions on the same graphs is not coincidental. The two implementations are coded
such that JPLmin-max should color twice as many nodes as JPLmax; thus, it is
not surprising that the processing stage is twice as fast on the same graph structure.
In Figure 3.7, we display the speedup obtained by coloring two independent sets
per iteration (JPLmin-max) over the standard approach of coloring a single one
(JPLmax).

To better understand the differences between our JPLmin-max implementation
and the state-of-the-art implementation from the Gunrock library, we use the Nsight
Compute profiler to collect information on their runtimes. Nsight Compute collects
data on every kernel launched during the execution. Some of the metrics collected

3.2 Graph Coloring on GPU 113

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 5 10 15 20 25 28

Sp
ee

du
p

Graph

cuSparse
Gunrock

Atos
JPLmax

JPLmin-max

Fig. 3.6 Speedups of our implementations JPLmax and JPLmin-max against CuSparse,
Gunrock, and Atos. The Gunrock procedure (in red color) is used as a reference and
normalized to one.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1 5 10 15 20 25 28

Sp
ee

du
p

Graph

JPLmax
JPLmin-max

Fig. 3.7 Speedup of our JPLmin-max approach (dealing with two independent sets for
each iteration) over our JPLmax methodology (dealing with a single independent set). The
expected 2X factor is reached on average as overheads are negligible.

114 Algorithms

include grid dimensions, execution time, the average number of threads active per
warp (to estimate divergence), cache hit rate, and many more. From the profiles,
we know that both implementations rely on more than one kernel to perform the
coloring. For JPLmin-max, the main kernel that actively performs the coloring
(color_jpl_kernel) is followed by two auxiliary kernel calls (DeviceReduceKernel
and DeviceReduceSingleTileKernel) used to compute the number of uncolored nodes
after every iteration. For the Gunrock implementation, the coloring is performed by
the kernel named Kernel, and auxiliary tasks are performed by the kernels named
GetEdgeCounts, launch_box_cta_k, and gen_sequenced. Among these kernels,
gen_sequenced is called once every two calls of Kernel, and it is the kernel that
regenerates the array of random numbers. Since the execution time of the auxiliary
kernels in both algorithms is negligible compared to the execution time of the main
kernels, we do not consider them, as they have a limited impact on the overall
execution time. In Figure 3.8, we represent the execution times of the main kernels
(color_jpl_kernel for JPLmin-max and Kernel for Gunrock/color) during the coloring
of the graph af_shell3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 5 10 15 20 23

Ex
ec

ut
io

n
Ti

m
e

[m
ic

ro
 se

co
nd

s]

Kernel Calls

Gunrock
JPLmin-max

Fig. 3.8 Elapsed time to complete each kernel launch within our JPLmin-max strategy and
the one delivered by Gunrock.

Figure 3.8 shows that each new kernel launched by the JPLmin-max implementa-
tion terminates its execution slightly faster than the previous kernel. The first kernel
achieves the maximum execution time, taking 647 µs, while the faster kernel is the
last one, terminating its execution in 16 µs. The execution times of the kernels run by
the Gunrock/color implementation can be divided into two phases. In the first phase,

3.2 Graph Coloring on GPU 115

encompassing the first 14 kernel launches, the execution times oscillate around the
value of 1669 µs, with a maximum of 1790 µs for the 6th kernel, and a minimum
of 1470 µs for the 14th kernel. The second phase, spanning from the 15th kernel
launch up to the last one, approximately follows a negative exponential trend, going
from a maximum of 1080 µs for the 15th kernel to a minimum of 43 µs for the 23rd

and last kernel launch. Some caching issue likely causes the discrepancy in the two
phases of the Gunrock implementation. Indeed, the kernel is written such that the
random value associated with the current node is not cached, and needs to be read
multiple times inside the loop on lines 15 and 18 of Algorithm 12. Multiple reading
operations cause extremely high execution times for the first iterations, which rapidly
drop in the second phase, after the majority of the nodes have been colored. On the
other hand, our JPLmin-max implementation does not suffer from this problem, as
the random values are cached in registers on lines 9 and 11 of Algorithm 13. Our
analysis of kernel running times also includes the version of our JPLmin-max that
does not implement index shifting. We do not report those runtimes in Figure 3.8
as they are very similar and follow the same trend as the ones reported for strategy
JPLmin-max. The version without index shifting is on average 13% faster on the
first 16 kernels, and around 175% slower on the remaining 7 kernel calls. However,
the version without index shifting terminates only after 32 kernel runs, meaning that
more colors are used in the solution.

Table 3.4 reports the average number of colors (over 10 runs and rounded to the
nearest integer) used by our implementations over all our test graphs. The data shows
how the two CPU implementations of the Gebremedhin-Manne algorithm (namely,
GMs-imp and GMa-std) consistently generate solutions using fewer colors than the
GPU implementations. As the Atos approach is based on GM, this is also true for
Atos. Between the two GM implementations, the improved version uses fewer colors
in all graphs other than apache2 and ecology2. This behavior is expected as the
improved algorithm is formulated to reduce the number of colors generated during
the first coloring step of the algorithm. However, since the coloring is performed
non-deterministically, the final improved solution is not guaranteed to use fewer
colors than the standard solution. Figure 3.9 uses the synchronous improved GM
implementation as a baseline to compare the number of colors of all other methods.
The figure reports the data of Table 3.4 as a percentage increase, computed as!
(c(I)→ c(GMimp)/c(I)

"
. Averages for all implementations are displayed as dotted

lines with the same colors.

116 Algorithms

Graph CPU-based GPU-based
State-of-the-art Our Methods

GMs-imp GMa-std JPLmin-max cuSparse Gunrock GMa-std JPLmax JPLmin-max
1 af_shell3 26 27 46 80 49 28 47 46
2 apache2 5 4 13 33 16 7 12 12
3 ecology2 5 4 10 32 12 4 10 10
4 G3_circuit 5 5 10 32 11 5 10 10
5 offshore 11 13 23 48 27 14 24 24
6 parabolic_fem 6 6 12 32 13 6 12 12
7 thermal2 7 7 12 33 15 8 12 12
8 ASIC_320ks 6 8 15 48 18 9 17 15
9 atmosmodd 5 6 13 35 14 6 13 13

10 cage13 14 16 37 64 41 18 37 37
11 FEM_3D_thermal2 15 18 36 64 38 18 36 36
12 thermomech_dK 12 13 20 48 21 14 20 20
13 rgg_n_2_15_s0 13 14 21 48 20 15 21 21
14 rgg_n_2_16_s0 15 17 23 48 23 17 23 23
15 rgg_n_2_17_s0 15 16 24 48 26 17 24 24
16 rgg_n_2_18_s0 17 19 25 50 27 18 25 25
17 rgg_n_2_19_s0 18 19 27 48 29 19 27 27
18 rgg_n_2_20_s0 18 19 29 57 33 20 30 29
19 rgg_n_2_21_s0 19 20 30 59 32 22 30 30
20 rgg_n_2_22_s0 20 22 31 64 33 23 32 31
21 rgg_n_2_23_s0 22 24 33 64 34 25 34 33
22 rgg_n_2_24_s0 23 23 35 64 37 26 35 35
23 qg.order100 121 147 238 239 221 142 246 237
24 twitch_gamers 112 118 468 504 509 132 469 469
25 email_Enron 36 42 118 146 127 45 120 117
26 hollywood-2009 2209 2209 2287 2272 2274 2209 2299 2272
27 indochina-2004 6849 6849 6985 6983 6986 6849 6983 6982
28 soc-LiveJournal1 347 340 513 538 518 341 513 513

Table 3.4 The average number of colors for each one of our implementations. On the
CPU side, we present our implementations of the GM synchronous and asynchronous
algorithm (GMs-imp and GMa-std, respectively), and the JPL procedure (JPLmin-max). On
the GPU side, we report the results of cuSparse, i.e., the csrColor Cohen and Castonguay
implementation, Gunrock, i.e., the Gunrock’s algorithm, and Atos from Chen et at. The last
two columns include our implementations on GPU.

3.2 Graph Coloring on GPU 117

-40

-20

 0

 20

 40

 60

 80

 100

1 5 10 15 20 25 28

Co

lo
r [

%
]

Graph

cuSparse
Gunrock

Atos
JPLmax

JPLmin-max

Fig. 3.9 Percentage variations in the number of colors used by the different GPU-based
methods with respect to GMs-imp used as a reference and CPU-based.

On all graphs other than qg.order100, the state-of-the-art implementation of the
Cohen-Castonguay algorithm is the one to generate the most colors, with an average
percentage over GMs-imp of 55.5%. The three other implementations manage to
use fewer colors. Our JPLmin-max implementation uses 7% fewer colors on average
than the state-of-the-art implementation of the same algorithm on Gunrock. Our
JPLmax implementation shows mixed results, using more colors than the Gunrock
implementation in some graphs and matching the colors of JPLmin-max on other
graphs, including the rgg graph family. JPLmax reports an average percentage over
GMs-imp of 46.17%, Gunrock of 39.24%, and 36.39% for JPLmin-max.

3.2.10 Performance analysis

To study how our algorithms face load imbalance and variable-size frontier sets, we
present the following analysis.

Figure 3.10 represents the percentage of the nodes colored at each iteration, and
the ones which remain uncolored, as a function of the number of main coloring
iterations. We report these values for the graph rgg_n_2_24_s0, but this behavior
is typical to all graphs on which our algorithm performs optimally. The number of
nodes colored during each step remains practically constant, and it drops only when
the execution is ending, as the remaining uncolored nodes are only a tiny fraction

118 Algorithms

of the originals but they still require multiple passes to be colored. This behavior is
characteristic of an efficient solution and indicates that our algorithm works at its
best and is usually much faster than all competitors.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100

N

od
es

 [%
]

Execution progress [%]

Non colored
Colored this iteration

(a) A balanced behavior on a graph including
vertices with low or average degree.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 20 40 60 80 100

N

od
es

 [%
]

Execution progress [%]

Non colored
Colored this iteration

(b) An unbalanced behavior on a graph including
a few vertices with a very high degree.

Fig. 3.10 The y-axis represents a percentage of the nodes, whereas the x-axis represents the
execution progress.

On the contrary, Figure 3.10b represents a graph with power-law degree distribu-
tion, more specifically, indochina-2004. However, as for the previous analysis, this
behavior is ubiquitous for all graphs of this type. This graph has a conformation for
which most nodes can be colored in very few passes, as they have very few neighbors
and are located toward the the graph’s edges. The remaining nodes are those in the
most populated areas and require numerous iterations to be successfully colored.
Although it is possible to imagine a parallelism between the number of uncolored
nodes and the size of the search frontier, this is not appropriate for the JPL approach,
which, at each iteration, checks all nodes by skipping those that have already been
colored. This factor implies that the size of the frontier is constant throughout the
execution. As a consequence, the number of threads that need to operate after a node
is received decreases as the number of iterations advances. This consideration, in
turn, increases the load imbalance and the divergence. In particular, this is true for
graphs that follow the power law. The NVIDIA Nsight Compute shows 20 active
threads per warp on average for rgg_n_2_24_s0 but only 12 for indochina-2004 (and
with a smaller number of instructions issued per cycle). Even the warp occupancy
shows an imbalanced workload, as it is equal to 90% in the first case and 24% in the

3.2 Graph Coloring on GPU 119

second one. These values show that the higher the number of steps required by the
JPL procedure, the more expensive the operation becomes. On the other hand, Atos
is more efficient for this graph structure, as it has over a 72% warp occupancy on
average on indochina-2004, showing better use of the threads on the GPU.

3.2.11 Conclusions

This section describes, studies, and implements the most efficient state-of-the-art
graph coloring algorithms running either on multi-core CPUs or many-core GPUs
using CUDA. We put particular attention to the JPL algorithm, which improves the
algorithm efficiency by coloring independent sets of vertices.

We present two GPU implementations of this algorithm, which differ in the
number of independent sets colored at each iteration. We enhanced these implemen-
tations with “value permutation”, a method to generate a random permutation of a set
of unique items, and “index shifting”, a technique to simulate a circular array shift
with a meager cost compared to the original strategies. These techniques improve
the runtime of the algorithms, and they also reduce the number of colors used for
coloring a graph.

We compared our implementations with three state-of-the-art implementations of
graph coloring, namely, NVIDIA’s cuSparse, Gunrock, and Atos. As far as the pure
coloring procedure is concerned (without pre- and post-processing), we show that
our fastest implementation presents geomean (harmean) speedups of 3.16x (3.05x)
against Gunrock, 4.09x (3.06x) against cuSparse, and 4.45x (2.21x) against Atos
on mesh-like graphs. When we concentrate on the entire process (pre-processing,
processing, and post-processing phases, including transfer times) our implementation
has geomean (peak) speedups of 7.43x (61.07x) against Gunrock (the fastest of the
competitors). At the contrary, the algorithm performs significantly worse when
applied to scale-free graphs, where it is competitive only against Gunrock, the other
implementation of the JPL algorithm. It shows a geometric mean (harmonic mean)
of 2.76x (2.71x) against Gunrock, 0.13x (0.11x) against cuSparse, and 0.03x (0.01x)
against Atos. At the same time, our approach can generate solutions using less
colors than the other JPL-based procedures. With graphs that contain vertices with
a huge number of arcs, our procedure (as all other JP-based algorithms) is slower
than GM-based procedures and Atos. Since computing the characteristics of a given

120 Algorithms

graph is a task that can be performed while reading or storing it, it is consequently
possible to use a multi-engine approach and select the best algorithm to solve each
instance as quickly as possible.

Further research is needed to study how our implementation can be further
improved. Indeed, it is interesting to notice how our index shift technique stemmed
from our initial decision to use the value permutation strategy to obtain unique
numbers. Gathering random numbers from a uniform distribution would ultimately
incur in a too high overhead to be recomputed. For this reason, we encourage further
research to change the variables at play in an algorithm. Moreover, it would also
be beneficial to implement other algorithms on many-core GPU architectures, as
the speedup provided by those devices is substantial but graph algorithms rely on a
lot on memory operations and researchers have been unable to exploit their power
completely with graphs.

Moreover, we started developing a Vulkan-based version of the algorithm. This
uses the Vulkan Kompute [12, 13] library, which allows for GPU computations but,
unlike CUDA, is available on multiple operating systems and GPU vendors, such as
NVidia, AMD and Intel. However, this is still under research and is left as a future
work, as results are still mixed on our NVidia RTX 3070.

3.3 McSplit+PR

In this section I will talk about the work done in [66]. This is an improvement
over the stat-of-the-art algorithm McSplit and its variants, as we will see in the next
sections.

3.3.1 Introduction

Graphs are flexible structures that allow us to model many elements of human
knowledge through a mathematical abstraction. In particular, graphs can be very good
representations of relationships between objects. Graphs find many applications in
fields such as chemistry [88], social networks [89], web searches [90], security threat
detection [91], modeling dependencies between different software components [92],
hardware testing and functional test programs [93].

3.3 McSplit+PR 121

In the rest of this chapter I will describe how we improved the computation
of the Maximum Common Subgraph (MCS) between two graphs by improving
the McSplit Algorithm. Even if the problem has been appearing in the scientific
literature since the 70s [94, 95], one of the most efficient state-of-the-art algorithm
for finding MCS is McSplit, introduced in 2017 by McCreesh et al. [96]. McSplit is
a branch-and-bound algorithm that recursively computes new solutions by pairing
vertices selected from the two graphs. The core idea is to label all vertices based
on the connection they have with already selected nodes. After that, the algorithm
efficiently prunes the search tree taking into account those labels and a formula
computing the upper bound for the size of the current solution. The approach is
quite efficient in maintaining low memory profiles and pruning the search space.
Unfortunately, it considers all possible vertex pairs, one vertex from the first and one
from the second graph, and its performances strongly depend on the vertex sorting
heuristic. The original version of McSplit statically sorts the vertices of both graphs
based on their degree. This order is then maintained unaltered for the entire process,
and it is the most impairing element of the procedure. Many vertices may have
identical degrees, making it impossible to discriminate between them. Moreover,
there is no way to prioritize a promising pair discovered during the execution of the
algorithm. In our approach, we exploit the core of the original McSplit procedure,
but we replace the static sorting heuristic with sharper ordering techniques.

McSplitRL [97], McSplitLL [98], and McSplitDAL [99] already brought an
improvement over the original sorting heuristic of McSplit. McSplitRL uses a Rein-
forcement Learning approach to refine the order of the vertex selection. McSplitLL,
based on McSplitRL, outperforms its predecessor by using a technique called Long
Short Memory which deals with nodes with specific characteristics. McSplitDAL
builds upon McSplitLL, introducing a technique called Dynamic Action Learning,
which improves the reward function of McSplitRL. However, these techniques use
the original McSplit sorting heuristic as a tie-breaker when selecting vertices.

In this work, we present a new vertex selection heuristic that is able to improve
the performances of McSplit, McSplitLL, and McSplitDAL. In particular, we propose
to use PageRank [90], the former algorithm behind the Google search engine, as a
vertex selection heuristic, exploiting its capabilities to work on both directed and
undirected graphs. We use PageRank both as a standalone or as a tie-breaking
heuristic, using it to classify vertices and then combining it with other techniques
such as McSplitLL or McSplitDAL.

122 Algorithms

In our experimental analysis, we compare our algorithm with McSplit and its
variants. We tested 400 graph pairs, selecting the graphs from the largest publicly
available graphs at [100] and choosing at least one graph pair for each graph category.
We set the timeout for each experiment to 60 seconds to quickly grab the convergence
speed of each algorithm. Overall, we can improve McSplit, McSplitRL, McSplitLL,
and McSplitDAL in up to 77% of the graph pairs considered. Moreover, we obtain
an improvement in terms of the final size of the solution subgraph up to 7%.

3.3.2 Background

In addition to what we saw in Section 4.1, I will introduce some concepts useful for
understanding of this work.

We say that H is a subgraph of G if

V (H) △ V (G)▽E(H) △ E(G)

that is, the vertices and edges of H are a subset of the vertices and edges of G. A
graph H is an induced subgraph of G if H is a subgraph of G and contains all the
edges between its vertices of the original graph G.

Graph isomorphism is the problem of detecting if there is a bijection between
two graphs G and H such that

↔v1,v2 ↓ H ↓ E(H) ↗↘ {v1,v2} ↓ E(G)

that is, if two graphs have the same structure. Verifying whether two graphs are
isomorphic is known to be NP [101], even if the exact complexity inside that class is
unknown.

A subgraph is a subset of a graph’s vertices (or nodes) and edges (or links). The
terms vertex and node will be used interchangeably in this paper.

The Maximum Common Subgraph (MCS) problem between graphs G and H,
requires finding the most extensive graph simultaneously isomorphic to a subgraph of
G and H. In particular, the Maximum Common Induced Subgraph (MCIS) focuses
on finding the induced subgraph with all the vertices in common between two graphs.
The problem is known to be NP-complete [102].

3.3 McSplit+PR 123

In our case, we focus on undirected, unlabeled, and unweighted graphs, as they
represent the worst case scenario for the Maximum Common Subgraph computation.

3.3.3 McSplit

McSplit [96] is a branch-and-bound recursive algorithm for finding the MCS between
two graphs.

The authors define a label class as a set of vertex pairs (belonging to the first
and the second graph) having the same connections toward the vertices belonging
to the current solution. As McSplit uses labels to find possible couplings between
vertices, the original algorithm also provides a way to create those labels based on
the adjacency lists of the vertices.

Algorithm 14 The simplified version of the original McSplit algorithm.
BEST ⇑ /0

MCS (G, H, M)
if |M|> |BEST | then

BEST ⇑ M
end if
if CalculateBound()< |BEST | then

return
end if
label_class ⇑ SelectLabelClass(G,H)
G⇒ ⇑ G
while G⇒ ↑= /0 do

v ⇑ SelectVertex(G, label_class)
G⇒ ⇑ G⇒ \{v}
for w ↓ getVertices(H, label_class) do

M⇒ ⇑ M⇓ (v,w)
H ⇒ ⇑ H \{w}
G⇒ ⇑U pdateLabels(G⇒,v)
H ⇒ ⇑U pdateLabels(H ⇒,w)
mcs(G⇒,H ⇒,M⇒)

end for
end while
mcs(G⇒,H,M)

Algorithm 14 provides a simplified version of the McSplit algorithm. It takes
as inputs the two graphs, G and H, as well as the current solution M. Label classes

124 Algorithms

are used to guide the algorithm in finding the solution to the problem. The label
class is a classification of each couple of vertices belonging to (G,H). First, the
algorithm assigns the current solution to the best one (line 3), in case the current
solution has a larger size (line 2). Notice that the best solution BEST is initially
empty (line 1). Then, the algorithm calculates the upper bound B for the current
path (line 5). If this upper bound is less than the size of the best solution, the current
solution cannot be improved along the current path; thus, the algorithm backtracks
(line 6). Otherwise, the algorithm keeps improving the current solution. The bound
is computed as shown in Equation 3.1.

B = |M|+!l↓L min(|{v ↓ G\M : L(v) = l}|,
|{w ↓ H\M : L(w) = l}|)

(3.1)

When improving the current solution, McSplit tries to build a larger solution by
virtually removing a couple of vertices with the same label from the respective graphs,
updating the labels (lines 16-17) and trying to explore recursively all possibilities
starting from the current solution (line 18). In each iteration of the algorithm, the
selection of a vertex pair occurs in three distinct stages. Firstly, the most promising
label class is identified, followed by selecting a vertex from the set of vertices
belonging to that label class in the graph G (line 12). Subsequently, all vertices
w ↓ H of the chosen label class are gathered (line 13), and then individually selected
one by one (line 15). Once v ↓ G is selected, the current mcs instance uses recursion
to explore all solutions that include v and all the nodes of the received partial solution
M, therefore at line 21 an additional recursive call is introduced to explore all the
other solutions that include M but exclude v. Ultimately, as every vertex couple has
been explored (line 10), the procedure returns the best solution.

To explore all possible vertex pairs, McSplit uses two different heuristics. The
first one is used to select the next label class. The second one is adopted to choose
the next vertex to add to the final graph. The former (line 8) chooses the label class
with the smallest maximum size between G and H, i.e., max(|G|, |H|). The latter,
instead, prioritizes vertices in G with the most significant degree, where the degree
is the number of links (inward and outward) of the vertex. In particular, for selecting
the next vertex (line 11), McSplit heuristically considers the degree of the vertex,
choosing each time the vertex with the most considerable degree and removing it
from the graph. We will refer to this approach as the Node Degree, or simply the
Degree heuristic.

3.3 McSplit+PR 125

3.3.4 McSplit variants

Many notable variants of McSplit have been developed to improve over the original
algorithm. This section briefly describes some of the most noticeable and recent
ones.

McSplitSD

McSplit works asymmetrically on the two graphs since it selects a vertex from G
and then searches for a matching vertex in H. This approach may unbalance the
algorithm, making it perform better or worse, depending on the characteristics of the
first graph. Among other strategies, Trimble [103] proposes McSplitSD, which sets
as the first graph the denser one of the pair. The density K of a graph is evaluated
through Equation 3.2, using the number of edges and vertices of the two graphs to
express the density extremeness:

K(G) = |E(G)|
|V (G)|·(|V (G)|→1) (3.2)

The two graphs G and H are swapped when the inequality

|1
2 →K(G)| > |1

2 →K(H)|

is true.

McSplitRL

Liu et al. [97] proposes McSplitRL, a novel approach that extends the standard
McSplit using Reinforcement Learning. This approach keeps two vectors, one for
the vertices of G and the other for the vertices of H, which contain the rewards of
each node. Therefore, the node selection heuristic is based on finding the node with
the highest reward. The authors devised a scoring system for a given action using
Equation 3.3:

R(v,w) = !(Vl ,Vr)↓Ev min(|Vl|, |Vr|)→
!(V ⇒l ,V ⇒r)↓Ev⇒

min(|V ⇒
l|, |V ⇒

r|)
(3.3)

Given a set of label classes of the initial graphs at a given point of the search, Ev,
and the subsequent set of label classes, E ⇒

v, generated by including a new couple of

126 Algorithms

vertices to the current solution, Equation 3.3 calculates the reduction of the size of
the label classes. The size of a label class is considered as the minimum of |Vl| and
|Vr|, which are the number of vertices belonging to the label class respectively from
the first or the second graph. Thus, this method can be seen as a bound reduction
and tends to prefer nodes whose resulting branching cause a higher reduction of
the bound, thus cutting as many branches as possible in subsequent steps of the
algorithm.

McSplitLL

Zhou et al. [98], starting from McSplitRL, build a more sophisticated version of the
tool called McSplitLL. Their solution introduces a new heuristic called Long Short
Memory (LSM) and a method to be used in a specific situation called Leaf Vertex
Union Match (LUM). The new heuristic uses Equation 3.3 but stores the rewards
in a vector for nodes of G and a matrix for the nodes of H, allowing to reward each
possible node pair separately (v,w) ↓ (G,H).

However, since rewards may become huge, an asymmetric decay is used, fol-
lowing a long-short-term approach, which halves both G and H rewards when their
respective thresholds are exceeded. Rewards for single nodes v decay faster than the
rewards for pair of nodes (v,w); thus, node pairs have a smaller threshold.

Moreover, the LUM heuristic introduces a more optimized strategy to handle
leaf nodes. A node is considered a leaf if it is adjacent to only one vertex of a given
graph, and it has been proved it can always be added to the current subgraph if its
only neighbor is part of it as well. Thus, whenever a leaf from the left graph and a
leaf from the right graph is found, the pair formed by these two nodes is added to the
current solution.

McSplitDAL

Liu et al. introduced McSplitDAL [99]. This algorithm is the most recent version
of McSplit, and it is built upon McSplitRL and McSplitLL. This algorithm mainly
introduces two new ideas. A new value function called Domain Action Learning
(DAL) and a hybrid learning policy for choosing the next vertex to match. The DAL
value function aims to take into account, when branching, not only the reduction of

3.3 McSplit+PR 127

the upper bound but also the simplification of the problem occurring after the branch.
This feature can be implemented by adding an additional term to the reward defined
in Equation 3.3, granting a higher reward to the vertices whose generated partitions
have a higher cardinality, when these vertices are added to the solution:

R(v,w) = !(Vl ,Vr)↓Ev min(|Vl|, |Vr|)→
!(V ⇒l ,V ⇒r)↓Ev⇒

min(|V ⇒
l|, |V ⇒

r|)+
|Ev⇒ |

(3.4)

Moreover, the hybrid branching policy of this approach has the primary goal of
overcoming a possible “Matthew effect”, which causes the algorithm to continue
branching on a subset of nodes with very high rewards getting trapped in a local
optimum. The authors believe this can be overcome by switching from the RL to the
DAL policy (and vice versa) after a fixed number of iterations without improvement,
allowing to dynamically change the strategy for selecting nodes.

For brevity, in this paper, we use the term McSplitX to generically identify the
original McSplit or one of its variants, i.e., McSplitLL, or McSplitDAL.

3.3.5 Other Approaches

Many algorithms have been presented to solve the MCS problem, using strategies
that differ from the original McSplit. Among those, we would like to mention the
following. Levi [104] casts the MCS problem onto the Maximum Common Clique
problem. McCreesh et al. [105] and Vismara et al. [106] follow the previous approach
while exploiting constraint programming to solve the problem. Other approaches
take a step back, adopting parallel computation capabilities of General-Purpose
computing on Graphics Processing Unit (GPGPU) [107], to enhance McSplit on
modern devices. A set of heuristics to tackle the MCS problem with more than two
graphs has been developed by Cardone et al. [108]. However, the most promising
heuristics work by analyzing graphs in couples and later merging the results, thus
still motivating the research on MCS techniques working on pairs of graphs.

128 Algorithms

3.3.6 The PageRank Algorithm

PageRank [90] is an algorithm developed by Google that, given a network of web
pages, generates the probability of reaching a page through a finite sequence of
random clicks. PageRank was the algorithm used by Google to sort the results of its
web engine searches. However, it is not used anymore, as its patent expired in 2019.

PageRank is usually implemented on a generic graph, so to account for different
web pages, it considers directed and unweighted graphs. A link from one web page
takes the user to another web page, but the way back is not guaranteed. However, we
can also use it on undirected graphs, as we can think of them as directed graphs with
both forward and backward edges between each node pair.

Algorithm 15 implements our PageRank algorithm, and it is strongly inspired
by a public version2. In Algorithm 15, we use the notation ad j(G) to refer to the
indices of the adjacency matrix of graph G.

The Damping Factor (DF), initialized in line 1, represented a person’s prob-
ability of stopping clicking random links. We decided to follow Brin et al. [90]
recommendation for the value of the DF , and we set its value at 0.85. In line 2, we
set the acceptable error ∀ at an arbitrary value. Experimentally, we discover that the
smaller the epsilon (i.e., the more we increase the precision of the procedure), the
better the results, as the rankings tend to be more diverse. However, as the original
algorithm accepts integers numbers, we also want to be able to map integers to ranks;
thus, we chose for ∀ a precise enough number that would surely not overflow any
32-bit integer.

PageRank can be described as a Markov chain. Thus, we build a stochastic
matrix representing the graph in line 13, based on the previously computed links
going out from each node in line 12. Computing the outgoing links is trivial and is
not shown in the algorithm. On the contrary, the computation of the stochastic matrix
is represented in function StochasticGraph, from line ?? to line 11. Assuming that
each node has a unitary amount of information flowing outwards to the neighbors,
the matrix identifies how much of that information is flowing through each of the
adjacent edges. In line 14 we transpose the stochastic matrix, and outgoing links are
replaced with incoming links and vice versa. PageRank ranks nodes based on their
incoming links; thus, the inversion is necessary for the generality of the algorithm.

2https://github.com/purtroppo/PageRank

3.3 McSplit+PR 129

For undirected graphs, this might represent an unnecessary step; however, as McSplit
works on directed and undirected graphs, this must be true also for its intermediate
stages. On line 16, we pre-allocate the results of the previous iteration and set them
to zero.

In line 18 we calculate the ratio between the incoming or outgoing links and
the size of the graph. The core section of the evaluation is included from line 21
to line 34. First, we zero the results for the current iteration. Then, we compute
the current rank by adjusting the previous results, approximating at each iteration
the clicking probability, and discounting them by the DF . On line 31, we update
the error on the measurement, and on line 33 we update the result vector p. The
algorithm terminates when (error < ∀) in line 21; this condition is triggered when
the rankings converge, reaching a stable configuration.

As we consider it trivial, we do not show the float to integer conversion in
Algorithm 15.

3.3.7 The main idea behind our approach

The main target of this work is to improve the vertex selection heuristic. In particular,
we are interested in heuristics that can classify the vertices of the two graphs. From
our perspective, a good heuristic should follow the guidelines presented by Marti et
al. [109]:

• The solution should be nearly optimal.

• The heuristic should require low computational effort.

In our heuristics, we also aim to generate classifications as diverse as possible
for ranking the vertices. Moreover, we would like heuristics to classify a vertex
with a single number instead of representing it as a vector. Although vectors have
already been used in MCS solutions, due to the nature of the problem, using a
mathematical vector incurs possible downfalls. More specifically, vectors may
require more computational power to retrieve a classification than using single
integers and the results may depend on the lexicographical order of the vertices.
With these considerations in mind, we focus on a classification of vertices based
on single numbers. In particular, we developed different heuristics for classifying
vertices:

130 Algorithms

Algorithm 15 Our version of the popular PageRank algorithm, implemented on an
adjacency matrix representing the graph G.

DF ⇑ 0.85
∀ ⇑ 0.00001

STOCASTICGRAPH (G,outlinks)
Gs ⇑ [0.0]∝ |G|
for x,y ↓ ad j(G) do

if out_link[x] = 0 then
Gs[x,y]⇑ 1.0/|G|

else
Gs[x,y]⇑ G[x,y]/out_link[x]

end if
end for
return Gs

PAGERANK (G)
out_links ⇑ OutLinksForEachNode(G)
Gs ⇑ StochasticGraph(G,out_links)
Gt ⇑ TransposeMatrix(Gs)
result ⇑ /0∝ |G|
p ⇑ /0
for x,y ↓ ad j(Gt) do

push(Gt [x,y]/|G|)
end for
error ⇑ 1.0
while error > ∀ do

result ⇑ /0∝ |G|
for x,y ↓ ad j(Gt) do

result[x]⇑ result[x]+Gt [x,y]∝ p[y]
end for
for rank ↓ result do

rank ⇑ rank ∝DF + 1.0→DF
|G|

end for
error ⇑ 0.0
for all rank, prev ↓ zip(results, p) do

error ⇑ error+abs(rank→ prev)
end for
p = result

end while
return result

3.3 McSplit+PR 131

• A heuristic considering the PageRank of each vertex.

• A heuristic using both PageRank and McSplitDAL.

• A heuristic using both PageRank and McSplitLL.

Please notice that both DAL and LL heuristics are computed dynamically, whereas
the PageRank approach is applied only once at the beginning of the procedure.

3.3.8 McSplitX+PR

Within the framework introduced in Section 3.3.6, we exploit the ideas introduced by
McSplitLL and McSplitDAL, enhanced by the integration of the PageRank heuristic.
The union of these techniques produced two new versions of the McSplit algorithm,
specifically referred to as McSplitLL+PR and McSplitDAL+PR.

Whilst the original McSplit idea was centered around the node degree heuristic,
the subsequent variants were mainly based on McSplitRL, which used reinforcement
learning as a vertex selection heuristic. However, whenever a tie is encountered, the
heuristic falls back to the node degree for choosing a vertex.

Algorithm 16 The proposed McSplitX+PR algorithm optimizing a McSplitX imple-
mentation recalled in line 5
MCSPLITX+PR (G)

Granks ⇑ PageRank(G)
Hranks ⇑ PageRank(H)
Gsorted ⇑ SortGraph(G,Granks)
Hsorted ⇑ SortGraph(H,Hranks)
McSplitX(Gsorted,Hsorted) return

We propose using PageRank as a standalone or tie-breaking heuristic, substituting
it for the node degree. This approach is summarized by Algorithm 16. First, we
apply the PageRank to classify the vertices of graphs G and H (in lines 1 and 2,
respectively). Then, we sort the vertices following their ranks obtained by the previ-
ous classification (lines 3 and 4). Finally, we apply our McSplitLL or McSplitDAL
(i.e., McSplitX , generically speaking) on the sorted vertices (line 5). This method
leverages the Reinforcement Learning, to choose vertices dynamically along the
search, and guarantees the use of the PageRank scores as a tie-breaker, particularly
at the beginning of the algorithm, when the rewards are initialized to zero.

132 Algorithms

3.3.9 Experimental results

Experimental setup

We ran our tests on a workstation with an Intel Core i9-10900KF CPU and 64 GBytes
of DDR4 RAM.

All our algorithms are written in C++, and we compiled it with GCC version 9.4.
For McSplit and McSplitLL, we use the original versions obtained from the WEB
and adapted for being used with our new heuristic. For McSplitDAL, we wrote an
implementation that follows the ideas indicated by the authors [99] as we were unable
to find an official version publicly available. In addition, since it has been proven to
be beneficial, we borrow the graph swap idea from McSplitSD [103], and include
it in all the variants of McSplit. Our core implementation adopts the C++ parallel
version of McSplit. Unfortunately, not all versions may run in multi-threading mode.
Thus, as we are interested in comparing our results with the ones gathered with the
previous variants of McSplit, we present all results running all parallel versions with
a single thread.

All algorithms were tested on a publicly available dataset [100]. We focused on
the most extensive graphs, the ones with 100 nodes. Given the size of the set, we
chose at least one experiments for each graph category, finally selecting 400 graph
pairs.

Our tests are designed to evaluate the most practical aspect of all algorithms;
thus, we evaluate their ability to find suitable solutions in a limited amount of time,
instead of finding the optimal solution with an unlimited timeout. For each graph
pair, we then record the size of the most significant solution found. We compare the
different methodologies in terms of their capacity to find the largest solution in the
slotted time.

We fixed the timeout to 60 seconds for each experiment. This timeout has been
selected because experimentally McSplit often finds an effective solution along the
first recursion path and it improves it only sporadically. Figure 3.11 plots the typical
growth of the solution size with respect to the number of recursions. We can see
that at the beginning (within a few thousand of recursions, usually performed in less
than one second in our setup) the solution size increases very rapidly. Unfortunately,
after the first few seconds, the solution grows slowly as most of the time is spent

3.3 McSplit+PR 133

searching the enormous solution space. In orange, we highlighted the solution size
at the end of the recursion process. Please, notice that the number of recursions is
reported on the x-axis on a logarithmic scale.

Fig. 3.11 Typical behavior of the effectiveness of the original implementation of McSplit.
The size of the solution often increases rapidly in the first part of the process; then, the
procedure is captured by local minima which slow down the convergence process and force
the algorithm to visit enormous state spaces that do not improve the solution size. In orange,
we can see the solution size at the end of the execution

Experimental evaluation

Figure 3.12 reports the number of graph pairs on which each method finds the largest
MCS out of the 400 graph experiments run. When an MCS with the same size is
returned by more than one heuristic (i.e., we have a ex aequo) that pair is assigned to
all the methods returning that result.

It is straightforward to see that our PR heuristic, only applied to McSplit, Mc-
SplitLL, and McSplitDAL, easily outperforms the original strategies. Moreover, the
fastest strategy, i.e., McSplitDAL+PR, finds the most significant solution in almost
300 cases out of 400.

Table 3.5, using no tie-breaker, shows the percentage of victories of all PR-
improved strategies with respect to each original method.

134 Algorithms

Fig. 3.12 The histogram plots the number of times each heuristic finds the MCS (i.e., the
largest maximum common subgraph) on the 400 experiments. When a graph with the same
size is returned by more than one method, each strategy is reported as a winner

Heuristics McSplit+PR McSplitLL+PR McSplitDAL+PR
McSplit 64% 72% 77%

McSplitLL 60% 69% 76%
McSplitDAL 63% 72% 77%

Table 3.5 Percentage of instances improved by the PR methods (columns) over the original
methods (rows), without breaking ties

3.3 McSplit+PR 135

Figure 3.12 and Table 3.5 focus on the number of experiments on which PageR-
ank could return larger solutions than the original algorithms. Overall, they show
that PR methods provide larger solutions for most of cases. However, we can also
compare the size of the different solutions to understand the average improvements.
To highlight the size of the results, we collected the size of the best solution found by
each algorithm for every graph pair. To account for the natural variation in solution
sizes between a wide range of instances of different complexity, we normalized
all results with respect to the size of the subgraph found by the original McSplit
algorithm.

In Figure 3.13, we show the average performance of our normalized heuristics.
Due to the significant differences in solution sizes across instances, we plot a circular
rolling average with a window size of 50 to better present the outcomes of our
experiments. This strategy implies that each point on the plot represents the average
normalized performance over a window of 50 consecutive tests. Due to the normal-
ization, the original McSplit always returns solutions of size one, whereas all other
methods almost always return more extensive solutions. Notably, PageRank demon-
strates a distinct advantage over the degree heuristic. Moreover, McSplitDAL+PR
and McSplitLL+PR methods consistently outperform their McSplitX counterparts
in any batch of 50 instances and when they fall behind, they do not fall behind by a
large amount.

The heat-map in Figure 3.14 shows the relative performance across all com-
binations of the algorithms. For each method on the vertical axis, the results are
individually normalized with respect to the results of the algorithm on the horizontal
axis; then, all the normalized values are averaged together.

From the map, we learn that McSplitDAL+PR exhibits an average improvement
of 6% over McSplitDAL, McSplitLL+PR yields solutions that are 4% larger com-
pared to McSplitLL, and McSplit+PR produces solutions 3% larger than McSplit.
These results suggest that PageRank is an effective standalone heuristic, providing
even more significant benefits when used as a tie-breaker on top of more complex
Reinforcement Learning rewards.

It has to be noticed that in our testing, the McSplitDAL policy is not always
better than the McSplitLL, unlike what was observed by Liu et al. [99]. This result
is likely due to our different evaluation methodologies. However, McSplitDAL+PR

136 Algorithms

Fig. 3.13 A circular rolling average (with a window width of 50 consecutive tests) of the sizes
of the solutions obtained by the McSplitX and McSpliX+PR algorithms on each instance.
All values are normalized with respect to the results obtained by the original McSplit

benefits from the PageRank heuristic, convincingly outperforming both McSplitLL
and McSplitLL+PR by 6% and 2%, respectively.

In Figure 3.15 we present a comprehensive comparison of the solution sizes
achieved by each McSplitX+PR method and its corresponding McSplitX counterpart.
For each instance, a dot is reported to show the size of the solutions found by the
two algorithms. By removing the need for the rolling average, this scatter plot
offers a better view of the results of the individual instances. Notably, the PageRank
heuristic is the winner in most cases, particularly in the McSplitDAL+PR variant.
Upon careful examination, it becomes evident that the average performance of the
McSplitX methods is influenced by a few outlier instances that exhibit exceptional
results. However, in contrast, McSplitX+PR consistently demonstrates improved
performance across the entire range of instances.

3.3.10 Conclusions and future works

In this section, we saw an improvement over the resolution of the Maximum Common
Induced Subgraph problem. Starting from a state-of-the-art algorithm called McSplit,

3.3 McSplit+PR 137

Fig. 3.14 The relative performance of the McSplitX and McSplitX+PR methods. For each
row, we report the average improvement relative to the respective column. Darker blue colors
highlight the size improvements

and its recent variants (namely McSplitLL, McSplitRL, and McSplitDAL). we
propose a family of Branch-and-Bound algorithms called McSplitX+PR.

The original McSplit algorithm uses a node degree heuristic to select the vertices
of the graphs during the recursive search. McSplitRL and its derivatives use rewards
obtained through Reinforcement Learning, but still enforce the node degree to
break ties. We propose the McSplitX+PR algorithm family, namely McSplit+PR,
McSplitLL+PR, and McSplitDAL+PR, to replace the original node degree heuristic
with the ranking produced by the PageRank algorithm. PageRank, famously known
as the former algorithm behind the Google search engine, generates more effective
node orderings compared to the degree of vertices, as it prioritizes nodes that are
easier to reach across multiple hops rather than just in the local neighborhood,
effectively differentiating them over more categories than the original heuristic.

Using publicly available graph pairs, we conducted experiments on both the
McSplitX+PR and McSplitX families. We mainly focus on finding the best solution
within a limited time to simulate real-world scenarios. Our results indicate that all
McSplitX+PR algorithms consistently outperform their McSplitX counterparts, with
McSplitDAL+PR yielding the most effective solutions than the other strategies.

138 Algorithms

(a) (b)

(c)

Fig. 3.15 The dispersion of the points above the main diagonal shows that McSplitX+PR
finds more extensive solutions in the vast majority of the cases

3.4 Conclusions 139

Among the possible future works, we would like to mention the necessity of
studying the multi-threaded versions of the above tools. In this work, this analysis has
been limited by the fact that not all the considered tools were initially implemented
with multi-threading capabilities. Consequently, one of our targets is to improve the
above heuristics obtaining uniform scalability on multi-core architectures.

3.4 Conclusions

This chapter has come to an end. In it, we discussed about the porting of a well-known
graph coloring algorithm, compared with the different state-of-the-art approaches,
such as GM and its porting on GPU through the ATOS approach.

Moreover, we saw improvements on McSplit using the PageRank algorithm to
classify nodes. A work has been sent to be published comparing McSplit with other
node classification algorithms. However, the work of that paper does not appear in
this thesis, as it is yet to be accepted.

Now, it is for the last work I will talk about in this thesis: an AI approach to
classify objects inspired, once again, by the work of the human brain and a bit of
psychology.

Chapter 4

A Core knowledge-based AI

In this chapter, I will talk about the work accepted in [110]. This work has been
developed in collaboration with Alberto Tonda from INRAE (Institut national de la
recherche agronomique). Here, I will present a new approach in Artificial Intelligence
development, inspired by the concept of Core knowledge, a philosophical and
psychological theory that suggests that we are born with some concepts already
developed in mind, working as building blocks for our future knowledge.

Artificial Intelligence (AI) is an umbrella term that covers several different
techniques, ranging from rule-based systems to Machine Learning (ML), from Re-
inforcement Learning (RL) to Evolutionary Algorithms (EAs). In the last decade,
AI algorithms have set important milestones in a wide range of domains, such as
natural language generation [111], image classification [112], prediction of protein
folding [113], and even videogame puzzles [114]. Interestingly, almost all such suc-
cesses have been attained by ML algorithms and often by the most recent generation
of artificial neural networks, known as Deep Learning (DL).

DL approaches can learn predictive models directly from large data samples. Still,
they suffer from essential limitations [115], such as brittleness, the unpredictable
and undesirable behavior for given samples, opacity, the impossibility of explaining
the overall predictions of the model, and limited generalization ability, the poor
prediction quality for out-of-distribution samples.

Most of these issues stem from the black-box nature of the models, which cannot
be easily inspected and whose behavior cannot be verified by human experts. A
few sub-domains of AI are currently exploring different possible solutions. The

141

eXplainable AI (XAI) community [116] is developing techniques to make black-
box models more human-readable, for example using concept bottlenecks [117] or
visualization techniques able to highlight the features that ML/DL models are using to
take decisions [118, 119]. On the contrary, neural-symbolic (NeSy) approaches [120]
aim to combine modern neural-network models with classic symbolic AI, capitalizing
on both advantages.

A different research direction, proposed in [121], is to build AI systems exploiting
principles similar to human core knowledge, that is, a small set of innate capacities
identified by cognitive psychologists [122]. Examples of core knowledge include
evaluation of quantities, identification of agents, and prediction of movement. Instead
of starting from a blank slate informed only by the available training data, as in the
case of current state-of-the-art ML, AI algorithms may start with a limited amount
of specialized hard-coded capacities, compose and combine them to solve tasks and
use only a limited amount of training samples. In principle, algorithms that learn in
a way that is more similar to humans could require less training data to complete
tasks while providing a white-box, interpretable explanation of their behavior.

In this paper, we propose a first step towards an evolutionary AI approach inspired
by core knowledge, where the EA is used to create a high-level, concise description
of a simple 2D video recorded from a video game. Using a small number of primitive
concepts, such as patches tracked over frames and simplified laws of motion to
predict their expected behavior, the proposed approach can generate a compact,
correct video description. Our approach first groups patches that behave coherently
into objects. Objects are then grouped into classes, i.e., groups of objects that share
similar behaviors. The interactions between objects belonging to specific classes
are then described through rules. In the proof of concept presented in this work,
the identification of objects is performed through simple heuristics, whereas the
association of objects to classes and the creation of rules is delegated to the EA
engine.

The proposed approach is evaluated on two popular benchmarks, Pong and
Arkanoid, and it has been proven to be able to explain the interactions appearing in
short video-game videos, generating accurate and human-readable descriptions from
a relatively small amount of data. Starting from these initial, promising experimental
results, future works will focus on exploiting the rules obtained by the proposed

142 A Core knowledge-based AI

approach to actually play video games, providing a white-box explanation for each
action the AI agent takes.

The rest of the paper is organized as follows. Section 4.1 summarizes the
necessary concepts to introduce the scope of the work. Section 4.2 describes the
framework of the proposed methodology. Our experimental analysis is detailed
in Section 4.3. Finally, Section 4.4 summarizes our findings and outlines possible
future works.

4.1 Background

4.1.1 Core knowledge

Core knowledge is a psychological theory of human cognition [122] postulating a
small set of innate cognitive capacities all humans are born with. The source of
this core knowledge is uncertain, but it is currently believed to be the process of
natural selection. As other animals can perform complex tasks or movements since
their early infancy, humans possess similar capacities that can be exploited, for
example, to learn a language from a relatively small amount of sample sentences, as
the ones typically experienced during childhood [123]. All animals, however, have
the potential to learn new skills or concepts through experience, and distinguishing
core knowledge from learned skills is not a straightforward process. Cognitive
psychologists tackled this challenge by either evaluating the performance of human
groups that are culturally isolated or by focusing on toddlers and infants. Notable
examples include the study of arithmetical intuition among indigenous populations of
the Amazonian rainforest [124, 125], and the assessment of quantity in 6-month-old
infants [126]. While providing a complete overview of the different perspectives
in psychology is outside of the scope of this paper, it is worth noting that there are
alternative theories to core knowledge, for example, connectionism, and that the
long-standing question of how humans learn has been tackled through a vast number
of viewpoints, see [127] for a discussion.

Innate capacities that are part of core knowledge have been tentatively clustered
into different systems [128], depending on their nature. Each system focuses on a set
of principles used to individuate the entities in its domain and to support inferences
about the entities’ behavior, such as: (i) inanimate objects and their mechanical inter-

4.1 Background 143

actions, (ii) sets and their numerical ordering, addition, and subtraction relationships,
(iii) places in the spatial layout and their geometric relationships, (iv) agents and
their goal-directed actions, (v) potential social partners and social group members.

Besides the detailed identification of each innate capacity, studying core knowl-
edge can open further insights into human cognition. For example, the human ability
to extrapolate knowledge to unknown but related domains could stem from core
knowledge systems combined through the principle of compositionality [129].

Unsurprisingly, this line of research caught the attention of a part of the AI
community. In [121], Chollet outlines a novel research line for human-like AI,
proposing a new dataset, the Abstraction and Reasoning Corpus (ARC). ARC
comprises hundreds of tasks represented by static images, with only a few solved
instances provided for each task, plus a test instance. Humans can infer the general
principles required to solve the test instance from the examples provided. At the
same time, the current state-of-the-art AI algorithms cannot, as they typically require
more examples to learn. Following the theory of core knowledge, the skills required
to complete ARC tasks are primarily related to geometrical and spatial intuitions
without considering movement, agents, and their actions. Still, it can be argued
that core knowledge evolved in a three-dimensional, dynamic world enriched with
goal-directed entities. Consequently, attempting to complete tasks including agents
could potentially be more beneficial. This gap motivates the present work, as we
focus on inferring relationships between agents and objects in movement, designing
an evolutionary AI framework specifically tailored to achieve this objective.

4.1.2 Related works

Mainstream AI is currently dominated by ML/DL approaches, exploiting massive
quantities of data to train large, complex models for specific tasks. Nevertheless,
in specialized literature, it is possible to find several AI systems that aim to be less
data-hungry and more human-interpretable. The heterogeneity in terminology and
domains makes it challenging to survey these approaches comprehensively. A good
starting point is the overview given by Mitchell [130], where the author summarizes
the state of the art in systems able to reason by analogy and traces a few possible
research lines for the future.

144 A Core knowledge-based AI

Just as the approach proposed in this work aims to generate a set of rules, classic
Learning Classifier Systems (LCS) [131, 132] can also create a set of rules, albeit for
classification problems. The final classifier is human-readable, but most LCS systems
exploit simple rules. A few research lines in the domain of LCS have put forward
interesting ideas, including cognitive LCS able to build hierarchies of rules [133].

Fister et al. [134] focus on Numerical Association Rule Mining, where numer-
ical attributes are handled without discretization. The authors present a historical
overview and the main features of algorithms dealing with problems with categorical
and numerical attributes.

Kumar et al. [135] concentrate on agents trained by meta-learning. These agents
may sometimes acquire very different strategies from humans. The authors show
that co-training these agents on predicting representations from natural language task
descriptions and programs guides them toward more human-like inductive behaviors.
Human-generated induction models add newly learned primitives containing abstract
concepts that can compress description length. Co-training on these representations
results in more human-like behavior.

Fig. 4.1 Proposed pipeline for finding general rules describing interactions between classes.

Haase et al. [136] consider the projectile collision game Angry Birds on which
the AI benchmark AIBirds is based. The authors investigate whether a qualitative
approach to action planning under uncertainty proposed by Ge et al. [137] can
be adapted to the domain of Angry Birds to identify targets hittable by multiple
rebounds. The authors discover that the search space for solving the game is com-
plexly structured, and a fine-grained decomposition is required, leading to high
computational costs.

4.2 Proposed approach 145

4.2 Proposed approach

We propose a novel EA-based methodology to create the description of a simple, two-
dimensional video, identifying objects appearing in it, clustering them into classes,
and generating rules describing their interactions. The process is organized as follows.
First, we perform data analysis, gathering the positions of the segmented patches and
their possible contact points in each frame. Then, we detect the interactions between
patches, transforming them into objects and providing a physical status, with features
such as speed and shapes identified by the patches forming that object. Then, an EA
aggregates objects with a coherent behavior into classes and creates rules to describe
the observed interactions between each other, ultimately building a human-readable
description of the actions identified in the video. We deem EAs particularly suited
to this kind of task, as they can efficiently explore vast search spaces in a relatively
short amount of time, and the link between evolution and learning has been explicitly
pointed out by Turing [138] among many others.

4.2.1 Objects identification

Figure 4.1 shows our approach to finding the classes and rules in our framework.
Starting from a video featuring only 2D patches, different patches are detected in
every frame through simple heuristics. The patches are then aggregated into objects.
This step could be performed through several different approaches. We use an
approach based on evolutionary optimization; in this first proof of concept, we opted
for simple heuristics. The Gestalt principle of proximity [139] is thus employed to
identify multiple instances of the same patch across subsequent frames.

After detecting the different patches, the algorithm assembles objects as sets
of corresponding patches across frames. An object can be either static or dynamic.
Static objects can be defined using simple rules mimicking humans’ idea of persis-
tence: (a) the object exists only in one position, and (b) the object may disappear, but
if it reappears, it does so in the same position. Dynamic objects, on the other hand,
are clusters of patches that move through the screen. There are usually few moving
elements in the analyzed video streams, as we discuss more in detail in Section 4.3.

We model concepts following basic laws of physics, allowing the approach to
detect events inspired by physical interactions. For instance, in Arkanoid, the contact

146 A Core knowledge-based AI

Fig. 4.2 A video frame of Arkanoid shows the instant in which the ball hits the user’s paddle
and is about to bounce back.

between two patches may be detected as an interaction, providing a cause-effect
relationship between events. More specifically, some patches are recognized as the
object “ball” and others as the “paddle”. Then, when the ball collides with the paddle
(Figure 4.2), the velocity on the y-axis of the ball changes sign, and the velocity on
the x-axis changes based on the angle formed by the ball and the center of the paddle.
Such fundamental interactions are the core knowledge of the system, i.e., the idea of
“collision”, the dynamic of a “bounce”, and the appearance and disappearance of an
object. Moreover, it could be noted that even a cause-effect relationship is part of the
core knowledge, mimicking how humans explain the world.

More generalization becomes possible as more physical events are discovered in
the video frames, as the same rules may explain several other events. Generalization
can also reinforce some of the previous hypotheses and rule out others. For example,
on the one hand, a video not including a bounce with the top ”wall” may lead to
an indeterminism in the classification of the wall itself. To the analysis, the wall
may as well not exist or be a background object. On the other hand, if there is an
interaction between the ball and the wall, the effect is discovered, and the wall is
correctly classified.

4.2 Proposed approach 147

(a) Prediction on the position
of the ball in a future time
frame.

(b) Successful forecast of the
position of the ball in a future
time frame.

(c) Unsuccessful forecast of the
position of a ball just after a
bounce.

Fig. 4.3 A visual analysis of the correction of the ball velocity performed by our framework.

Patch detection, however, presents a few technical obstacles. In particular, the
most challenging issue is an aliasing problem. Our approach involves knowing the
velocity of patches at each frame. However, all our data is related to pixels, which can
be either belonging or not belonging to the patch in a binary way. Thus, analyzing
differences frame-by-frame may not yield a satisfactory result, as this procedure may
detect spurious accelerations due to the discretization. To overcome this difficulty,
we provide knowledge based on the first law of physics, i.e., an object not subject to
any forces has a constant velocity. Thus, if we assume a uniform speed between two
frames, the precision of detecting the actual rate of the object increases, as does the
distance between frames. Similarly, a larger distance between positions, obtained by
expanding the time difference between frames, can provide a more precise average
velocity. However, we shall ensure that the hypothesis is verified; thus, each time we
expand the time difference, we check if the ball position on the frames in between is
well-approximated.

Figure 4.3 shows an example of the proposed prediction strategy. First (Fig-
ure 4.3a), we know that the ball has a certain speed and trajectory. Then, we move to
the next frame until the following condition is true:

d(p,e)> ∀ (4.1)

where d is the Euclidean distance, p is the actual position of the ball, and e is its
expected position, meaning that the distance between the actual position of the ball
and its predicted position diverges significantly. Ultimately, we update the speed
with the best value we have. ∀ is a user-defined value, typically small, i.e., but
requires more precision than one pixel, which can be, for instance, 4.1 pixels. After
the speed update, we can remove spurious accelerations from the events for each

148 A Core knowledge-based AI

patch. Reducing the number of events increases the visual analysis’s accuracy and
improves the computation time during the learning phase. Finally, we formalize the
events involving all patches and confirm the corrections and event filtering.

4.2.2 Evolutionary learner

The last step of our process is a learning phase, performed by an EA, that aggregates
the objects detected by the heuristics into classes (i.e., groups of objects that behave
similarly), and then describes the interactions between objects belonging to classes
using rules.

Candidate solution

We detect two distinct elements: Classes and rules. A class is a coherent aggregate
of objects. A rule is a cause-effect relationship, where the cause is an interaction
between two objects, and the effect is an alteration of the state of some target objects,
which might or might not have been directly involved in the interaction. Classes and
rules are ontologically dependent on each other, i.e., a class’s existence depends on
the presence, or not presence, of the interactions with other objects. For instance, the
Arkanoid game’s top, left, and right walls trigger a bounce in the ball; however, their
state does not change in any way. Finally, some events may not be explicable from
what is observed. An example is the horizontal movement of the paddle in Arkanoid,
which depends on the user input and that no observer can explain with a rule.

However, according to the video analysis, the EA finds a set of classes and rules
derived from the “perceived” events, minimizing the number of rules and entities
involved in the explanation.

Each candidate solution can have an arbitrarily large number of classes and rules,
with a minimum of one classe and one rule (describing the interaction between
objects belonging to the same class). The fitness function, presented in the following
paragraph, applies a selection pressure for simplicity to push for the minimal number
of classes and rules needed.

4.2 Proposed approach 149

Fitness function

Intuitively, the evaluation of an explanation includes terms for: (i) its accuracy
for the behavior of the classes identified in the video; (ii) its complexity, with a
preference given to the simpler description between two approximately equally
accurate solutions, with an idea similar to Occam’s razor. Thus, the fitness function
defined for this optimization problem is:

F(I) = ¬E(I)+# · (C(I)+R(I)) (4.2)

where I is a candidate solution, ¬E(I) is the number of unexplained events, C(I) and
R(I) are the total number of classes and rules in the solution, respectively, and # is
a user-defined weight regulating the relative importance of the second part of the
equation. For example, setting # to a small value means that a solution with a larger
amount of classes and rules able to explain a more significant portion of the events
will be considered more promising than a solution with fewer rules but unable to
explain as many events. The value of F(I) must be minimized.

Genetic operators

Given the structure of a candidate solution, we define genetic operators that are
applied to its different parts. Each operator may act to modify either the set of
classes or the set of rules in each explanation. In particular, for the set of classes, the
following operations can be performed:

• Class mutation: A randomly selected object is moved between two randomly
selected classes in the same explanation; if a class ends up with no objects, the
class is removed from the explanation.

• Class removal: A randomly selected class is removed, and its objects are
randomly distributed among other existing classes with uniform probability;
all the rules in which the class is involved are discarded.

• Class addition: A new class is added to the explanation, and a randomly
selected object is moved to the newly created class.

Regarding the rules, the following specialized operators can be applied:

150 A Core knowledge-based AI

• Rule mutation: An existing rule is mutated; the mutation may involve the
target class, the interacting classes, the cause, and the effect; in all cases, a
new randomly selected element is selected to replace the current one.

• Rule removal: A randomly selected rule is removed.

• Rule addition: A new randomly generated rule is created.

4.3 Experimental evaluation

We tested the proposed approach on Pong and Arkanoid (also known as Breakout),
two extremely popular two-dimensional video games [140]. These experiments aim
to test our strategy on puzzles based on similar concepts but different layouts.

We consider Pong the easiest game to model, as it involves a ball bouncing on
both the walls and the two paddles on each side; each object can send the ball back.
Paddles are user-controlled and can be moved vertically up and down. Each player’s
target is to hit the opposite wall with the ball, getting beyond the opponent’s paddle
and scoring a point. In single-player games, the computer can control one of the two
paddles with a simple AI.

Arkanoid features a single horizontal paddle controlled by the player, a set of
bricks, and a ball that can bounce on walls and bricks. Each time the ball bounces
against a brick, the brick disappears, and the player’s score increases. The game’s
goal is to make all bricks disappear by hitting them with the ball; missing the ball
with the paddle and letting it hit the bottom of the screen causes a game over. The
paddle is user-controlled and can be moved horizontally left and right.

We tested our approach with two different videos for each game. Each video is
recorded with 60 frames per second. For Pong, the first video includes about 4,318
frames, and the second includes about 6,086. For Arkanoid, the videos are 2,335
and 12,082 frames long. Moreover, each experiment was repeated 30 times with
30 different initial seeds for the random generator to check the convergence ability
of our technique. Each video is part of a training test case. Ideally, with sufficient
events in the video, we show that converging to a shared knowledge of the game
is possible. All experiments are run on a server using an Intel(R) Xeon(R) Gold
6238R CPU @ 2.20GHz, equipped with 256 GB of RAM. All the code and the data

4.3 Experimental evaluation 151

necessary to reproduce the experiments are freely available on a GitHub repository
at https://github.com/to-be-disclosed-after-revision.

4.3.1 Implementation

The scene analysis focuses on identifying separate patches inside and across video
frames. Many image-segmentation techniques have been proposed to detect elements
in images, and the best choice is often application-specific. In the current work,
we select OpenCV [141], which provides a simple approach to analyzing a simple
video showing a typical game played by a human player. Within OpenCV, we detect
patches through image similarity: If the RGB channels of an image are above a
threshold, then the image is detected within the current frame. The threshold may
vary due to the image’s shape and is mainly found through visual inspection with
approximating supervised tests. We perform this operation for every image used.
Notably, the detection of patches is the paradigmatic activity that could be delegated
to a state-of-the-art neural network.

The EA used in the experiments employs a classic (µ +∃) replacement scheme
and a tournament selection for choosing the individuals for reproduction. The
evolutionary library used in the experiments is inspyred [142]. For all the following
experiments, we use a population size of µ = 1,000 and an offspring size of ∃ =

1,000 individuals. The tournament selection employs % = 2, and the termination
condition is set on 2,000 maximum generations, with an early stop if the best fitness
does not improve for 100 generations. When a new candidate solution is to be
produced starting from a parent solution, a single genetic operator is selected with
uniform probability among those previously described. We used the value 0.001 as
in Equation 4.2; this way, # is used to make the number of classes and rules a
secondary objective. For the value of ∀ in Equation 4.1 we set the value to 2.1, which
worked for both Arkanoid and Pong.

4.3.2 Case study 1: Pong

In the game of Pong, a ball bounces against two paddles that can move vertically, as
shown in Figure 4.4.

https://github.com/to-be-disclosed-after-revision

152 A Core knowledge-based AI

Fig. 4.4 An image of the Pong game. The net (white stripes) divides the playing court in
half; the two user-controlled paddles play against each other. The blue ball is represented in
the middle of the court, and the scores are reported on the top of the screen.

The ball starts with an initial velocity on the x-axis vx ↑= 0, and the paddles should
catch the ball. Once the ball touches a paddle, it bounces. There are two variants
of this game. In the first one, ball bounces are perfectly elastic; in the second one,
the new angle of the ball depends on the distance from the center of the paddle. We
experimented with both variants, as they deliver slightly different results.

In Figure 4.4, we show an example of the Pong game played by two players: the
green and the red paddle. In the video analysis, when the ball touches one of the
white stripes, it disappears (meaning that the video analysis has no concept of the
permanence of an object). Consequently, the algorithm finds the following rule: The
ball bounces when the ball touches one of the white stripes (grouped in a class). This
effect is seen in Figure 4.5, showing that the algorithm adds the rule for the ball’s
disappearance. In particular, starting from different complexity values, the algorithm
can improve over the solution until it finds the final complexity of 227.006 within 20
generations at most.

4.3 Experimental evaluation 153

Fig. 4.5 The Pong puzzle: The classes and rules discovered by our strategy.

4.3.3 Case study 2: Arkanoid

Arkanoid is a game in which a player controls a paddle at the bottom of the screen.
The paddle moves only horizontally (left and right) to manage the bounces of a ball.
The other elements in the game are bricks. A brick disappears when the ball hits
it. The goal of the game is to make all bricks disappear. In our case study, we have
three lines of bricks, and bricks of different colors represent each line. Figure 4.6
shows a video frame representing an intermediate development of a game.

The ball bounces elastically against the walls and the bricks. Colliding against
the paddle generates a bounce that follows the same rules we analyzed with Pong.
Arkanoid is more challenging to interpret for our learning program. This is due
to the higher number of patches in the frames and the more significant number of
rules required to interpret all events. In particular, our instance of Arkanoid can be
described using 26 patches, whereas Pong requires only 3 (without the net in the
middle) or 10 (with the net) patches.

As shown in Figure 4.7, the learner can separate the ball from the other patches
by finding the classes “ball”, “blocks”, and “misc”. However, most of the blocks
belonging to the miscellaneous class are artifacts. Indeed, they disappear when the
ball touches them, even if it never bounces back. Moreover, as the bottom wall
is never touched in this game, the learning algorithm has no experience with its
interactions and places it in a random class.

This behavior is similar to the one we discovered analyzing Pong. In both games,
we converge toward a very good set of rules, perfectly describing the basic principles

154 A Core knowledge-based AI

Fig. 4.6 A video frame of an ongoing Arkanoid game, where some bricks have already been
hit by the ball and disappeared from the image.

Fig. 4.7 The Arkanoid puzzle: The classes and rules discovered by our strategy.

4.3 Experimental evaluation 155

of the games. For Arkanoid, such rules can be described as “the ball bounces”, “all
blocks share the same behavior”, and “each block disappears when hit by the ball”.

4.3.4 Behavioural considerations

We analyze two games with several similarities. They both involve balls, paddles,
and bounces, but in Arkanoid, there are bricks, and those objects may disappear
during the game’s evolution.

Our solutions converge as expected on both game videos, leading to a unique
and reasonable explanation. Table 4.1 shows that the algorithm converges to the
same value even using very different starting seeds. In the table, seeds are selected
randomly. The first column shows the seed we used. Then, for each game, the first
column reports the fitness of the best individual after the first generation, and the
second one presents the best individual in the last generation. However, the number
of generations needed to converge varies significantly. For instance, for the Pong
game our approach may require more than 40 generations to converge to the solution
with fitness shown in the fifth column of Table 4.1. Arkanoid is the most challenging
game to analyze. On average, converging requires more than 70 generations, with
minor differences in the convergence rate depending on the initial random seed used
to find the solution. By exploring the solution space, we noticed a typical pattern:
Our approach tries to minimize the number of classes despite the number of rules
involved. When an object is moved between classes, the number of rules increases,
creating false explanations. However, as one of our targets is to minimize the number
of rules, the ones that do not provide any proof are automatically discarded after
three or four generations from the generation in which they are introduced.

In addition, we noticed that the video analysis process is extremely important
to reaching a good explanation. As there are different formats to represent a video
stream, we used the H265 codec [143] wrapped in MP4 files for compatibility.
Consequently, some differences may arise by analyzing the video using different
codecs, which may create video artifacts. Moreover, we found that OpenCV behaves
differently when used with Python or C++. Currently, all our experiments adopt the
Python version of OpenCV; its parameters for detecting images are fine-tuned for this
version. However, in our last set of experiments, we found that the C++ counterpart
of OpenCV is much more accurate and may lead to better results. We consider these

156 A Core knowledge-based AI

Pong Evolution Arkanoid Evolution
[Generations] [Generations]

Seed First Last First Last
123456 237.006 227.006 171.020 150.014
42 238.007 227.006 167.005 150.014
256 236.007 227.006 157.007 150.014
190283 236.007 227.006 160.005 150.014
328 239.005 227.006 159.005 150.014
715321 234.005 227.006 161.007 150.014
1 235.007 227.006 160.007 150.014
0 228.005 227.006 171.005 150.014
2 234.006 227.006 161.007 150.014
10000 235.005 227.006 161.004 150.014
444 235.007 227.006 161.007 150.014
711 234.005 227.006 165.007 150.014
8125002 235.007 227.006 165.004 150.014
30 234.008 227.006 164.004 150.014
59 235.007 227.006 164.006 150.014
100 239.006 227.006 157.007 150.014
99 233.006 227.006 166.004 150.014
999 234.004 227.006 160.004 150.014
999999 229.004 227.006 159.008 150.014
13 235.008 227.006 167.006 150.014
75 237.007 227.006 159.007 150.014
61 233.008 227.006 167.004 150.014
71 235.006 227.006 163.008 150.014
915 235.004 227.006 164.004 150.014
627 233.006 227.006 157.006 150.014
498 242.005 227.006 166.006 150.014
186 236.004 227.006 168.006 150.014
216 234.006 227.006 161.006 150.014
311 235.008 227.006 172.006 150.014
618 234.008 227.006 164.008 150.014

Table 4.1 The evolution of Pong and Arkanoid games respectively: for each seed, we show
the fitness of the best individual in the first generation and the fitness of the best individual in
the last generation

4.4 Conclusions and future works 157

experiments too preliminary to be conclusive and reported in the current paper, but
believe they can be a part of our future work and implementation effort.

4.4 Conclusions and future works

We present an approach to explain a 2D video as a set of objects, classes, and
rules. We apply it to two simple but widespread games, Pong and Arkanoid. The
approach provides a human and machine-readable description of the videos and a
resulting explanation for their models. We show that, even with a limited training
set, the process can differentiate classes and abstract rules involving them. Thus, the
approach builds a believable explanation of the rules followed by the various classes.

This work is the first step in a research line to build AI systems inspired by
core knowledge and exploiting evolutionary computation to aggregate the basic
information provided by hard-coded algorithms. The following step in developing
such a system may move in different directions. The first possibility is to leverage the
descriptions created by the approach to evolve optimal video-game plays, offering
a potentially more robust alternative to DL-based solutions. Another alternative
is experimenting with combinations of EAs with other search algorithms, such as
Novelty Search [144]. Finally, we mention the possibility of finding more free-
form structures to aggregate the outputs of the algorithms used as part of the core
knowledge provided to the approach.

4.4.1 Towards the future works

From a technical practical, we could significantly improve the algorithm’s speed by
using a compiled programming language such as C, C++, or Rust. This has been
done after the acceptance of this paper, and partially left as future work for future
thesis students. From the current partial results, as mentioned in Section 4.3.4, using
the C++ version of OpenCV shows significantly improved results by increasing the
accuracy of the video analysis.

Chapter 5

Conclusions

This is the final chapter of the thesis, and here lies the conclusion of my Ph.D. journey.
Before writing my final words on this thesis, however, I would like to remark the
technical achievements reached by me, my supervisors and my colleagues.

5.1 A short wrap-up

In Chapter 2 I presented three works aimed to improve the hardware testing state-
of-the-art. First, I presented a work on VCD files [18], with the focus on improving
the feasibility of custom analyses of testing programs applied on SoCs, exploiting
multithreading to improve significantly the computation time over three different
types of analysis. Later in the same chapter, I presented a work on the toolchain [20]
we developed together a series of tools that work together to provide a more in-depth
analysis of the metrics analyzed by the VCD analyzer. In particular, we developed a
tool to filter out some of the results provided by the VCD file; later, we focused on
analyzing the uniqueness of the stress provided by each testing program, with the
set tool. The set tool can also merge subsequent results of the VCD tool, providing
the effective coverage also from bits that could be stuck in a single test program.
Moreover, we developed a tool to weight the results from the analyses, effectively
ranking the various faults based on their location on the SoC. Another tool we
developed classifies the faults based on the module they are in, providing an effective
coverage of the whole module on the SoC. Finally, we developed a program to
visualize on an image the fault coverage provided by the testing programs. The third

5.2 Some final words 159

work presents a new metric, called connectivity [19], to help increasing the fault
coverage of a test program trying to avoid expensive fault simulations, providing a
not exact, but easy to compute, approach that helps test engineers to develop their
software-based tests correctly.

Then, in Chapter 3 we improved two existing algorithms on graph computations.
The first one is a GPU implementation of the JPL algorithm [65], written in C++
and CUDA. This uses a semi-random node selection to color the nodes in a graph,
effectively coloring nodes that are surely not close to other nodes with the same
color. Moreover, in the second section I present our work on McSplit and the use of
PageRank to improve its results, together with its state-of-the-art variants [66].

Eventually, in chapter 4, I presented a new approach to the AI task [110], in
which we developed an agent able, with some small mistakes, to explain the actors
in two video-games and the rules to which they are subject. This work is still in
progress and is going to be presented in GECCO 2024.

5.2 Some final words

First of all, I would like to thank every person that worked with me and supported
me. I will start with my supervisors, Stefano Quer and Giovanni Squillero, that saw
me at my worst with some works that I chose not to write here... and probably with
this thesis itself.

I am a firm believer in collaboration, and I had some of the best colleagues
I could have hoped for. I will start with the ones that are present on this thesis:
Francesco Angione, Lorenzo Cardone, Gabriele Filipponi, Giusy Iaria. Together
with them, I would also like to thank professor Paolo Bernardi, who also looked
after me more than he had to, and Alberto Tonda from INRAE. I would like to thank
my thesis students, starting with the known ones: Alessandro Borione, Salvatore
Licata and Marco Porro. However, we shall never forget the ones that were not
mentioned before: Enrico Carraro and Thomas Madeo (after one year, will our paper
be accepted?). I would also like to thank my colleagues at Lab 3 that I did not
mention: Mohammadreza Amel Solouki, Tommaso Foscale, Giorgio Insinga, Nima
Kolahi Mahmoudi, and Annachiara Ruospo.

160 Conclusions

Of course, my parents are also in the list: Franco Calabrese and Donatella Zacco,
who believed in me and guided me with my decisions. I would never be the way I
am without them, in the good and in the bad things. Together with them, I would
like to thank my dog Sheila. Although she will never read this work, she knows how
much she means for me.

With these words, I conclude my academic career. So long, and thanks for all the
fish.

References

[1] The C++ Committee. The C++ standard. https://isocpp.org/std/the-standard,
Last Access 8 January 2024.

[2] Steve Klabnik and Carol Nichols. The Rust Programming Language. No
Starch Press, USA, 2018.

[3] Python Committee. Python official website. https://www.python.org, Last
Access 8 January 2024.

[4] Pierre Carbonnelle. Pypl official website. https://pypl.github.io/PYPL.html,
Last Access 8 January 2024.

[5] Python Software Foundation. Python documentation glossary. https://docs.
python.org/3/glossary.html, Accessed December 2023.

[6] Rob Pike. Concurrency is not parallelism. https://go.dev/talks/2012/waza.
slide#1„ 2021.

[7] David P. Rodgers. Improvements in multiprocessor system design. SIGARCH
Comput. Archit. News, 13(3):225–231, jun 1985.

[8] Shavit Nir Herlihy Maurice. The Art of Multiprocessor Programming. Elsevier,
2012.

[9] Edsger Dijkstra. Over seinpalen. Technical report, University of Texas at
Austin, 1962 or 1963.

[10] Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu
implementation of numerical algorithms. 22(3), 2003.

[11] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson,
and Jack Dongarra. From cuda to opencl: Towards a performance-portable
solution for multi-platform gpu programming. Parallel Computing, 38(8):391–
407, 2012. APPLICATION ACCELERATORS IN HPC.

[12] Vulkan. https://www.vulkan.org, 2024. Online; accessed 21 February 2024.

[13] Vulkan kompute. https://kompute.cc, 2024. Online; accessed 21 February
2024.

https://isocpp.org/std/the-standard
https://www.python.org
https://pypl.github.io/PYPL.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://go.dev/talks/2012/waza.slide#1
https://go.dev/talks/2012/waza.slide#1
https://www.vulkan.org
https://kompute.cc

162 References

[14] Nvidia. CUDA C++ programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, Last Access 8 January 2024.

[15] Andrea Calabrese, Paolo Bernardi, Stefano Littardi, and Stefano Quer. Ac-
celerated analysis of simulation dumps through parallelization on multicore
architectures. In Proceeding of the International Test Conference 2020, 2020.

[16] D. Appello, P. Bernardi, A. Calabrese, S. Littardi, G. Pollaccia, S. Quer,
V. Tancorre, and R. Ugioli. Accelerated analysis of simulation dumps through
parallelization on multicore architectures. In 2021 24th International Sympo-
sium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
pages 69–74, 2021.

[17] Andrea Calabrese. Tools for the analysis of simulation dumps and the evalua-
tion of burn-in techniques. In IEEE European Test Symposium (ETS) - 27th
IEEE European Test Symposium (ETS), 2022.

[18] D. Appello, Paolo Bernardi, Andrea Calabrese, G. Pollaccia, Stefano Quer,
V. Tancorre, and R. Ugioli. Parallel multithread analysis of extremely large
simulation traces. IEEE Access, 10:56440–56457, 2022.

[19] F. Angione, P. Bernardi, A. Calabrese, L. Cardone, A. Niccoletti, D. Piumatti,
S. Quer, D. Appello, V. Tancorre, and R. Ugioli. An innovative strategy to
quickly grade functional test programs. In 2022 IEEE International Test
Conference (ITC), pages 355–364, 2022.

[20] Francesco Angione, Davide Appello, Paolo Bernardi, Andrea Calabrese,
Stefano Quer, Matteo Sonza Reorda, Vincenzo Tancorre, and Roberto Ugioli.
A toolchain to quantify burn-in stress effectiveness on large automotive system-
on-chips. IEEE Access, 11:105655–105676, 2023.

[21] Hideo Fujiwara and Shunichi Toida. The Complexity of Fault Detection
Problems for Combinational Logic Circuits. IEEE Transactions on Computers,
C-31:555–560, 1982.

[22] Iso 26262-[1-10], road vehicles – functional safety. 2011.

[23] Ilia Polian, Jens Anders, Steffen Becker, Paolo Bernardi, Krishnendu
Chakrabarty, Nourhan ElHamawy, Matthias Sauer, Adit Singh, Matteo Sonza
Reorda, and Stefan Wagner. Exploring the mysteries of system-level test. In
2020 IEEE 29th Asian Test Symposium (ATS), pages 1–6, 2020.

[24] Harry H. Chen. Beyond structural test, the rising need for system-level test. In
International Symposium on VLSI Design, Automation and Test (VLSI-DAT),
2018.

[25] P. Varma. System chip test: are we there yet? In Proceedings International
Test Conference, 1998.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

References 163

[26] T.M. Mak. Infant mortality–the lesser known reliability issue. In 13th IEEE
International On-Line Testing Symposium (IOLTS 2007), pages 122–122,
2007.

[27] M.F. Zakaria, Z.A. Kassim, M.P.-L. Ooi, and S. Demidenko. Reducing burn-in
time through high-voltage stress test and weibull statistical analysis. IEEE
Design Test of Computers, 23(2):88–98, 2006.

[28] Alfredo Benso, Alberto Bosio, Stefano Di Carlo, Giorgio Di Natale, and Paolo
Prinetto. Atpg for dynamic burn-in test in full-scan circuits. In 2006 15th
Asian Test Symposium, pages 75–82, 2006.

[29] Davide Appello, Conrad Bugeja, Giorgio Pollaccia, Paolo Bernardi, Riccardo
Cantoro, Marco Restifo, Ernesto Sanchez, and Federico Venini. An optimized
test during burn-in for automotive soc. IEEE Design Test, 35(3):46–53, 2018.

[30] F. Almeida et al. Effective screening of automotive socs by combining burn-
in and system level test. In IEEE International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), 2019.

[31] F. Angione, P. Bernardi, G. Filipponi, M. Sonza Reorda, D. Appello, V. Tan-
corre, and R. Ugioli. An optimized burn-in stress flow targeting interconnec-
tions logic to embedded memories in automotive systems-on-chip. In 2022
IEEE European Test Symposium (ETS), pages 1–6, May 2022.

[32] Paolo Bernardi, Alberto Bosio, Giorgio Di Natale, Andrea Guerriero, Ernesto
Sanchez, and Federico Venini. Improving Stress Quality for SoC Using Faster-
than-At-Speed Execution of Functional Programs. In Thomas Hollstein, Jaan
Raik, Sergei Kostin, Anton T!ertov, Ian O’Connor, and Ricardo Reis, editors,
VLSI-SoC: System-on-Chip in the Nanoscale Era – Design, Verification and
Reliability, volume AICT-508 of IFIP Advances in Information and Com-
munication Technology, pages 130–151, Tallinn, Estonia, September 2016.
Springer International Publishing.

[33] Chen He and Yanyao Yu. Wafer level stress: Enabling zero defect quality
for automotive microcontrollers without package burn-in. In 2020 IEEE
International Test Conference (ITC), pages 1–10, Nov 2020.

[34] Sun-Jung Lee, Soo-Geun Lee, Bong-Suk Suh, Hongjae Shin, Nae-In Lee,
Ho-Kyu Kang, and Gwangpyuk Suh. New insight into stress induced voiding
mechanism in cu interconnects. In Proceedings of the IEEE 2005 International
Interconnect Technology Conference, 2005., pages 108–110, June 2005.

[35] Walter Ruggeri, Paolo Bernardi, Stefano Littardi, Matteo Sonza Reorda,
Davide Appello, Claudia Bertani, Giorgio Pollaccia, Vincenzo Tancorre,
and Roberto Ugioli. Innovative methods for burn-in related stress metrics
computation. In 2021 16th International Conference on Design Technology
of Integrated Systems in Nanoscale Era (DTIS), pages 1–6, 2021.

164 References

[36] D. Appello, P. Bernardi, R. Cagliesi, M. Giancarlini, M. Grosso, E. Sanchez,
and M. Sonza Reorda. Automatic functional stress pattern generation for soc
reliability characterization. In 2009 14th IEEE European Test Symposium,
pages 93–98, May 2009.

[37] Dietmar Vogel, Sven Rzepka, Bernd Michel, and Astrid Gollhardt. Local
stress measurement on metal lines and dielectrics of beol pattern by stress
relief technique. In 2011 Semiconductor Conference Dresden, pages 1–3,
2011.

[38] Rabindra K. Roy, T.M. Niermann, Janak H. Patel, Jacob A. Abraham, and
Resve A. Saleh. Compaction of ATPG-generated Test Sequences for Se-
quential Circuits. IEEE International Conference on Computer-Aided Design
(ICCAD), pages 382–385, 1988.

[39] Che-Jen Jerry Chang and Takeo Kobayashi. Test Quality Improvement with
Timing-aware ATPG: Screening small delay defect case study. IEEE Interna-
tional Test Conference, pages 1–1, 2008.

[40] Sounil Biswas and Bruce Cory. An Industrial Study of System-Level Test.
IEEE Design Test of Computers, 29(1):19–27, 2012.

[41] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001), pages 1–590, 2006.

[42] Stuart Sutherland. Extended VCD files, pages 104–105. Springer US, Boston,
MA, 2002.

[43] Cadence. Cadence website. https://www.cadence.com/en_US/home.html,
Accessed March 2024.

[44] GTKWave development team. Gtkwave. https://github.com/gtkwave/gtkwave,
Accessed March 2024.

[45] Richard Hipp. Sqlite. https://sqlite.org, Accessed March 2024.

[46] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient Dynamic
Dispatch without Virtual Function Tables. The SmallEiffel Compiler. In
12th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’97), volume 32 of ACM
SIGPLAN Notices, pages 125–141, Atlanta, United States, October 1997.
ACM SIGPLAN, ACM Press. Cette publi est considérée comme un journal
(ACM SIGPLAN Notices) dans la communauté.

[47] Stephen C. Johnson. Yacc. https://www.tuhs.org/cgi-bin/utree.pl?file=V6/usr/
source/yacc.

[48] Free Software Foundation. Gnu bison. https://www.gnu.org/software/bison/.

https://www.cadence.com/en_US/home.html
https://github.com/gtkwave/gtkwave
https://sqlite.org
https://www.tuhs.org/cgi-bin/utree.pl?file=V6/usr/source/yacc
https://www.tuhs.org/cgi-bin/utree.pl?file=V6/usr/source/yacc
https://www.gnu.org/software/bison/

References 165

[49] STMicroelectronics. Spc58nn84c3, 32-bit power architecture mcu for high per-
formance applications. https://www.st.com/en/automotive-microcontrollers/
spc58nn84c3.html.

[50] Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast
density-based clustering with R. Journal of Statistical Software, 91(1):1–30,
2019.

[51] Sdl libraries. https://www.libsdl.org, 2024. Online; accessed 21 February
2024.

[52] Openmp. https://www.openmp.org, 2024. Online; accessed 21 February 2022.

[53] Francesco Angione et al. Test, Reliability and Functional Safety trends for
Automotive System-on-Chip. European Test Symposium, 2022.

[54] F. Angione, D. Appello, P. Bernardi, C. Bertani, G. Gallo, S. Littardi, G. Pol-
laccia, W. Ruggeri, M. Sonza Reorda, V. Tancorre, and R. Ugioli. A low-cost
burn-in tester architecture to supply effective electrical stress. IEEE Transac-
tions on Computers, pages 1–14, 2022.

[55] C++ named requirements: Trivially copyable. https://en.cppreference.com/w/
cpp/named_req/TriviallyCopyable, 2024. Online; accessed 12 February 2024.

[56] Muhammad Hassan et al. Early soc security validation by vp-based static
information flow analysis. In IEEE/ACM ICCAD, 2017.

[57] Rolf Drechlser et al. Ensuring correctness of next generation devices: From
reconfigurable to self-learning systems. In IEEE ATS, 2019.

[58] Wei Hu et al. An overview of hardware security and trust: Threats, counter-
measures, and design tools. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[59] Khitam M Alatoun et al. Efficient methods for soc trust validation using
information flow verification. In IEEE ICCD, 2021.

[60] Paolo Bernardi et al. Development flow for on-line core self-test of automotive
microcontrollers. IEEE Transactions on Computers, 2016.

[61] D. Piumatti et al. An efficient strategy for the development of software
test libraries for an automotive microcontroller family. Microelectronics
Reliability vol. 115, 2020.

[62] Sharad Malik et al. Specification and modeling for systems-on-chip security
verification. In Proceedings of Design Automation Conference, 2016.

[63] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. Efficient machine-
code test-program induction. In CEC, 2002.

https://www.st.com/en/automotive-microcontrollers/spc58nn84c3.html
https://www.st.com/en/automotive-microcontrollers/spc58nn84c3.html
https://www.libsdl.org
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable

166 References

[64] Jean J. Labrosse. UC/OS-III, The Real-Time Kernel, or a High Performance,
Scalable, ROMable, Preemptive, Multitasking Kernel for Microprocessors,
Microcontrollers & DSPs. Micrium Press, 2009.

[65] Alessandro Borione, Lorenzo Cardone, Andrea Calabrese, and Stefano Quer.
An experimental evaluation of graph coloring heuristics on multi- and many-
core architectures. IEEE Access, 11:125226–125243, 2023.

[66] SCITEPRESS, editor. A Web Scraping Algorithm to Improve the Computation
of the Maximum Common Subgraph, 2024.

[67] Frank Thomson Leighton. A graph coloring algorithm for large scheduling
problems. Journal of research of the national bureau of standards, 84(6):489,
1979.

[68] Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic
number of a graph and its application to timetabling problems. The Computer
Journal, 10(1):85–86, 1967.

[69] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Mar-
tin E Hopkins, and Peter W Markstein. Register allocation via coloring.
Computer languages, 6(1):47–57, 1981.

[70] Fusun Akman. Partial chromatic polynomials and diagonally distinct sudoku
squares. arXiv preprint arXiv:0804.0284, 2008.

[71] Krzysztof Giaro, Marek Kubale, and Pawel Obszarski. A graph coloring
approach to scheduling of multiprocessor tasks on dedicated machines with
availability constraints. Discrete Applied Mathematics, 157(17):3625–3630,
2009.

[72] M. Garey and D. Johnson. Computers and Intractability – A Guide to the
Theory of NP-completeness. Freeman, 1979.

[73] Assefaw Hadish Gebremedhin and Fredrik Manne. Scalable parallel graph
coloring algorithms. Concurrency: Practice and Experience, 12(12):1131–
1146, 2000.

[74] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM journal on computing, 15(4):1036–1053, 1986.

[75] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic.
SIAM Journal on Scientific Computing, 14(3):654–669, 1993.

[76] Jonathan Cohen and Patrice Castonguay. Efficient graph matching and color-
ing on the gpu. In GPU Technology Conference, pages 1–10, 2012.

[77] Alessandro Garbo and Stefano Quer. A Fast MPEG’s CDVS Implementation
for GPU Featured in Mobile. IEEE Access, 6(1):52027–52046, dec 2018.

References 167

[78] Stefano Quer, Marcelli Andrea, and Squillero Giovanni. The Maximum
Common Subgraph Problem: A Parallel and Multi-Engine Approach. MDPI
Computation, 8(2):1–29, 2020.

[79] Muhammad Osama, Minh Truong, Carl Yang, Aydın Buluç, and John Owens.
Graph coloring on the gpu. In 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), pages 231–240. IEEE,
2019.

[80] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydin Buluc, Katherine
Yelick, and John Owens. Atos: A task-parallel gpu scheduler for graph
analytics. In Proceedings of the 51st International Conference on Parallel
Processing, ICPP ’22, New York, NY, USA, 2023. Association for Computing
Machinery.

[81] NVIDIA Corporation. cusparse library documentation. https://docs.nvidia.
com/cuda/cusparse/index.html.

[82] Muhammad Osama, Serban D. Porumbescu, and John D. Owens. Essentials
of Parallel Graph Analytics. In Proceedings of the Workshop on Graphs,
Architectures, Programming, and Learning, GrAPL 2022, pages 314–317, 5
2022.

[83] Jonathan Cohen. Proof of optimality of minmax pis algorithm. 2011.

[84] Muhammad Osama. Private Communication, jun 2022.

[85] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011.

[86] Carla Gomes. https://mat.gsia.cmu.edu/COLOR02/, apr 2022.

[87] Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluat-
ing proximity preserving and structural role-based node embeddings, 2021.

[88] Andrew Dalke and Janna Hastings. Fmcs: a novel algorithm for the multiple
mcs problem. Journal of cheminformatics, 5(Suppl 1):O6, 2013.

[89] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[90] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30(1):107–117,
1998. Proceedings of the Seventh International World Wide Web Conference.

[91] Younghee Park and Douglas Reeves. Deriving common malware behavior
through graph clustering. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, pages 497–502, 2011.

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://mat.gsia.cmu.edu/COLOR02/

168 References

[92] Thomas Zimmermann and Nachiappan Nagappan. Predicting subsystem
failures using dependency graph complexities. In The 18th IEEE International
Symposium on Software Reliability (ISSRE ’07), pages 227–236, 2007.

[93] F. Angione, P. Bernardi, A. Calabrese, L. Cardone, A. Niccoletti, D. Piumatti,
S. Quer, D. Appello, V. Tancorre, and R. Ugioli. An innovative strategy to
quickly grade functional test programs. In 2022 IEEE International Test
Conference (ITC), pages 355–364, 2022.

[94] Coenraad Bron and Joep Kerbosch. Finding All Cliques of an Undirected
Graph (algorithm 457). Commun. ACM, 16(9):575–576, 1973.

[95] Harry G. Barrow and Rod M. Burstall. Subgraph Isomorphism, Matching
Relational Structures and Maximal Cliques. Inf. Process. Lett., 4(4):83–84,
1976.

[96] Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning al-
gorithm for maximum common subgraph problems. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-
17, pages 712–719, 2017.

[97] Yanli Liu, Chu-Min Li, Hua Jiang, and Kun He. A learning based branch and
bound for maximum common subgraph related problems. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(03):2392–2399, Apr. 2020.

[98] Jianrong Zhou, Kun He, Jiongzhi Zheng, Chu-Min Li, and Yanli Liu. A
strengthened branch and bound algorithm for the maximum common (con-
nected) subgraph problem, 2022.

[99] Yanli Liu, Jiming Zhao, Chu-Min Li, Hua Jiang, and Kun He. Hybrid learning
with new value function for the maximum common subgraph problem, 2022.

[100] P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism
and sub-graph isomorphism benchmarking. In -, page 176–187, 2001.

[101] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 37(3):312–323, 1988.

[102] David S. Johnson Michael Garey. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, United States,
1979.

[103] James Trimble. Partitioning algorithms for induced subgraph problems. PhD
thesis, University of Glasgow, 2023.

[104] G. Levi. A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. CALCOLO, 9(4):341–352, 1973.

References 169

[105] Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser, and Christine Solnon.
Clique and constraint models for maximum common (connected) subgraph
problems. In Michel Rueher, editor, Principles and Practice of Constraint
Programming, pages 350–368, Cham, 2016. Springer International Publishing.

[106] Philippe Vismara and Benoît Valery. Finding maximum common connected
subgraphs using clique detection or constraint satisfaction algorithms. In Mod-
elling, Computation and Optimization in Information Systems and Manage-
ment Sciences: Second International Conference MCO 2008, Metz, France-
Luxembourg, September 8-10, 2008. Proceedings, pages 358–368. Springer,
2008.

[107] Stefano Quer, Andrea Marcelli, and Giovanni Squillero. The maximum com-
mon subgraph problem: A parallel and multi-engine approach. Computation,
8(2), 2020.

[108] Lorenzo Cardone and Stefano Quer. The multi-maximum and quasi-maximum
common subgraph problem. Computation, 11(4), 2023.

[109] Rafael Martí and Gerhard Reinelt. Heuristic Methods, pages 27–57. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2022.

[110] Squillero Calabrese, Quer and Tonda. Towards an evolutionary approach for
exploting core knowledge in artificial intelligence. Accepted in GECCO 2024,
2024.

[111] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[112] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classifi-
cation with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, May 2017.

[113] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
"ídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,
Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, An-
drew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hass-
abis. Highly accurate protein structure prediction with AlphaFold. Nature,
596(7873):583–589, July 2021.

[114] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John

170 References

Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489,
January 2016.

[115] Gary Marcus. The next decade in AI: Four steps towards robust artificial
intelligence, 2020.

[116] Waddah Saeed and Christian Omlin. Explainable AI (XAI): A systematic
meta-survey of current challenges and future opportunities. Knowledge-Based
Systems, 263:110273, March 2023.

[117] Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Es-
pinosa Zarlenga, Lucie Charlotte Magister, Alberto Tonda, Pietro Lio, Frederic
Precioso, Mateja Jamnik, and Giuseppe Marra. Interpretable neural-symbolic
concept reasoning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 1801–1825. PMLR, 23–29
Jul 2023.

[118] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and saliency
maps, 2014.

[119] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust
you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16. ACM, August 2016.

[120] Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman,
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C. Lamb, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and
Gerson Zaverucha. Neural-symbolic learning and reasoning: A survey and
interpretation1. In Frontiers in Artificial Intelligence and Applications. IOS
Press, December 2021.

[121] François Chollet. On the measure of intelligence, 2019.

[122] Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmen-
tal Science, 10(1):89–96, January 2007.

[123] Noam Chomsky et al. On cognitive structures and their development: A reply
to piaget. Language and learning: the debate between Jean Piaget and Noam
Chomsky, pages 35–54, 1980.

[124] Pierre Pica, Cathy Lemer, Véronique Izard, and Stanislas Dehaene. Ex-
act and approximate arithmetic in an amazonian indigene group. Science,
306(5695):499–503, October 2004.

References 171

[125] Stanislas Dehaene, Véronique Izard, Elizabeth Spelke, and Pierre Pica. Log
or linear? distinct intuitions of the number scale in western and amazonian
indigene cultures. Science, 320(5880):1217–1220, May 2008.

[126] Fei Xu and Elizabeth S. Spelke. Large number discrimination in 6-month-old
infants. Cognition, 74(1):B1–B11, January 2000.

[127] Steven Pinker and Jacques Mehler, editors. Connections and Symbols. Con-
nections and Symbols. MIT Press, London, England, January 1988.

[128] E Spelke, N Kanwisher, and J Duncan. Functional Neuroimaging of Visual
Cognition: Attention and Performance, volume 20. Oxford University Press,
2004.

[129] George Boole. An investigation of the laws of thought on which are founded
the mathematical theories of logic and probabilities by george boole. Walton
and Maberly, 1854.

[130] Melanie Mitchell. Abstraction and analogy-making in artificial intelligence.
Annals of the New York Academy of Sciences, 1505(1):79–101, June 2021.

[131] John Holland. Progress in theoretical biology, chapter Adaptation. New York:
Academic Press, 1976.

[132] Stewart W Wilson. Classifier fitness based on accuracy. Evolutionary compu-
tation, 3(2):149–175, 1995.

[133] Martin V Butz. Rule-based evolutionary online learning systems, volume 259.
Springer, 2006.

[134] Iztok Fister Jr. and Iztok Fister. A Brief Overview of Swarm Intelligence-Based
Algorithms for Numerical Association Rule Mining, pages 47–59. Springer
Singapore, Singapore, 2021.

[135] Sreejan Kumar, Carlos G. Correa, Ishita Dasgupta, Raja Marjieh, Michael
Y. Hu, Robert D. Hawkins, Nathaniel D. Daw, Jonathan D. Cohen, Karthik
Narasimhan, and Thomas L. Griffiths. Using natural language and program
abstractions to instill human inductive biases in machines. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems 35 - 36th Conference on Neural
Information Processing Systems, NeurIPS 2022, Advances in Neural Informa-
tion Processing Systems. Neural information processing systems foundation,
2022.

[136] Felix Haase and Diedrich Wolter. Behind the corner: Using qualitative
reasoning for solving angry birds.

[137] Xiaoyu Ge, Jae Lee, Jochen Renz, and Peng Zhang. Hole in one: Using
qualitative reasoning for solving hard physical puzzle problems,. 06 2016.

172 References

[138] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–
460, 1950.

[139] Charles B. Craighead, W. Edward; Nemeroff. The Concise Corsini Encyclo-
pedia of Psychology and Behavioral Science. John Wiley & Sons, 2004.

[140] Kendall Haven and Donna Clark. 100 Most Popular Scientists for Young
Adults: Biographical Sketches and Professional Paths. Libraries Unlimited,
May 1999.

[141] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[142] Alberto Tonda. Inspyred: Bio-inspired algorithms in python. Genetic Pro-
gramming and Evolvable Machines, 21(1):269–272, 2020.

[143] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (hevc) standard. IEEE Transac-
tions on Circuits and Systems for Video Technology, 22(12):1649–1668, Dec
2012.

[144] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation, 19:189–223,
6 2011. Fundamental reference for Novelty Search.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research activity
	1.2 Technological introduction
	1.2.1 Language: C++
	1.2.2 Language: Rust
	1.2.3 Language: Python
	1.2.4 Concurrency and synchronization
	1.2.5 GPU parallelism
	1.2.6 Language: CUDA

	2 Testing
	2.1 Background
	2.1.1 Testing
	2.1.2 Value Change Dump files
	2.1.3 Working with more VCDs

	2.2 The VCD Analyzer
	2.2.1 File reading
	2.2.2 Pipelined parsing operations
	2.2.3 Experimental results
	2.2.4 Conclusions

	2.3 The VCD Toolchain
	2.3.1 The standard file
	2.3.2 Layout-aware analysis
	2.3.3 The Set Tool
	2.3.4 The Hierarchical Analysis Tool
	2.3.5 The Chip-Surface Stress Plotter
	2.3.6 Experimental results
	2.3.7 Experimental setup
	2.3.8 The Logic Simulator
	2.3.9 The VCD File Analyzer
	2.3.10 Layout-Aware Elaboration Scripts
	2.3.11 The Set Tool
	2.3.12 The Hierarchical Analysis Tool
	2.3.13 The Chip-Surface Stress Plotter
	2.3.14 Wrapping up the flow
	2.3.15 Conclusions

	2.4 Connectivity: A new metric
	2.4.1 The Proposed Methodology
	2.4.2 The Basic Algorithm
	2.4.3 Optimized Algorithm
	2.4.4 Load/Store Instructions
	2.4.5 Branch Instructions
	2.4.6 Multiple Destination Instructions
	2.4.7 Experimental Results
	2.4.8 The Industrial Device under Analysis
	2.4.9 Evaluation of SBST Programs
	2.4.10 Evaluation of BI Programs
	2.4.11 Evaluation of SLT programs
	2.4.12 Conclusions and Future Works

	2.5 Conclusions

	3 Algorithms
	3.1 Graphs
	3.1.1 Notation

	3.2 Graph Coloring on GPU
	3.2.1 Introduction
	3.2.2 Graph Coloring
	3.2.3 Jones-Plassmann-Luby
	3.2.4 Gebremedhin-Manne
	3.2.5 Atos
	3.2.6 Cohen-Castonguay
	3.2.7 Gunrock
	3.2.8 Our Coloring Procedure
	3.2.9 Experimental Results
	3.2.10 Performance analysis
	3.2.11 Conclusions

	3.3 McSplit+PR
	3.3.1 Introduction
	3.3.2 Background
	3.3.3 McSplit
	3.3.4 McSplit variants
	3.3.5 Other Approaches
	3.3.6 The PageRank Algorithm
	3.3.7 The main idea behind our approach
	3.3.8 McSplitX+PR
	3.3.9 Experimental results
	3.3.10 Conclusions and future works

	3.4 Conclusions

	4 A Core knowledge-based AI
	4.1 Background
	4.1.1 Core knowledge
	4.1.2 Related works

	4.2 Proposed approach
	4.2.1 Objects identification
	4.2.2 Evolutionary learner

	4.3 Experimental evaluation
	4.3.1 Implementation
	4.3.2 Case study 1: Pong
	4.3.3 Case study 2: Arkanoid
	4.3.4 Behavioural considerations

	4.4 Conclusions and future works
	4.4.1 Towards the future works

	5 Conclusions
	5.1 A short wrap-up
	5.2 Some final words

	References

