
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Storytelling in the Metaverse: From Desktop to Immersive Virtual Reality Storyboarding / Manuri, Federico; Sanna,
Andrea; De Pace, Francesco. - ELETTRONICO. - (2023), pp. 28-33. (Intervento presentato al convegno 2023 IEEE
International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering
(MetroXRAINE) tenutosi a Milan (Italy) nel 25-27 October 2023) [10.1109/MetroXRAINE58569.2023.10405763].

Original

Storytelling in the Metaverse: From Desktop to Immersive Virtual Reality Storyboarding

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MetroXRAINE58569.2023.10405763

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985683 since: 2024-02-05T13:14:05Z

IEEE

Storytelling in the Metaverse: from desktop to
immersive virtual reality storyboarding

1st Federico Manuri
DAUIN

Politecnico di Torino
Torino, Italy

federico.manuri@polito.it

2rd Andrea Sanna
DAUIN

Politecnico di Torino
Torino, Italy

andrea.sanna@polito.it

3th Francesco De Pace
Institute of Visual Computing and Human-Centered Technology

TU Wien
Vienna, Austria

francesco.pace@tuwien.ac.at

Abstract—Creatives from the animation and film industries
have always been experimenting with innovative tools and
methodologies to improve the creation of prototypes of their
visual sequences before bringing them to life. In recent years,
as realistic real-time rendering techniques have emerged, the
increasing popularity of virtual reality (VR) can lead to new ap-
proaches and solutions, leveraging the immersive and interactive
features provided by 3D immersive experiences. A 3D desktop
application and a novel storyboarding pipeline, which can auto-
matically generate a storyboard including camera details and a
textual description of the actions performed in three-dimensional
environments, have already been investigated in previous work.
The aim was to exploit new technologies to improve existing
3D storytelling approaches, thus providing a software solution
for expert and novice storyboarders. This research investigates
3D storyboarding in immersive virtual reality (IVR) to move
toward a new storyboarding paradigm. IVR systems provide
peculiarities such as body-controlled exploration of the 3D scene
and a head-dependant camera view that can extend features
of traditional storyboarding tools. The proposed system enables
users to set up the virtual stage, adding elements to the scene
and exploring the environment as they build it. After that, users
can select the available characters or the camera, control them
in first person, position them in the scene, and perform actions
selecting from a list of options, each paired with a corresponding
animation. Relying on the concept of state-machine, the system
can automatically generate the list of available actions depending
on the context. Finally, the descriptions for each storyboard
panel are automatically generated based on the history of
activities performed. The proposed application maintains all the
functionalities of the desktop version and can be effectively used
to create storyboards in immersive virtual environments.

Index Terms—Tabletop storyboarding, immersive virtual real-
ity, character animation, authoring tool.

I. INTRODUCTION

Creatives from the animation and film industries have al-
ways been experimenting with innovative tools and method-
ologies to improve the creation of prototypes of their visual
sequences before bringing them to life. From traditional meth-
ods such as hand-drawn storyboards and physical mockups,
information technology introduced sketch-based and picture-
based 2D drawing applications. In recent years, as realistic
real-time rendering techniques have emerged, 3D modeling
and animation tools have been researched and explored to
support storyboarding and movie prototyping. In this context,
the increasing popularity of virtual reality (VR) can lead to

new approaches and methodologies, leveraging the immersive
and interactive features provided by 3D VR experiences. Some
research studies explored the usage of VR in the animation and
film domains. Penrose Studios investigated content creation for
VR ad Augmented Reality (AR) devices, researching tools that
could improve the traditional animation pipeline [1]. In [2],
Herikson et al. investigated a workflow tailored to the specific
needs of professionals creating storyboards for VR films, and
a multi-device (tablet and head-mounted display) storyboard
tool has been proposed. Other researchers focused on using
VR technology as a drawing and authoring tool, developing
applications to create artistic content, such as Oculus Story
Studio [6] or TiltBrush [5]; the tracked VR controllers are
used as brushes to paint in the 3D environment. More recently,
Vogel et al. developed a Unity plugin for interactively creating
animations in VR [3], whereas Galvane et al. focused on
exploiting VR for the previsualization stage [4]. Renowned
commercial solutions, such as Frameforge 3D [7] or Shot-
Pro [8], are usually complex to master and present a steep
learning curve.

II. DESCRIPTION OF THE CONTRIBUTION

This research aims to investigate the usage of an immer-
sive virtual reality (IVR) storyboarding tool. A 3D desktop
application and a novel storyboarding pipeline, which can
automatically generate a storyboard with camera details and
a textual description of the actions performed in the virtual
scene, have been presented in previous work [9]. The aim was
to exploit new technologies to improve existing 3D storytelling
approaches, thus providing a software solution for expert and
novice storyboarders. However, the proposed tool presents a
challenging learning curve from a usability point of view.
Despite the possibilities of setting up and posing characters
in a 3D environment, camera positioning is still a complex
task that requires previous knowledge from other software,
such as 3D modeling or 3D animation software, or a video
gamer background (e.g., first-person shooter video games).
This research investigates the usage of IVR to improve the us-
ability of the system mentioned above. The user interface has
been completely redesigned to fit the VR context: introducing
dedicated controllers instead of a mouse and keyboard required
to rethink the user interaction paradigm, thus investigating a

Fig. 1. A sample virtual stage created with the proposed system.

different way to provide users the same functionalities of the
desktop version. The system enables the user to set up the
virtual stage, adding elements to the scene by choosing among
environmental tiles, objects, and characters (Fig. 1). After
that, users can select the available characters or the camera,
control them in first person, position them in the scene, and
perform actions from a set of possibilities, each paired with
a corresponding animation. To this end, an IVR can enable
users to control 3D actors from a first-person point of view
with a greater sense of presence and identification than desktop
applications. The list of available actions is generated relying
on the concept of state-machine, with each state depending on
the context: the position in the virtual world, the proximity
with other objects or characters, and the record of actions
previously performed. This way, the system can automatically
generate the descriptions for each storyboard panel based on
this state-machine approach and the activities’ history .

III. SYSTEM DESIGN

Based on the functionalities developed for the desktop
storyboarding application and the analysis of the state of the
art, a list of possible functionalities has been defined. These
functionalities have been evaluated with the MoSCoW method,
a prioritization technique developed by Dai Clegg [10] in 1994
for use in rapid application development (RAD) and exten-
sively used from 2002 with the dynamic systems development
method (DSDM) [11]. This method, also known as MoSCoW
prioritization or MoSCoW analysis, is used in business anal-
ysis, project management, and software development to reach
a common understanding with stakeholders on the importance
they place on delivering each requirement. MoSCoW is an
acronym derived from the first letter of each of four prioriti-
zation categories: M - Must have, S - Should have, C - Could
have, W - Won’t have. The MoSCoW analysis for this research
has involved students from the master’s degree in Cinema and

Media Engineering of Politecnico di Torino. These students
learn advanced skills in cinema and media technologies and
languages to manage the innovation processes of new digital
production companies. Thus, they represent real users that may
employ the proposed system for their working activities in the
future. Questions on storyboarding and virtual reality were
posed to evaluate the students’ experience and proficiency
in the proposed research domain. This step was necessary
to identify and remove outliers represented by students who
claimed or proved no knowledge of storyboarding.

A. MoSCoW analysis discussion
Thirty-five students participated in the MoSCoW analysis.

Table I shows the obtained results: each category’s percentage
and priority values for each requirement are displayed. Per-
centages have been used to sort the requirements in each cate-
gory. The MoSCoW analysis results have been combined with
the requirements already developed for the desktop version of
the proposed storyboarding application. As a result, some of
the requirements have already been developed and only need
to be ported into the VR system. Other criteria were partially
developed or need further development to match the users’
demands. Finally, some requirements need to be developed
from scratch.

This analysis allowed us to define a shorter set of require-
ments for the proposed project, which resulted in the following
list of Must requirements:

1) improving the system usability making it easier to select
actors’ actions and poses, undo actions, and save the
system status;

2) adding multiple cameras to the scene, switching among
them, and saving their parameters (focal length, sensor
type, etc.);

3) adding virtual lights to the scene by manually editing
their parameters or loading presets.

TABLE I
REQUIREMENTS PRIORITIZATION WITH THE MOSCOW METHOD.

Requirements M% S% C% W% Result
1 Insert objects and characters into the scene, choosing them from a list, and define their position and

orientation;
0.94 0.06 0.00 0.00 M

2 Make it possible to view the storyboard once completed 0.89 0.11 0.00 0.00 M
3 The application must allow the addition and movement of virtual cameras to frame the scene from

different points in space and take the screenshots that make up the storyboard vignettes
0.86 0.14 0.00 0.00 M

4 Removing objects or characters from a scene 0.83 0.09 0.09 0.00 M
5 Create screenshots of the scene that represent the storyboard panels 0.74 0.23 0.03 0.00 M
6 Allowing you to view what is framed by a virtual camera within the application with a real-time preview 0.69 0.26 0.03 0.03 M
7 Possibility of being able to save a created scene and be able to reload it at a later time 0.69 0.29 0.03 0.00 M
8 Provide one or more UNDO levels to return to the condition of the ”previous screenshot” 0.66 0.20 0.14 0.00 M
9 Edit the final storyboard by rearranging the images and changing the descriptions 0.63 0.26 0.09 0.03 M

10 For each camera, it must be possible to set the parameters (focal length, sensor type, etc.) 0.51 0.37 0.09 0.03 M
11 Possibility for the user to add indications within the shot that specify the movements of the camera and

of the characters (e.g. Arrows that indicate the directions of movement, zoom in/out . . .)
0.51 0.31 0.14 0.03 M

12 Giving the possibility to define the duration of an action or a shot 0.43 0.37 0.17 0.03 M
13 Possibility to define the poses of the characters manually, modifying the armor of the model 0.43 0.31 0.17 0.09 M
14 Possibility of inserting virtual lights into the scene 0.43 0.40 0.06 0.11 M
15 The system allows the user maximum freedom to be able to choose any action among those available

for the characters to perform at any time regardless of the context
0.40 0.29 0.29 0.03 M

16 The application must support a gestural interface 0.34 0.29 0.26 0.11 M
17 Make it possible to view the storyboard before completion 0.43 0.43 0.14 0.00 S
18 Modify the parameters of the lights (power, area, color) 0.34 0.43 0.17 0.06 S
19 Rename the characters and objects in the scene 0.29 0.46 0.14 0.11 S
20 Possibility of interaction between a character and the other objects present in the scene 0.26 0.43 0.20 0.11 S
21 Possibility to define the duration of an action represented by a vignette of the storyboard 0.26 0.43 0.31 0.00 S
22 Possibility of animating a character by applying predefined poses to the model, which can be selected

from a library
0.23 0.51 0.17 0.09 S

23 Possibility of interaction between character and character 0.20 0.34 0.37 0.09 S
24 The user must have the ability to view and edit the scene in different scales (tabletop, 1:1 scale in first

person)
0.11 0.54 0.29 0.06 S

25 Possibility to have a lighting preset for outdoor environments 0.11 0.46 0.40 0.03 S
26 Create a preview of the actions performed in the application through a video 0.06 0.46 0.31 0.17 S
27 Possibility of controlling the characters in the scene by moving them in space and animating them with

commands, like in a video game
0.14 0.31 0.46 0.09 C

28 The system must verify the temporal consistency of the actions between consecutive cartoons 0.11 0.34 0.34 0.20 C
29 Based on the context, the system allows you to select only certain actions that are consistent with it 0.11 0.31 0.29 0.29 C
30 Have a description, automatically generated, that accompanies each shot of the storyboard 0.06 0.20 0.51 0.23 C
31 The application must support a voice interface 0.06 0.09 0.46 0.40 C

Another relevant requirement regards making the storyboard
easier to edit and adding more details to the storyboard’s
vignettes. However, whereas camera and light parameters
can be automatically added to the vignettes’ descriptions,
further storyboard editing can be easily performed with a 2D
desktop interface (e.g., changing the vignettes’ order). Thus,
this feature has not been investigated in this paper.

B. Interface

Porting the 3D storyboard application to a virtual reality
environment requires changes to the user interface to translate
the actions mapped on the mouse and keyboard into easy
interactions with the hand controllers. Since the aim is to
provide a system independent from the VR headset, some
default design rules for interacting with the UI are defined as
follows, assuming a trackable headset in a given 3D physical
space and controllers for both hands:

1) mouse interaction with the element in the scene is pro-
vided through raycasting from the controllers; different
types of selection may be enabled based on the number
or type of buttons pressed;

2) camera preview, in terms of movements and rotations,
is replaced by the user’s physical movement in the 3D
environment, measured by headset tracking;

3) static menus from the desktop UI are replaced by dy-
namic menus that can be opened through buttons on the
physical controllers or upon item interaction and appears
as 2D panels in front of the user in the 3D world;

4) the user can interact with the UI elements by collision
or by raycasting.

C. Finite State Machine

The desktop storyboard application presents a constrained
approach based on a finite state machine (FSM) strategy. All
the elements in the scene should be appropriately classified
as invariable, active (variable), or passive (variable). The
behavior of each variable element is represented with an FSM
(characters and objects), with nodes representing different
statuses and transitions representing actions available based
on the current status. The status of passive elements (e.g., a
switch or a door) depends solely on the actions performed by

other active elements in the scene. Instead, the status of active
elements, such as characters, may depend on three factors:

• actions performed by the characters that changed their
previous status;

• their position in the 3D space: based on their proximity
with other variable elements, additional actions may be
available to them;

• their previous interactions with other variable elements:
e.g., if the character picked up an object, additional
actions may be available.

However, one of the Must requirements is to allow the user
maximum freedom to choose any action for the characters to
perform at any time, regardless of context. This is probably
because the traditional approach to storyboarding does not re-
quire performing every action that the actor would execute on
the scene but simply drawing the desired action in the vignette
and writing the corresponding description. Thus, moving from
one situation to another is possible without worrying about
the system’s consistency. However, this approach may lead to
an inconsistent state of the FSMs of the variable elements,
and the system may not be able to automatically generate
a proper description based on the actions performed by the
user. To this end, the FSM approach proposed in the desktop
application has been improved: a recording button has been
added to allow the user to choose when to record the actions.
When the recording is on, the consistency of the actions is
guaranteed. When the recording is off, the user can either
perform actions in the scene or change the elements’ status by
editing the scene. When a new status for the variable elements
has been defined, users can switch back to storyboarding, and
only the starting status will be considered for what pertains
to the FSM consistency upon activating the recording of the
actions.

Another consistency problem is related to allowing users
to edit the scene whenever they want. If they introduce new
elements in the scene, only the nearby or holding properties
of active elements would be affected. However, removing an
element from the scene may affect the status of a variable el-
ement. Let’s assume, for example, that a character is sitting in
a car in the first vignette, and the car is removed in the second
vignette. The character status is preserved if the character is
moved out from the car before deleting it. Otherwise, if the
car is deleted with the character still inside, the system cannot
define the character’s status. Thus, when the character status
depends on an object, and removing the object and maintaining
its FSM consistency is impossible, the character and the object
define a group and are removed together.

Finally, a stack has been used in the desktop application to
save the actions performed by the characters. This allows the
user to save the chain of events in a single vignette of the
storyboard, simply generating a save-point in the stack; then,
all the events in the stack following the last save-point should
be converted into sentences to label the vignette automatically.
However, to introduce the concept of ’undo’ and roll back on
the user’s actions, it is necessary to save an actor’s coordinates

every time a movement action is started. On the other hand,
rolling back on actions implies rolling back both the actor’s
action and, eventually, the object involved in the interaction
(either an item or a character). An action may provoke a
transition to a different state, and the system should check all
the entities involved. Thus, rolling back on the action stack
will allow users to cancel wrong actions and, eventually, even
the current vignette up to the previous save point.

IV. SYSTEM IMPLEMENTATION

The design requirements described in the previous section
guided the development of an immersive virtual reality ap-
plication based on the desktop prototype. Unity 3D1 has been
chosen to deploy the system since it is a 3D game engine freely
available for research and highly compatible with various
virtual reality headsets.

A. System Architecture

Unity 3D and the SteamVR2 plugin have been used to
deploy a 3D application compatible with the most recent head-
mounted displays, such as the HTC VIVE or the Oculus Rift.
The HTC VIVE Pro3 has been chosen for developing the
proposed application since it is one of the most performing
devices on the market regarding technical specifications. Using
the Lighthouse technology, two infrared wireless cameras (the
HTC Base Stations) can track the headset and the controllers
in a room-scale area of up to 4.5 x 4.5 meters. Additional
HTC Sensors can be employed to extend the working space
further. The HTC VIVE Pro system includes two HTC VIVE
controllers to provide easy interaction with the virtual objects.
These controllers track the user’s hands’ position in the
virtual scene and provide a physical interface with buttons,
triggers, and touchpad surfaces. The SteamVR plugin provides
an easy way to map all the actions defined in the virtual
reality application to the HTC VIVE controllers. Moreover, a
virtual counterpart of the controllers is displayed in the virtual
environment, thus enhancing the user’s sense of presence.
Visual feedback is provided on the virtual controller to mimic
the interaction performed by the user on the real ones.

B. Pipeline

When the desktop application starts, it loads both 3D assets
and (if available) their FSMs and animations into the system.
Then, it provides three choices to the user:

• to create or edit an existing 3D scene;
• to start storyboarding from an existing 3D scene;
• to edit or create FSMs for the available 3D assets.

However, to simplify the proposed approach to storyboarding,
allowing users to edit the scene whenever they want would
be easier. When the application starts, the user can create a
novel storyboard from scratch or load a previous project. When
the 3D environment loading is complete, the user can freely
switch between the editing and storyboarding views. Switching

1https://unity.com
2https://valvesoftware.github.io/steamvr unity plugin/
3https://www.vive.com/us/product/vive-pro-full-kit/

Fig. 2. An example of the UI panels available to select the actions based on the active actor (the woman) and the target (the woman herself on the left, the
man on the right).

between the two views only affects the functionalities available
to the users.

C. User Interface

Users may select active elements in the scene by simply
pointing them with the raycasting emitted from the VIVE
controller and pressing the trigger button. Then, a panel
appears before the user, containing a list of available actions
based on the context. Fig. 2 shows an example of the UI
panels available to select the actions based on the active actor
(e.g., the woman) and the target (the woman herself on the
left, the man on the right). Selecting an active element by
pressing the left grip button instead of the trigger button allows
users to embody the chosen element: this will enable users
to experience the actors’ viewpoint and control their position
and orientation by simply moving in the 3D environment.
Moreover, when a character is selected, the user can

• select a point on the scene floor using the raycasting
approach and the trigger button to make the character
move to that point;

• select a passive or active element using the raycasting
approach and the left grip button to open a panel with
the list of available actions that the current element can
perform on the target element;

• select an active element using the raycasting approach
and the trigger button to change the current element and
open the panel with its available actions;

• select an active element using the raycasting approach
and the right grip button to embody the target element.

Once users choose an action for the current actor, if the
recording is active, a play icon appears over the actor, and
the animation associated with that action is played. Using the
trackpad on the right controller, users can:

• set the default pose by pressing up;
• play and pause the animation by pressing down;
• move among the animation’s frames by pressing left

or right (only if the animation is paused) to select the
preferred frame.

This allows the user to choose the most representative pose
for the actor to be depicted in the storyboard vignette.

Users can switch between the storyboarding and editing
views by pressing the system button. In the editing view,
pressing the left grip button opens the panel with the list of
3D elements that can be added to the scene. Once selected,
the user can define the element’s starting position using the
raycasting approach to point into the 3d environment, see
a preview of the element, and push the trigger button to
confirm the position. Elements can then be selected using the
raycasting approach and the trigger button. Once selected, the
element’s position can also be changed using the trackpad and
the grip buttons for fine adjustments.

Moreover, the system allows users to add cameras to the
scene. Users can set a camera corresponding to their current
view by pressing the left grip button. Cameras can also be
added to the scene as any other 3D active element. Cameras are
not rendered in the screenshots. Selecting a camera using the
raycasting approach and pushing the left grip button opens a
panel to set its parameters. Users may select a camera using the
raycasting approach and the right grip button to embody the
camera. Pressing the right grip button opens a panel in front of
the user to show a scene preview from the available cameras.
Selecting a camera from the panel changes the camera to be
used to take the shot to generate the vignette.

Furthermore, the system allows users to add lights to the
scene, like any other 3D passive element. Selecting a light
using the raycasting approach and pushing the left grip button
opens a panel to set its parameters. Selecting one or more
lights using the raycasting approach and pressing the trigger
button creates a group of lights that can be saved as a preset by
pushing the right grip button. The preset contains the lights’
type, position, orientation, and parameters. Presets are then
made available in the add object menu.

Finally, the system allows opening a panel in front of the
user displaying all the vignettes generated till that moment and
the corresponding description, as per requirement number 2.
Fig. 3 shows a sample shot from a storyboard created with the
proposed system.

Fig. 3. A sample shot from a storyboard created with the proposed system.

V. CONCLUSIONS AND FUTURE WORKS

The IVR version of our original 3D storyboarding desktop
tool has been developed with a completely redesigned user
interface to fit the VR-dedicated hardware. The proposed
application maintains all the functionalities of the desktop
version and can be effectively used to create storyboards in
IVR. User tests will be performed to compare the IVR and
desktop versions of the proposed system. The comparison
will consider the system usability, the workload, the number
of errors, and the duration of the storyboarding process. A
comparison with a traditional storyboarding system is another
aspect to investigate in the future. However, many types of
conventional storyboarding options are available: hand-drawn
storyboards, physical mockups, and sketch-based or picture-
based drawing applications. Thus, it would be necessary to
either determine the most used traditional option or to compare
the proposed solution with different groups of users that relies
on different conventional methods.

Future works will be aimed at improving the proposed
system depending on the feedback provided by the user in
the assessment phase. Some Should requirements can be
developed to improve the system further. Voice interaction is
the only Could requirement not yet available in the system.
Gesture interaction is the only Must requirement not yet im-
plemented: replacing the VIVE controllers with finger-tracking
gloves such as the Manus Metagloves4 may enhance the
easiness of use further. Tracking the user’s waist and feet using
three VIVE trackers could provide a complete embodiment

4https://www.manus-meta.com/

system and let the user define the character pose simply by
enacting it. Finally, investigating a method to intuitively define
the characters’ facial expressions might benefit the system.

REFERENCES

[1] Berford, B., Diaz-Padron, C., Kaleas, T., Oz, I. and Penney, D., 2017.
Building an animation pipeline for vr stories. In ACM SIGGRAPH 2017
Talks (pp. 1-2).

[2] Henrikson, R., Araujo, B., Chevalier, F., Singh, K. and Balakrishnan,
R., 2016, October. Multi-device storyboards for cinematic narratives in
VR. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (pp. 787-796).

[3] Vogel, D., Lubos, P. and Steinicke, F., 2018, March. Animationvr-
interactive controller-based animating in virtual reality. In 2018 IEEE
1st Workshop on Animation in Virtual and Augmented Environments
(ANIVAE) (pp. 1-6). IEEE.

[4] Galvane, Q., Lin, I.S., Argelaguet, F., Li, T.Y. and Christie, M., 2019,
March. Vr as a content creation tool for movie previsualisation. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp.
303-311). IEEE.

[5] TiltBrush. http://www.tiltbrush.com/.
[6] Oculus. https://www.oculus.com/story-studio/.
[7] FrameForge, https://www.frameforge.com/.
[8] ShotPro, https://www.shotprofessional.com/.
[9] Marco Scarzello, Advanced Storyboard: Automatic storyboard gener-

ation using direct character control, http://webthesis.biblio.polito.it/id/
eprint/25433

[10] Clegg, Dai; Barker, Richard (1994). Case Method Fast-Track: A RAD
Approach. Addison-Wesley. ISBN 978-0-201-62432-8.

[11] Bittner, Kurt; Spence, Ian (2002-08-30). Use Case Modeling. Addison-
Wesley Professional. ISBN 978-0-201-70913-1.

