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Abstract 5 

In this study, a Computational Fluid Dynamics (CFD) simulation was used to study single bubble flow in 6 

liquid metal. Till now, bubble trajectory and shape (Mougin & Magnaudet, 2002) stability problems in liquid 7 

metal have only been insufficiently analyzed in the literature. Because of the difficulty of such an experimental 8 

validation, no universal correlations on terminal velocity, shape aspect ratio, and drag force coefficient have 9 

been produced to date. The existing bubble shape parameter and terminal velocity correlations with 10 

dimensionless numbers are still debatable, mostly because experimental validation is very challenging. 11 

The objective of this study was to develop new correlations for bubble stability and bubble deformation in 12 

liquid metals. An in-house code, PSI-BOIL, has been used for the simulations. A single bubble rising in a 13 

quiescent liquid has been simulated for three different sets of materials (Nitrogen+Mercury, Argon+GalnSn, 14 

Argon+Steel).  15 

The obtained results suggest shape instability phenomena take place in the bubble dynamics in liquid metals 16 

for Eötvös numbers > 1.7. Small bubbles (Eo < 1.7) maintain a stable ellipsoidal shape, while the shape and 17 

velocity of larger bubbles (Eo > 1.7) tend to oscillate with bubbles rising via non-rectilinear trajectories. 18 

The inviscid approximation works well for bubbles in liquid metals. It has been confirmed that the dynamics 19 

and the shape of small bubbles (Eo < 1.7) in liquid metals are only controlled by the Weber number. 20 

  21 
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Nomenclature 22 

Physical quantities 23 

D bubble diameter (m) 24 

g gravitational acceleration (m/s2) 25 

 p pressure (Pa) 26 

 F force (N) 27 

 t time (s) 28 

u velocity (m/s) 29 

uT terminal rising velocity (m/s) 30 

 X bubble aspect ratio: bubble height divided by bubble width (–) 31 

γ surface tension coefficient (N/m) 32 

μ dynamic viscosity (Pas) 33 

ρ density (kg/m3) 34 

χ curvature (m‒1) 35 

Dimensionless numbers 36 

Eo Eötvös number, 𝐸𝑜  37 

Mo Morton number, 𝑀𝑜  38 

Re Reynolds number, 𝑅𝑒  39 

We Weber number, 𝑊𝑒  40 

Subscriptions 41 

 a  Archimede 42 

 g  gas 43 

 l  liquid 44 

 i  inertia 45 

 st  surface tension 46 

 v  viscous 47 

  48 
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Introduction 49 

Bubble motion in liquid metals plays a determining role in many engineering processes. Gas bubbles are 50 

commonly inserted into a liquid metal to enhance the mixing process that takes place in the liquid phase (Liu 51 

& Li, 2017) and to improve the heat transfer of the liquid(Lorenzin & Abánades, 2016).. In fact, liquid metal 52 

is an excellent type of energy carrier, and it is largely used in many types of nuclear reactors, such as fast 53 

reactors, spallation source devices and fusion reactors. 54 

Moreover, a bubbly flow in liquid metal is also used in industrial processes, such as in metal stirring and 55 

purification, continuous casting and liquid metal chemical reactions, with the purpose of increasing efficiency. 56 

A great deal of scientific research has been carried out in this field. In continuum casting (Liu & Li, 2017) , 57 

for example, bubbles are injected into a liquid metal to avoid clogging of the flow and to make the process as 58 

continuous as possible. Timmel et al. (2010) presented a new experimental facility (LIMMCAST) focused on 59 

the study of gas bubble rising in metals. Yang et al. (2020) produced an advanced break-up/coalescence model 60 

to precisely predict bubbles flow in liquid metals. Baake et al. (2017) demonstrates the effectiveness of neutron 61 

radiography for the experimental investigation of these phenomena. 62 

Because of its innumerable industrial applications, bubble motion in liquid metal has been a central topic for 63 

the scientific community over the past 70 years (Haas et al. 2021). Nevertheless, important questions, 64 

concerning the stability and velocity of bubbles in this range, still remain unclear and the bubble rising problem 65 

remains an open issue in multi-phase fluid mechanics. In particular, no correlations between bubble shape and 66 

velocity have been revealed to be accurate in a liquid metal. 67 

 68 

Bubble rising in a quiescent liquid is a well-known problem in multiphase-fluid mechanics.  69 

Moreover, correlations between fluid-dynamics dimensionless numbers have been produced in literature for a 70 

wide range of Eötvös and Reynolds numbers, but a universal correlation has not yet been found. Nevertheless, 71 

many correlations, which are valid over their own ranges, were derived or produced in the past. 72 

Levich (Kang & Leal, 1988)analytically derived a drag coefficient that is valid for a inviscid flow (viscosity 73 

tends to zero (𝜇 → 0)) for spherical bubbles (aspect ratio tends to unity (𝑋 → 1)) in which the viscous 74 

component of the drag force is negligible (high Re).  75 

Hadamard (J.S., 1911) derived a drag coefficient for a creeping flow (𝑅𝑒 1, 𝑋 → 1), assuming that the 76 

pressure component by the wake is negligible. Mei and Klausner (TOMIYAMA et al., 1998) extended 77 

Hadamard’s correlation for spherical bubbles to an arbitrary Reynolds number. 78 

 Mendelson (1967) studied the bubble rising problem in inviscid liquid and approximated the bubble velocity 79 

to that of the propagation wave velocity of the gas-liquid interface. The phase velocity, uphase, is assumed to be 80 

the sum of the velocity resulting from the surface tension and the gravitational term. 81 

The aforementioned author computed the bubble rising velocity by determining the principal wavelength, 𝜆82 

𝜋𝑑. 83 

 TOMIYAMA et al. (1998) generalized the drag correlation for a wider range (10 𝐸𝑜 10 , 1084 

𝑀𝑜 10 , 10 𝑅𝑒 10 ) and provided the most general correlation possible. First, he unified Levich 85 
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and Hadamard’s correlation for a wide range of Reynolds numbers. He then calculated the drag coefficient, 86 

using Mendelson’s theory, to provide a drag coefficient that is only dependent on the initial conditions. Since 87 

a bubble no longer tends to be spherical for higher Eo, but is instead ellipsoidal, the terminal velocity is lower 88 

than in a spherical case. The maximum of the two drag coefficients is chosen by considering this effect. Yan 89 

et al. (2018) produced a more precise empirical solution for the bubble drag coefficient for the same range of 90 

correlations as Tomiyamana. Y. Zhou et al. (2020) produced a novel correlation for the drag coefficient of a 91 

bubble rising in liquid which predicts 93.5% of the available existing data. 92 

The main issue in finding a universal correlation is the large scale of change of the dimensionless numbers 93 

(Re, Eo, Mo), that is, of several orders of magnitude. Viscous, inertia and tension forces have different degrees 94 

of importance in each region in the Grace diagram (Acrivos, 1979), and the bubble behavior changes to a great 95 

extent. Thanks to experiments and CFD simulations, a map has been created which predicts the terminal 96 

Reynolds number, once the initial conditions are known. Generally, the bubble terminal Reynolds number 97 

increases as the Eötvös number increases and decreases as the Morton number decreases.  98 

 99 

The deformation of the bubble shape has also been a widely studied topic over the last few decades, because 100 

of its numerous industrial (Liu & Li, 2017) and research applications. Experiments and CFD simulations have 101 

led to the formation of maps that describe different types of bubble shape in different dimensionless number 102 

regimes (Krull et al., 2016) . The shape of a bubble is controlled by two dimensionless numbers, as is its 103 

velocity. The most common numbers used in literature are the Reynolds number and the Eötvös number. A 104 

bubble with Re <1 tends to keep a spherical shape for all Eo. Such a bubble gradually changes from spherical 105 

to ellipsoidal and finally to a spherical cap shape for higher Reynolds numbers (Re > 1), thereby increasing the 106 

Eötvös number. Furthermore, the bubble shape is highly sensitive to the initial flow condition (Tomiyama et 107 

al., 2002). A non-zero velocity field or a residual initial compression of a bubble can easily lead to a different 108 

kind of bubble rising behavior (different trajectory and different shape). Many correlations, based on 109 

experimental and CFD data, are present in the literature, each with its own range of validity. 110 

 Besagni & Deen (2020) compared the most famous shape correlations present in the literature and provided 111 

his own new correlation, which is the most accurate generalization to date, based on the many experimental 112 

data he had available.  113 

 (Moore, 1959) analytically predicted the bubble shape in liquid metal through a linear theory which, however, 114 

loses precision for large bubbles. Sugihara (Besagni & Deen, 2020)extended Moore’s correlation to a wider 115 

range of Weber numbers. The effectiveness of the latter two correlations is based on assuming that the flow in 116 

liquid metals behaves like an inviscid flow. Therefore, the dynamics is controlled entirely by the Weber 117 

number. Legendre et al. (2012) extended Moore’s correlation to more viscous fluids (1 < logMo < 11), focusing 118 

the study on the bubble-liquid interfacial area. 119 

 Aoyama et al. (2016) experimentally studied bubble deformation for specific Morton numbers (logMo = ‒6.6, 120 

‒5.5, ‒4.9, ‒3.9) and produced a correlation for shape deformation for a wide range of Morton numbers. Y. 121 

Zhou et al. (2020) also studied the bubble deformation problem and produced the most general correlation for 122 

the bubble aspect ratio, which agrees with 90% of the existing experimental and numerical data. 123 
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Gaudlitz & Adams (2009) investigated bubble path and find a connection between the trajectory and wake 124 

structure. 125 

J. Zhang & Ni (2014) discovered vertical uniform magnetic field can straighten the bubble trajectory and found 126 

a close relationship between fluctuations in rising velocity and shape variations. He (J. Zhang et al., 2016) also 127 

investigated bubble velocity and shape under horizontal magnetic field. In this case magnetic field tends to 128 

decompress bubble shape, straighten the trajectory and exponentially redure the terminal velocity.  129 

Both W. Zhou & Dušek (2017) and Cano-Lozano et al. (2013) respectively proposed a marginal stability curve 130 

of a deformable bubble ascending freely in a viscous Newtonian liquid. 131 

 Schwarz & Fröhlich (2014) investigated bubble rising under magnetic field and, in accordance with Zhang 132 

studies, produced a correlation between horizontal magnetic field and terminal velocity for a wide bubble 133 

range. 134 

 J. Zhang et al. (2021) recently demonstrates the mechanism to control the trajectory of an air bubble under the 135 

application of a magnetic field 136 

 Will et al. (2021) experimentally investigated the effect of geometrical anisotropy for buoyant spheroidal 137 

particles rising in a still fluid and discovered bubble shape and trajectory are highly dependent on initial bubble 138 

compression. 139 

As the Eötvös number increases, a bubble starts to experience instability phenomena that influence the 140 

trajectory, the velocity, and the shape of the bubble itself. The stability of a bubble is influenced by the ratio 141 

of the surface tension forces (⁓D2) to the inertia forces (⁓D3). The bubble starts to experience 3D dependent 142 

forces and it loses its axial symmetry, and this renders the bubble rise a more complex phenomenon. Certain 143 

large bubbles in low Morton number regions (Mo < 10‒4) experience instabilities and the bubble changes shape 144 

from ellipsoidal to a wobbling disk. The reason why these instabilities occur has not yet been ascertained 145 

completely. Many authors, such as Mougin & Magnaudet (2002), asserted that the main cause of the onset of 146 

these instability phenomena are wake vortexes that appear under the bubble. Those vortexes increase the 147 

energy dissipation and the flow field on the bottom of the bubble, which loses its axi-symmetry, and this in 148 

turn leads to the onset of instabilities.  149 

 150 

As can be seen in Figure 1, a liquid metal is a region for which no universal correlation has yet been found. 151 

The main obstacle is the opacity of the metal that makes an optical inspection of the bubble almost impossible. 152 

In the past, such techniques as the electrical triple probe (Mori et al., 1977) were adopted to determine the 153 

bubble rising velocity. Nevertheless, due to inaccuracies of the instrumentation, it was not possible to precisely 154 

predict the bubble velocity, and only overall estimates could be obtained. Modern techniques, such as UDV 155 

(Ultrasound Doppler Velocimetry), Neutron radiography (Wang et al., 2017) and X-ray radiography, seem to 156 

be the best tools to experimentally investigate this environment. 157 

Keplinger et al. (2017) validated X-ray radiography as an inspection technique by comparing his data with 158 

results in water and used it to experimentally study bubble break-up (Keplinger et al., 2019) and coalescence 159 

(Keplinger et al., 2018) in liquid metals. 160 
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 Strumpf (2017) & C. Zhang et al. (2005) adopted UDV to investigate bubble velocity and trajectory under 161 

magnetic field, while Richter et al. (2018) experimentally studied path and shape instabilities by mean of X-162 

ray radiography.  163 

 Birjukovs et al. (2020) & Birjukovs et al. (2021) demonstrated a new image processing methodology for 164 

resolving gas bubbles travelling through liquid metal from dynamic neutron radiography and adopted it for 165 

studying high Reynold bubble rising. Till now, all the conducted experiments have been insufficient to produce 166 

a robust correlation for the bubble rising velocity, 𝑢 , and aspect ratio, 𝑋 , in liquid metals. These modern 167 

techniques show a much higher accuracy in detecting the bubble velocity and shape than the older ones, but 168 

they result to be expensive, and their use is somewhat limited. 169 

 170 

Figure 1. Region of bubbles in typical liquid metals in Grace diagram (Jin et al., 2016). Bubble shape: scouw—171 

spherical cap with open unsteady wake sccsw—spherical cap with closed steady wake; swu—skirt with wavy 172 

unsteady skirt; sss—skirt with smooth steady skirt. 173 

 174 

Objectives of present study 175 

Bubble stability problems in liquid metal have been insufficiently analyzed in the literature. Because of the 176 

difficulty involved in conducting experimental validations, no universal correlations have been produced as 177 

yet. 178 

Similarly, deformations of the bubble shape and their terminal velocities in liquid metal are not fully developed 179 

topics in fluid dynamics, mostly because of the difficulty in their validation. 180 

As far as the bubble shape in liquid metals is concerned, Moore (1959) proposed the most famous correlation 181 

but, because of the important assumptions in this correlation, it loses applicability for large bubbles and a more 182 

general theory is therefore required. 183 

Bubbles in 
liquid metals 
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In this study, a Computational Fluid Dynamics (CFD) simulation was used to study single bubble flow in 184 

liquid metal. More precisely, a new analytic theory on the velocity and deformation of bubble rising has been 185 

produced and compared with the CFD results of the PSI-BOIL code. PSI-BOIL is an in-house code developed 186 

by the Paul Scherrer Institute (PSI). It is a CFD code specialized in high precision simulation of biphasic heat 187 

transfer problems, based on finite discretization technique. 188 

The CFD velocities of bubbles in liquid metals are compared with those obtained by means of the existing 189 

correlations in the literatures. A semi-analytical model for bubble shape deformation is also derived for liquid 190 

metal and is compared with the CFD results. Finally, a new stability criterion is proposed for bubbles in liquid 191 

metal. 192 

Governing equations 193 

The studied problem refers to a single bubble rising in a quiescent liquid metal. The governing equations for 194 

the incompressible flow are defined as:  195 

 ∇ ⋅ 𝑢 0      (1) 196 

 ∇ ⋅ 𝜌𝑢 ⊗ 𝑢 ∇𝑝 ∇ ⋅ 𝜇 ∇𝑢 ∇𝑢 𝜌𝑔 𝛾𝜒𝑛   (2) 197 

where u [m/s] is the fluid velocity vector, p [Pa] is the pressure, t [s] is the time, ρ [kg/m3] is the density, 198 

µ [Pas] is the dynamics viscosity, g [m/s2] is the gravitational acceleration, γ [N/m] is the surface tension 199 

coefficient between the gas and the liquid, 𝜒 [N/m] is the local curvature of the interface, and n is the normal 200 

vector of the interface. 201 

The energy conservation equation was not solved since the thermal energy exchange was considered 202 

negligible. Thus, the temperature field was assumed to be constant, and the material proprieties of the gas and 203 

the liquid were kept constant.  204 

A linear interpolation between liquid and gas was considered, using the volume fraction H, to compute the 205 

material proprieties. 206 

 𝜇 𝐻𝜇 1 𝐻 𝜇       (3) 207 

 𝜌 𝐻𝜌 1 𝐻 𝜌       (4) 208 

 𝜎 𝐻𝜎 1 𝐻 𝜎       (5) 209 

The governing equation for the transport of the volume fraction was written as in Eq.(6), and it was solved 210 

with the Volume Of Fluid (VOF) method: 211 

 ∇ ⋅ 𝑢𝐻 0      (6) 212 

The continuity and momentum conservation equations were solved using the fractional step method. An 213 

adaptive time-step was used, where the time step was defined as: Δt =min Δ𝑡 , Δ𝑡 , where 214 

 𝛥𝑡 𝐶
| |

      (7) 215 

 𝛥𝑡 5 ⋅
. ⋅ ⋅

.      (8) 216 

CCFL is the Courant-Friedrichs-Lewy (CFL) number, and it was set to 0.25 in this study. u, v and w are the 217 

velocity components in the x-, y- and z-directions, respectively, and 𝛥 is the grid spacing.  218 
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 219 

 220 

Conditions of simulations 221 

A 3D rectangular computational domain, with 6D x 6D x 24D dimensions (both the lateral directions and the 222 

height), was used, and was discretized with a uniform cube mesh (dx=D/16). The liquid was quiescent at the 223 

beginning. The height of 24D was sufficient for all the bubbles to reach terminal velocity. The width of 6D 224 

made the flow independent of the influence of the surrounding walls. 225 

Simulations were conducted with different bubble sizes (0.1 < Eo < 2). Three cases of systems with different 226 

material combinations were considered: Argon-GalnSn, Nitrogen-Mercury, Argon-iron. These three sets of 227 

materials have been used because they are common in metallurgical processes and above all because they have 228 

been used in previous experiments and simulations (Moore, 1959), so that the results of PSI-Boil can be 229 

compared and validated The material properties are listed in Table I. .  230 

Table I "Material proprieties for three systems with different combination of gas and liquid phases." 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

At the beginning of the simulation, the velocity field was zero. The pressure field followed Stevino’s law and 241 

increased linearly with the depth. A spherical bubble was placed in the center in the x- and y-directions and at 242 

a 2D distance from the bottom, as shown in Figure 2. 243 

 244 

 245 

Figure 2 "Computational domain and the initial bubble." 246 

 247 

 μ [Pas] ρ [kg/m3] γ [N/m] 

Argon 1.176e-5 1.654 0.5330 

 GalnSn 2.20e-3 6.36e3 

Nitrogen 1.77e-5 1.17 0.4535 

Mercury 1.50e-3 1.35e4 

Argon  1.176e-5 1.654 1.200 

Iron 6.30e-3 7.00e3 
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Analysis of bubble dynamics in liquid metal  248 

Analytical Description 249 

Governing parameters 250 

A single bubble rising in liquid metal is characterized by a high Reynolds number, that is, Eq. (9) and 251 

considerably low Morton numbers, Eq. (10). The Reynolds number, which was of the order of one thousand, 252 

due to the high liquid metal density compared to water, suggests that inertia forces (Fi) were predominant over 253 

the viscous forces (Fv) 𝑅𝑒 ≫ 1 . The Morton number was particularly low ≃ 10 , which means that the 254 

Archimedes (Fa), Eq. (12) , and surface tension (Fst) forces were dominant over the viscous forces. The two 255 

driving factors that characterize bubble rising in liquid metal are the inertia and surface tension forces, while 256 

the viscous term, although present, does not play any substantial role. 257 

 Re 10  (9) 258 

 𝑀𝑜
 ∗ 

10  (10) 259 

The system was characterized by only two dimensionless parameters, Eq. (11), in which viscosity was absent, 260 

since it no longer had any driving power. The Eötvös number and the Weber number 𝑊𝑒
⋅ ⋅

 were used 261 

in this analysis.  262 

 𝐹 𝛱 , 𝛱 , 𝛱 0 → 𝐹 𝑊𝑒, 𝐸𝑜 0 → 𝑊𝑒 𝐹 𝐸𝑜  (11) 263 

Under this approximation, a 2-variable function fully characterized the problem. Furthermore, since Eo was 264 

not velocity dependent, the bubble rising velocity could be explicitly expressed as a function of the material 265 

and geometry proprieties.  266 

Negligible shear stress field 267 

In a Newtonian fluid, the stress tension is proportional to the velocity gradient 𝜏 𝜇 ⋅ ∇𝑢. In a solid sphere, 268 

since internal flow does not occur, the liquid velocity on the sphere surface is zero and 269 

𝜏 ≅ 𝜇 ⋅ , with L equal to the characteristic decreasing length.  270 

The viscous effect becomes less dominant in bubbles rising in liquid metal. The surface shear stress field on 271 

the bubble surface is significantly reduced by two phenomena: 272 

 First, inner gas recirculation takes place, and the bubble surface velocity is no longer zero. Since there 273 

is a huge difference in the gas-liquid density, the outermost layer of the gas is carried by the external 274 

liquid, which has higher inertia. Therefore, the velocity gradient and the shear stress are significantly 275 

reduced to 𝜏 ≅ 𝜇 ⋅ . This effect is relevant for large bubbles for which there is enough space 276 

inside to create convective gas movement. 277 

 Secondly, the purity of the surrounding liquid increases the slipping effect along the surface of the 278 

bubble, thereby further decreasing the local velocity gradient. Both contributions significantly reduce 279 

the tension stress field across the bubble interface.  280 

Bubble force balance 281 



10 

Under equilibrium, the buoyancy force, which is velocity independent, Eq. (12), is balanced by the drag force, 282 

Eq. (13), which generally increases as the velocity increases. The buoyancy force is the sum of the gravitational 283 

force and the surface integral of the static pressure, ℎ , acting on the bubble. The drag force is computed by 284 

integrating the pressure 𝑝 𝑝  with the shear stress field.  285 

In this analysis, the considered system was the whole bubble, which is the sum of the interface and the inner 286 

gas. Since the surface tension is a mutual force that acts between the surface and the inner gas, it was not 287 

necessary to consider it since it is an internal force of the system. 288 

 𝐹 𝑚𝑔 ∯ 𝑝 ⋅ d𝐴
→

𝜌 𝑉𝑔 𝜌 𝑉𝑔 Δ𝜌 ⋅ 𝑉 ⋅ 𝑔 Δ𝜌 ⋅ ⋅ 𝑔  (12) 289 

 𝐹 ∯ 𝑝 𝑝 ⋅ d𝐴
→

∯ 𝜏// ⋅ d𝐴
→

 (13) 290 

The velocity and pressure distribution over the entire bubble surface needs to be known to compute the drag. 291 

The pressure and the tension terms are generally equally important, and both need to be computed. The pressure 292 

field across the bubble is computed by resolving the Navier-Stokes equations Eq.(14) along a streamline from 293 

a distant point to the surface Eq(15). The pressure on the bubble surface is the sum of a gravitational, a kinetic, 294 

and a viscous term. The gravitation term is not treated since it is already considered in the buoyancy force. The 295 

𝑝 𝑝  field at the bubble interface is the sum of a kinetic and a viscous pressure, Eq. (15). 296 

 𝜌 𝑢 ⋅ ∇𝑢 ∇𝑝 𝜇∇ 𝑢 𝜌𝑔 ⋅ 𝑑𝑧 (14)  297 

 𝑝 𝑝 ⋅ 𝑢 𝑠 𝑢 𝜇 ∇ 𝑢 ⋅ d𝑟 (15) 298 

 The kinetic pressure in the upper part of the bubble is much larger than the viscous pressure, 299 

𝜌𝑢 𝜇 ∇ 𝑢 ⋅ 𝑑𝑟  , because of the high density of liquid metals and because of the small stress tensor 300 

field, 𝜏 ∇𝑢. 301 

In Figure 3, r


 represents the streamline of the flow and 𝑠 the position on the bubble surface. 302 

Δ𝑝 𝜇 ∇ ⋅  ⋅ 𝑑𝑟 𝜇 𝜏 ⋅ 𝑑𝑟 𝜇 𝜏 𝑟 ⋅ d𝑟    (16) 303 

 

                Figure 3 "Flow streamline" 

 𝜏 ∞  is zero and increases as it approaches point A, in which 𝜏 reaches its maximum value. 304 

A 

∞ 

d𝑟 
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 The tension stress field 𝜏 𝐴  is negligible, since the velocity changes almost linearly on the side of the 305 

bubble due to an efficient internal flow [Section 3] 306 

 Therefore, 𝜏 𝑟 ⋅ 𝑑𝑟 is also negligible and the viscous overpressure is zero. 307 

 Viscous pressure Eq.(16) is negligible for each point in the upper part of the bubble. 308 

 309 

The fluid before the bubble detachment point can be considered inviscid, as there are no energy dissipations, 310 

and all the liquid momentum is transferred into pressure Eq. (17). When the liquid is approaching the bubble 311 

surface, the velocity is decreased, and the kinetic energy is changed into pressure energy. The stagnation point 312 

of the bubble (top point) has the highest pressure, and when approaching the sides of the bubble, the pressure 313 

decreases monotonously. Therefore, the inviscid model was used to model the pressure on the bubble surface. 314 

No boundary layer existed, and only the tangential component of velocity 𝑢//  was present on the bubble 315 

surface. 316 

 𝛥 𝑝 𝑝 𝜌Δ𝑢 0 (17) 317 

How the pressure changes from the stagnation point to the bubble sides depends on the bubble aspect ratio (X), 318 

which in turn depends on the pressure acting on the surface. Nevertheless, it can be established that the surface 319 

pressure field is proportional to the pressure of the stagnation point, which is, according to Bernoulli, equal to 320 

𝜌 𝑢 . Therefore, kinetic overpressure Eq. (18) depends on bubble velocity 𝑢  and on the local velocity 321 

tangential to the surface𝑢 𝑠 . 322 

 𝑝 𝑠 𝜌 𝑢 𝑢 𝑠  (18) 323 

The inviscid approximation is no longer feasible after the detachment point (Figure 4). The fluid on the bottom 324 

of the bubble is no longer irrotational and dissipation phenomena take place. The pressure on the bottom of 325 

the bubble is significantly reduced, because all the liquid momentum is dissipated by the viscosity friction and 326 

does not contribute to hydrodynamic pressure. From the Lagrangian point of view, the fluid particles that are 327 

approaching the bubble surface decelerate and their kinetic energy decreases. In an ideal case, the pressure 328 

increases to conserve kinetic energy but, due to viscous forces, most of the energy is dissipated and the liquid 329 

pressure is drastically reduced, compared the non-viscous case. How much energy is transferred into pressure 330 

and how much is lost depends on the velocity field. In this analysis, a total dissipation model is used for 331 

simplicity. Therefore, all the kinetic energy of the liquid is dissipated, while the pressure field after the 332 

detachment point can be approximated to zero Eq. (19) and has no impact on the drag force (Figure 5). 333 

 𝑝 𝑠 𝑝 𝑠 𝜌 𝑢 𝑢 𝑠 𝜇 ∇ 𝑢 ⋅ d𝑠 ≃ 0 (19) 334 

 335 
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          336 

Figure 4 "Top and Bottom of the bubble modeled respectively with inviscid and viscous model." 337 

 338 

Figure 5 Pressure field (ptot – pstatic) on bubble surface." 339 

The shear stress component was neglected to compute the drag force, since it was much lower than the pressure 340 

component. Moreover, the pressure field was only integrated in the “inviscid region”, since any pressure on 341 

the bottom was assumed to be zero due to dissipation, Eq. (20). Moreover, 𝑝 𝑝  in the inviscid region 342 

is the kinetic pressure. 343 

Clearly, the viscous pressure was physically the main cause of the drag force but, due to the full dissipation 344 

model used at the bottom of the bubble, the liquid viscosity coefficient did not influence the bubble dynamics 345 

and the drag force only depended on the kinetic pressure upstream of the detachment point. 346 

The point of detachment of the liquid from the liquid surface depends on the bubble shape and on the kinetic 347 

energy density of the liquid 𝜌𝑢 . Since the bubble was assumed to be ellipsoidal, it can be assumed, without 348 

any loss of generality, that the detachment point depended only on the bubble aspect ratio and on the Weber 349 

number of the bubble. 350 

 𝐹 ∯ 𝑝 𝑝 ⋅ d𝐴
→

∯ 𝜏// ⋅ 𝑑𝐴
→

≃ ∯ 𝑝 ⋅ d𝐴
→

∯ 𝜌 𝑢 𝑢 𝑠 ⋅ d𝐴
→

 (20) 351 

The final balance equation is Eq. (21): 352 

 Δ𝜌 ⋅ ⋅ 𝑔 ∯ ⋅ 𝑢 𝑢 𝑠 ⋅ d𝐴
→

 (21) 353 

The liquid velocity on the bubble surface only has the 𝑢// component tangential to the surface, while the 354 

normal component, 𝑢  , is zero to conserve the flowrate ∇ ⋅ 𝑢 0  We assume the local velocity on the 355 

surface of the bubble is proportional to the rising bubble velocity. 𝑢∗ 𝑠
→

 is a unknown function that represents 356 

the dependency of the velocity on the local position Eq. (22). 357 

 𝑢 𝑠 𝑢∗ 𝑠 ⋅ 𝑢  (22) 358 

Viscous region 

Detachment point 

Inviscid region 

𝑝 𝑝  



13 

 Δ𝜌 ⋅ ⋅ 𝑔 ∯
⋅

⋅ 1 𝑢∗ 𝑠 ⋅ d𝐴
→

 (23) 359 

 Δ𝜌 ⋅ ⋅ 𝑔
⋅

⋅ 1 𝑢∗ 𝑠 ⋅ 𝜋𝐷  (24) 360 

 𝐸𝑜 3 ⋅ 𝑊𝑒 ⋅ 1 𝑢∗ 𝑠  (25) 361 

 1 𝑢∗ 𝑠 𝑔 𝑋 𝑊𝑒 𝑔 𝑊𝑒  (26) 362 

 𝐸𝑜 3 ⋅ 𝑊𝑒 ⋅ 𝑔 𝑊𝑒  (27) 363 

 𝐹 𝑊𝑒, 𝐸𝑜 0 (28) 364 

As can be seen in Eq.(27), the whole system is characterized by only two dimensionless numbers, which are 365 

connected.  366 

Moreover, 1 𝑢∗ 𝑠 is the surface average of the 1 𝑢∗ 𝑠  function in the inviscid region before the 367 

detachment point. Such a function can only be known exactly by resolving the flow and the pressure field 368 

around the bubble. Nevertheless, by assuming the bubble is axi-symmetric ellipsoidal shaped, 1 𝑢∗ 𝑠 is a 369 

function of only the aspect ratio of the ellipsoid 𝑋 . In the next chapter, it is demonstrated that the aspect 370 

ratio is only a function of the Weber parameter. This means that the bubble rising problem can be expressed 371 

with a single equation that contains only 2 dimensionless numbers F(We, Eo). Therefore, the whole problem 372 

is influenced by only 1 dimensionless number. 373 

Terminal rising velocity 374 

Comparison against Tomiyama’s correlation 375 

The computed Reynolds number, based on the terminal rising velocity, is compared with Tomiyama’s 376 

correlation Eq. (29) in Figure 6 as a function of the Eötvös number. The range simulated here corresponds to 377 

Mendelson’s formula in Tomiyama’s correlation, in which the velocity is only controlled by the Eötvös 378 

number. It can be observed that, on first approximation, Tomiyama’s correlation and, therefore, Mendelson’s 379 

equation, are able to clearly predict the bubble behavior and give the right order of magnitude of the terminal 380 

Reynolds number. 381 

 𝐶 max min 1 0.15𝑅𝑒 . , , ⋅  (29) 382 

 383 
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Figure 6 "Comparison between Tomiyama’s correlation and PSI-BOIL simulation results." 384 

There is a rapid change in the velocity profile in Tomiyama’s correlation (Figure 7) when passing from the 385 

Eötvös dependent region 𝐶 ⋅  to the Reynolds dependent region 𝐶 . As we consider smaller 386 

bubbles, the Reynolds number acquires more importance, while the Eo loses importance in determining the 387 

drag coefficient. The change from the Eo to Re regions is gradual in the simulations, and the velocity slope 388 

changes smoothly from negative to positive. The Tomiyama curve has been validated in low-intermediate 389 

Reynolds regimes and never in the liquid metal. This could be the reason of significant deviations of CFD 390 

results from the Tomiyama correlation. 391 

 Unfortunately, due to a CFD parasitic current issue, it was impossible to simulate bubbles with Eo < 0.05. The 392 

parasitic current is a computational phenomenon that occurs when there is a low resolution of the surface of 393 

the bubble which compromises the accuracy of the shape of the bubble and the resolution of the surface tension 394 

force. Once a grid size is set, the simulations are no longer reliable over a certain bubble size. 395 

 Therefore, the CD = 48/Re dependency region cannot be demonstrated by means of simulations. 396 

 397 

Figure 7 "Comparison of terminal velocity as the function of bubble diameter between Tomiyama’s correlation 398 

and PSI-BOIL." 399 

Instabilities of bubble 400 

A certain number of larges bubbles tend to show instable behavior at some points during their rising (Figure 401 

8). The trajectory in no longer rectilinear, and the instant velocity is kept the same; therefore, the average rising 402 

vertical velocity decreases. 403 

. Wake flow no longer tends to be axisymmetric and non-uniform velocity oscillations are a direct consequence 404 

of bubble shape oscillations initiated by wake flow asymmetrization. 405 
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 406 

Figure 8 “Right: Velocity for Eo = 1.12 and 3.1 bubbles. Left: x-z section of bubble trajectory (left: Eo = 1.12 407 

right: Eo =3.1)." 408 

 409 

The line in the Grace diagram that separates the stable and unstable bubble regions has a negative slope. This 410 

means that, for high Morton numbers, instabilities will occur for larger Eötvös number, while instabilities 411 

occur earlier for low Morton material instabilities. The Morton number can be considered a good parameter to 412 

quantify the stability of a set of materials. According to the definition, the Morton number can be assumed as 413 

a ratio between the viscous force over the inertia to the surface tension forces. It is well known that viscous 414 

forces tend to keep the system stable. 415 

 𝑀𝑜
⋅ ⋅

⋅ ⋅
 (30) 416 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 10 20 30 40

v[
m

/s
]

L/D

Eo1.12

Eo3.1

Start of the instability Start of the 

instability 



16 

 417 

Figure 9 " Grace diagram.(Acrivos, 1979)" 418 

The line tends to be steeper in low Morton regions, such as the liquid metal region (Figure 9). The Stability 419 

line becomes more and more independent of the Morton number, and the Eötvös number at which instabilities 420 

occur becomes a constant. The viscous effect is negligible in this region, and the stability is only controlled by 421 

the balance between the inertia and the surface tension forces (Morton number). Since the Weber and Eötvös 422 

numbers are connected, the stability can also be expressed as a function of the Eötvös number. 423 

 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓 𝑓 𝑊𝑒 𝐸𝑜 𝑔 𝐸𝑜  (31)  424 

The region in which the bubble passes from a spherical-like body to a wobbling disk for different material 425 

proprieties has been investigated. Figure 10 suggests that the transition happens almost at the same Eötvös 426 

number for all three metals (Eo = 1.7). This is further proof that this process is not influenced by the Morton 427 

number, because the viscosity effects are negligible, compared to the inertia and superficial ones. 428 

Stability line
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 429 

Figure 10 " Reynolds vs. Eötvös for bubbles rising in different liquid metals." 430 

 431 

Novel correlation for bubble aspect ratio  432 

At the beginning of the simulation the bubble is into a quiescent liquid, and it has a spherical shape. The bubble 433 

starts to rise, due to an unbalance of the gravity and Archimedes force.  434 

As the bubble rises with increasing velocity, hydrodynamic pressure due to metal flow at the top of the bubble 435 

increases. Due to the incompressibility constraint, bubble compression at the top and bottom leads to 436 

elongation at the sides, and the bubble shape becomes elliptic. 437 

Moore[12] proposed a simple correlation for the bubble aspect ratio X , which is valid for spherical-like 438 

bubbles, but loses its applicability for higher Weber numbers: 439 

𝑋 1 ⋅ 𝑊𝑒 O 𝑊𝑒      (32) 440 

In the following section, we propose a new semi-analytical method for the aspect ratio of a bubble rising in 441 

liquid metals. The bubble aspect ratio depends only on the total pressure field on the bubble surface. Since 442 

Re>>1, the viscous pressure is neglected, with respect to the kinetic pressure, and the inviscid approximation 443 

thus becomes reasonable. 444 

 445 

Analytical theory 446 

Force balance and curvature 447 

Once the bubble has reached its terminal velocity, the acceleration of the system is zero and the bubble and all 448 

its components are in force equilibrium ∑𝐹 0 . The force balance of a bubble interface can be calculated 449 

if the inner and the outer pressure are known, as illustrated in Figure 11. 450 
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 451 

Figure 11 "Force balance on the bubble interface." 452 

The force balance for each moment (˅t) can be expressed by Eq.(33). 453 

𝑝 𝑝 𝛾χ     (33) 454 

Since the velocity field is zero at the beginning of the rise (t=0), Eq.(34) and Eq.(35) can be asserted. 455 

𝑝 𝛾𝜒 𝜌𝑔ℎ     (34) 456 

𝑝 𝜌𝑔ℎ 𝛾𝜒      (35) 457 

The outer pressure is found by applying the Navier-Stokes equations along a streamline from the non-perturbed 458 

region to the interface, Eq. (36). Since the viscous effect is negligible, the flow field can therefore be 459 

approximated as an irrotational field ∇ 𝑢
→

0 . The energy inside the fluid is conserved.. The total outer 460 

pressure is the sum of the gravitational pressure, 𝜌𝑔ℎ and the kinetic pressure, 𝜌 𝑢 𝑢 . The gravitation 461 

force is not technically constant, since it depends on the depth of the liquid, but for simplification reasons it 462 

was set constant to 𝜌𝑔ℎ, with h the depth of the bubble center of the mass. Assuming that the fluid is almost 463 

perfectly inviscid, there are no interface boundary layers and the interface tangential liquid velocity is non-464 

zero 𝑢// 𝑠 0, 𝑢 𝑠 0 .  465 

 𝑝 𝑠 𝜌𝑔ℎ 𝜌 𝑢 𝑢 𝑠  (36) 466 

The inner pressure can easily be computed by applying the Navier-Stokes equations to the inner gas. Basically, 467 

the pressure field inside the bubble is spatially almost constant, that is, ∇𝑝 0.  468 

Once the bubble has reached its terminal velocity, the shape remains constant, which means that the bubble 469 

curvature is kept constant at each point. In the same way, the velocity field across the bubble does not change. 470 

The gravitational term linearly decreases during rising of the bubble, since the depth is decreasing 471 

𝜌𝑔 ℎ 𝑢 ⋅ 𝑡 . The inner gas pressure also decreases to keep the system stable and to provide force balance 472 

at each point in time. Therefore, the 𝑝 𝑡 𝜌𝑔ℎ 𝑡  term is a constant during bubble rising.  473 

 𝜒 𝑠  (37) 474 

d𝛼 

Local Radius R 

pin

pout

BUBBLE 



19 

Eq. (37) suggests that the local interface curvature is linearly dependent on the kinetic pressure and inversely 475 

proportional to the surface tension coefficient. Furthermore, 𝜌𝑔ℎ 𝑝 𝜌𝑢  is constant for each point of 476 

the interface. Therefore, the driving factor to compute the curvature is the interface tangential velocity field, 477 

𝑢// 𝑠 . In order to obtain the ideal resolution of the bubble shape problem, inviscid Euler equations have to be 478 

solved around the bubble to find the tangential velocity, 𝑢//, to the surface, as this is needed to calculate the 479 

bubble curvature, 𝜒 𝑠 , according Eq. (37). 480 

Here, an equivalent method, which avoids the need to solve the Euler equations for the ellipsoidal coordinates 481 

and provides an accurate correlation for stable ellipsoidal bubbles in inviscid liquid, is proposed. 482 

Let us now consider the bubble at the first instant in which it is quiescent and has a perfect spherical shape. In 483 

this situation, the velocity field is zero, and the main driven force is the Archimedes force 484 

Nevertheless, for simplicity, the hydrostatic pressure is set equal to 𝜌𝑔ℎ for the bubble aspect ratio calculation 485 

on the entire interface, since ℎ ≫ 𝐷, and the relative difference between pup and pdown is negligible. Setting the 486 

hydrostatic pressure constant is a reasonable approximation to compute the bubble shape. However, it cannot 487 

be assumed in the momentum balance equation because the difference between the upper and lower hydrostatic 488 

pressures is the driving factor behind the rise in the bubble. If the hydrostatic pressure is assumed to be 489 

constant, the bubble is in static equilibrium. It can be established, from the balance of the forces acting on the 490 

surface at t = 0 (Figure 11), that 𝑝 𝜌𝑔ℎ, which was previously demonstrated to remain constant during 491 

bubble rising, is equal to the initial curvature over-pressure, 𝛾𝜒 . 492 

 𝑝 𝜌𝑔ℎ 𝛾𝜒  (38) 493 

Using Eq. (37) and Eq.(38), the final balance equation on interface Eq. (39) shows how the local curvature 494 

behaves. It is equal to an initial constant value plus a kinetic pressure dependent value. It is clear that the 495 

velocity field is the only factor that influences the local bubble curvature. Regions with high kinetic pressure 496 

result in a low curvature interface, and vice-versa. Ideally, the velocity field 𝑢 𝑠  can be found by solving the 497 

Euler equations for the ellipsoidal shape and it clearly depends on the local curvature 𝑢 𝑠 → 𝑢 𝑠, 𝜒 𝑠  of 498 

the bubble. This process tends to become complex and long. 499 

 𝛾𝜒 𝑠 𝛾𝜒 𝜌 𝑢 𝑠 𝑢  (39) 500 

Curvature at the top of the bubble 501 

In our analysis, the bubble shape was considered to be a perfect ellipsoid 1 . Since the flow 502 

is axisymmetric, the bubble shape in the x and y directions is the same 𝑎 𝑏  and the ellipsoid can be 503 

perfectly characterized by only the a and c parameters. To characterize the problem, it is only necessary to 504 

solve the curvature equation at two different points on the bubble, since there are only 2 unknowns. The first 505 

point considered is the bubble stagnation point in which the kinetic pressure is the highest, Eq. (40). Here, the 506 

fluid stops, and all the kinetic energy is transmuted into pressure. This is a convenient solution point since here 507 

the velocity is zero for any aspect ratio. 508 

 𝜒 𝜒 𝜃 0 𝜒
⋅

 (40) 509 

Curvature at the side of the bubble 510 
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The second point that was considered is the one with the highest curvature, which occurs at an angle of 90o, 511 

with the curvature being defined as:  512 

  𝜒 𝜒 𝜃 𝜒 ⋅ 𝑢 𝑢 . (41) 513 

Here, the fluid velocity, to satisfy conservation of the mass ∇ ⋅ 𝑢 0 , increases, with a consequent production 514 

of a negative kinetic pressure on the interface, which, in turn, stretches the bubble. How the tangential velocity 515 

behaves at each other point is not of interest since only the largest and the smallest curvatures are needed. The 516 

major problem is to find the tangential velocity at 90∘. 517 

Tangential velocity field 518 

First, from the solution of the Euler equations in the spherical coordinates, only the tangential component of 519 

the velocity is present on the interface, and not the radial one. In a perfect spherical case, 𝑢// 𝑢 . 520 

 521 

Eq (42) and Eq.(43) are Euler incompressible equations for mass and momentum conservation, respectively. 522 

∇ ⋅ 𝑢 0                 (42) 523 

𝜌 ⋅ 𝜌 ⋅ 𝑢 ⋅ ∇ 𝑢 ∇𝑝 𝜌𝑔                            (43) 524 

Eq. (44) and Eq.(45) are the radial and tangential velocity field solutions of the Euler incompressible equations. 525 

𝑢 𝑟, 𝜃 𝑢 1 cos 𝜃      (44) 526 

𝑢// 𝑟, 𝜃 𝑢 1 sin 𝜃     (45) 527 

In an ideal case, the tangential velocity decreases ∝  from 𝑢  to𝑢 , moving away from the sphere. An 528 

equivalent model is used for the ellipsoidal bubble in which, for a certain range, the velocity is uniformly 529 

constant and equal to the interface tangential velocity (Figure 13). We assume that, after a certain distance, the 530 

flow is no longer perturbed by the presence of the sphere (Figure 13). Nevertheless, the velocity is considered 531 

spatially uniform in the perturbed region and equal to the tangential velocity at the interface (Eq.(46)). The 532 

key point is to find the distance beyond which the velocity drops from the tangential velocity value to zero. 533 

The distance has been decided imposing that all liquid momentum of the real case is confined only in the 534 

perturbed range in the modeled case. In view of integral volume flowrate conservation (Figure 12), the ideal 535 

“perturbed range” can be found for a spherical bubble (Eq.(47)) and it is equal to √3 ⋅ 𝑅.  536 

ω is defined as the ratio between the distance from the center of the bubble at which the flow starts to become 537 

unperturbed to the side radius of the bubble. 538 

 539 

Figure 12 "Top view of a spherical bubble." 540 
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 541 

𝜋 𝜔𝑅 ⋅ 𝑢 𝜋 𝜔𝑅 𝑅 ⋅ 𝑢     (46) 542 

𝜔 √3      (47) 543 

 544 

Figure 13 "Difference between real side velocity field and modeled one for a spherical body (x-z or y-z)." 545 

 546 

This approach can also be used for ellipsoidal bubbles, but with some geometrical corrections. Vtot is the total 547 

volume of the bubble, and it is kept constant during the rise since no break-up phenomena take place. The 548 

width of the bubble is dependent on its characteristic diameter 𝐷
⋅

 and on the bubble aspect ratio 549 

𝜒 . Using the current definitions, and assuming that the bubble volume does not change under 550 

compression, the width is found as a function of the initial diameter and the aspect ratio (Eq.(48)). 551 

 𝑎 𝐷 ⋅ .  (48) 552 

Volume flowrate conservation Eq. (49) is applied to an ellipsoidal bubble (Figure 14) to determine the liquid 553 

side velocity𝑢 , Eq. (50). 554 

 555 

Figure 14 "On the left, side representation of the ellipsoidal bubble, on the right top view of the ellipsoidal 556 

bubble." 557 

 𝜋 𝜔𝑎 ⋅ 𝑢 𝜋 𝜔𝑎 𝑎 ⋅ 𝑢  (49) 558 

 𝑢 𝑢 ⋅  (50) 559 

In the ellipsoidal case, finding ω is the key point since it is only known a priori in the spherical case. We 560 

assume that ω is a function of aspect ratio X, which is always greater than unity, and 𝜔 𝑋 1 √3. It is 561 

generally known that 𝑢//  is higher in highly distorted bubbles, since a larger amount of fluid is deflected 562 
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as a result of the presence of the bubble and this fluid flows entirely on the side of the bubble, 
 ⁄

 
0. 563 

Terminal bubble velocity 𝑢  decreases slightly as the aspect ratio increases, since the drag coefficient is higher 564 

for highly distorted bubbles: 
 

0. Therefore, according to Eq. (51), 𝜔 / 𝜔 1  increases with X. By 565 

solving Eq. (52), it is possible to prove that 𝜔 𝑋  monotonously decreases with X, Eq. (53). Furthermore, 566 

𝜔 𝑋 only reaches 1 asymptotically (Figure 15):  567 

∗ ∗
0    (51) 568 

 
⋅ ⋅ ⋅ ⋅ ⋅

0  (52) 569 

 0 (53) 570 

 571 

Figure 15 “Possible omega function (the ratio between the distance from the center of the bubble at which 572 

the flow starts to become unperturbed to the side radius of the bubble).” 573 

For practical calculations, it was hypothesized that 𝜔 𝑋  follows a decrease that is proportional to , as can 574 

be seen in Eq. (54). Under this assumption, the function is controlled by the n parameter, which is an unknown, 575 

while n represents how fast the function tends to 1. The latter is a free parameter that is guessed by comparing 576 

the theory with the PSI-BOIL simulation. 577 

 𝜔 𝑋 √ 1 (54) 578 

Curvature Calculation. 579 

According to the previous consideration, higher curvature Eq. (55) and lower curvature Eq. (56) can be 580 

calculated, and correspond to  and the 0 angle, respectively. 581 

 𝜒 𝜒 ⋅
⋅

⋅ 1  (55) 582 

 𝜒 𝜒 0 ⋅
⋅

 (56) 583 

  

  

𝑋 

𝜔 𝑋  
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The analytical expression of the aspect ratio of an ellipsoid can be found from the different calculations ( 584 

Figure 16). In our case, the velocity field and the bubble shape are axisymmetric. In fact, there is no dependence 585 

of any variable on 0 𝜑 2𝜋 (𝑎 𝑏 . 586 

 587 

Figure 16 " ellipsoidal representation of the bubble." 588 

 589 

The side (Eq.(57)) and the top (Eq.(58)) curvatures of a 3D ellipsoid can be analytically expressed as a function 590 

of the ellipsoidal aspect ratio 𝑋 and the semi-major axis 𝑎 . Eq.(59) is obtained from the ratio of Eq.(58) to 591 

Eq.(57). 592 

𝜒     (57) 593 

𝜒 ⋅
⋅

     (58) 594 

⋅      (59) 595 

Substituting the definition of the max. and min. curvature for bubbles (Eq.(55) and Eq.(56)) in Eq. (58), an 596 

explicit correlation between the Weber number and the bubble aspect ratio (Eq.(63)) is found. This a proof that 597 

the bubble deformation in inviscid fluids is only controlled by the ratio of the inertia to the surface tension 598 

forces. 599 

Let us define 𝐹 𝑋  as Eq.(60) for compactness reasons. 600 

 𝐹 𝑋  (60) 601 

 
⋅

⋅
⋅ ⋅

⋅
⋅ ⋅

⋅
 (61) 602 

 
⋅ ⋅

 (62) 603 

 𝑊𝑒
⋅

⋅ ⋅
 (63) 604 

Once𝜔 𝑋  has been estimated, the correlation can successfully be used in Eq. (63). If we linearize the function 605 

in the surroundings of X=1, the Moore linear correlation is found. 606 

 Moreover, the omega function cannot be known a priori, unless the Euler equations are analytically solved in 607 

ellipsoidal coordinates. This formula is valid as long as the bubble shape can be considered an ellipsoid. When 608 
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the top curvature becomes zero, the ellipsoidal aspect ratio mathematically diverges to infinity. In order to 609 

keep this theory valid, the top curvature has to be greater than zero, Eq. (64). This condition is achieved when 610 

the Weber number of a bubble is less than 8, Eq. (65). However, this limit is practically never reached because 611 

the bubble becomes unstable much sooner 𝑊𝑒 ∼ 4 . 612 

 𝜒 ⋅
⋅

≫ 0 (64) 613 

 𝑊𝑒 ≪ 8 (65) 614 

 615 

Comparison of the aspect ratio of the analytical solution to PSI-BOIL 616 

The following analytical solution has been compared with the CFD results to determine the n parameter that 617 

fully characterizes the omega function, 𝜔 𝑋  (Eq.(66)). Aspect ratio X was calculated for 30 simulations for 3 618 

different sets of materials (Argon+Steel, Argon+GalnSn and Nitrogen+Mercury) within the 0.1 < Eo < 1.2 619 

range.  620 

Unfortunately, the bubble shape is more sensitive than the terminal velocity to the grid size. The relative error 621 

of the aspect ratio clearly depends on the Δ𝑥 ⋅ 𝜒  ratio, which represents how well the grid manages 622 

to represent the bubble interface at the point with the highest curvature on the side of the bubble. 623 

Grid sensitivity studies were conducted for an Eo = 0.5 bubble, and the relative error pertaining to the aspect 624 

ratio was almost 10%, compared to an ultrafine grid simulation where a spatial resolution of 50 cells on the 625 

bubble diameter has been adopted (D/dx=50).. Furthermore, it was observed that the lack of accuracy of the 626 

grid always leads to an underestimation of the aspect ratio. Even though the relative error is lower for small 627 

bubbles, since they are less stretched, a conservative analysis was adopted, and a 10% relative error was set 628 

for all the points. 629 

The best interpolation was found for n = 1.34. Exponential fitting has been performed with R2 = 0.92. 630 

 𝜔 𝑋 √
. 1 (66) 631 

 𝐹 𝑋  (67) 632 

 𝑊𝑒
⋅

⋅ ⋅
 (68) 633 

Eq.(68) precisely predicts the bubble aspect ratio in an inviscid regime. It is applicable to bubble rising in 634 

liquid metal for 0 < Eo < 1.2. However, above Eo = 1.2, the bubble becomes unstable, the shape is no longer 635 

ellipsoidal and the theory in no longer valid. 636 
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 637 

Figure 17 "Comparison between linear and nonlinear theory for inviscid liquid.” 638 

 639 

Conclusions 640 

In this study, Computational Fluid Dynamics (CFD) simulation has been used to improve knowledge of a 641 

bubble rising in liquid metals. More precisely, the bubble rising velocity and the bubble deformation were 642 

investigated using the CFD code, that is, PSI-BOIL. 643 

A rising bubble in liquid metal was studied, and the predicted terminal rising velocity was compared with 644 

Tomiyama’s correlation. The simulation results showed that the drag coefficient is only controlled by the 645 

Eötvös number for large bubbles and shows the same tendency as Tomiyama’s correlation. A semi-analytical 646 

model for bubble shape deformation was then derived for liquid metal and compared with the simulation 647 

results. The result shows that inviscid approximation works well for bubbles in liquid metal, and that the bubble 648 

aspect ratio is only controlled by the Weber number. Furthermore, a new stability criterion for bubbles in a 649 

liquid metal has been proposed. In the proposed criterion, bubble stability in the considered liquid metal was 650 

not controlled by the Morton number, but only by the Eötvös number. Transition from an ellipsoidal to a 651 

wobbling disk shape took place for the fixed Eötvös number (Eo = 1.7). The novelty is the formulation of a 652 

stability criterion for high Reynold (1000 < Re < 10000) bubble stability for which experimental correlation 653 

are hardly achievable. 654 

 As a follow-up of this article, further studies on bubble aspect ratio are going on. Simulations on bubble rising 655 

in metals under magnetic field (horizontal and vertical) to study bubble shape, trajectory and velocity, are also 656 

planned. 657 
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