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ABSTRACT
Mathematical relations concerning particle systems require knowledge of the applicability conditions to become physically relevant and not
merely formal. We illustrate this fact through the analysis of the Jarzynski equality (JE), whose derivation for Hamiltonian systems suggests
that the equilibrium free-energy variations can be computational or experimentally determined in almost any kind of non-equilibrium pro-
cesses. This apparent generality is surprising in a mechanical theory. Analytically, we show that the quantity called “work” in the Hamiltonian
derivation of the JE is neither a thermodynamic quantity nor mechanical work, except in special circumstances to be singularly assessed.
Through molecular dynamics simulations of elastic and plastic deformations induced via nano-indentation of crystalline surfaces that fall
within the formal framework of the JE, we illustrate that the JE cannot be verified and that the results of this verification are process dependent.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071001

I. INTRODUCTION

Statistical mechanics provides an atomistic perspective to the
properties of physical systems through the correlation of mechanical
and thermodynamic quantities. Certain conditions must be, how-
ever, verified in the physical system so that the formal mechanical
expressions, indeed, become thermodynamically relevant.1–6 In par-
ticular, expected values of observables dominated by the tails of
their probability distributions are hard not only to estimate but also
to relate to physically measurable quantities. Furthermore, emer-
gent phenomena make certain theoretical frameworks physically
insignificant, in particular, non-predictive, and require different
approaches.5 Since this depends on both the details of the process
and the observable of interest, individual case-by-case analyses are
required.

The Jarzynski equality (JE) has been experimentally verified
mainly in small systems evolving in low dimensional spaces whose
dynamics are well described by Langevin equations in Refs. 7 and 8.

The original derivation of the JE concerns deterministic Hamilto-
nian systems,9 and its general version given in Ref. 10 suggests that
practically any kind of non-equilibrium process allows the calcula-
tion of equilibrium free-energy variations of the system under inves-
tigation. Such an apparent universality raises interesting questions,
even of foundational nature.

The mechanical derivation of the JE presented in Ref. 18 takes
full advantage of the canonical statistics in order to correlate the
work done on a particle system (usually under non-equilibrium) as
one parameter of its Hamiltonian is varied over time, while the free
energy is allowed to change. This derivation is based on two main
ingredients: (i) the effect of the work on the Hamiltonian, which is
assumed to exclusively change one parameter λ from an initial value
α to a final value ω, and (ii) the canonical ensemble at a given tem-
perature T. Once this framework is accepted, the JE becomes fully
prescribed regardless of the process that shifts λ from its initial to
its final value. It, however, remains to be checked whether the con-
ditions of the derivation are met by the systems of interest or are
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violated by, e.g., emergent phenomena. Related publications, such
as those discussing optimal protocols,11–14 support the use of the JE,
while others express concern.15–17

In a recent paper, we investigated the applicability of the JE to
a variable-volume Hamiltonian system.18 We found that the JE is
not as universal as commonly believed, since it does not apply to
such a paradigmatic case. In the present paper, instead, we consider a
system fully described by the Jarzynski Hamiltonian. We give special
attention to the presumed universality of the process that links the
initial Hamiltonian with the final one.

First, we observe that the JE does not compute the free-energy
difference of the bare system of interest, except in special cases (as,
for instance, those described in Ref. 19). In principle, it gives an
expression to compute the solvated free energy, which expresses
an important property of the system of interest in interaction with
its environment. Second, we perform molecular dynamics simu-
lations to investigate a crystal nano-indentation process that fully
complies with the Jarzynski formal setting. In this case, the spher-
ical nanoscopic tip, modeled by a repulsive potential whose center
moves in time, pulls downward the crystal’s surface. We analyze two
indentation processes that induce elastic and plastic deformations.
In both cases, the Hamiltonian returns to its initial form at the end of
the process. Although this fits the Jarzynski scheme in a system that
is not particularly large, detailed analyses show that the JE cannot
be successfully applied to either of these indentation processes. We
argue that these findings are due to sampling difficulties under large
values of work, as anticipated in the original JE paper.9,20 Indeed, the
exponential structure of the JE and the form of the canonical ensem-
ble make prohibitive the use of the JE for macroscopic systems; see,
e.g., Refs. 19 and 21.

Our present analysis points out that the method suggested by
the JE may prevent a proper exploration of the relevant parts of the
phase space even if the system is small and the process is quite mild.
Moreover, it is stressed that the currently observed sampling diffi-
culties underlie fundamental limitations when the JE is applied to
analyze plastic deformation processes, which microscopically corre-
spond to phases trapped in a limited region of the phase space. These
limitations are, indeed, analogous to the strongly irreversible sys-
tems examined in Ref. 22, which fail to recover their initial state after
perturbation. Since this feature cannot be solved through improved
statistics, a modification of the JE appears to be at issue.

II. THE JARZYNSKI EQUALITY AND ITS MEANING
Following Ref. 10, we consider an N-particle system S inter-

acting with an environment E made of M particles. The combined
system is then denoted as S + E, which is made of N +M particles.
Let Γ = (x, y) represent a mechanical state of S + E in the phase space
M, with x = (qS, pS) with the coordinate vector qS = (q1, . . . , qN)

and momenta pS = (p1, . . . , pN) of S, and y = (qE, pE) representing
E, with qE = (qN+1, . . . , qN+M) and pE = (pN+1, . . . , pN+M).

Suppose an external agent perturbs S in such a way that only the
energy HS of S is affected, where the energy HE of E and the energy of
the interaction between S and E, hint, are not directly affected. While
this is not a general condition in Ref. 6, it is our purpose to focus
on systems for which this assumption holds. Moreover, let the per-
turbation be described by a time dependent parameter, λ ∈ R, that
varies according to a specified rule λ(t), with t ∈ [0, τ], λ(0) = α,

and λ(τ) = ω. Under these assumptions, the dynamics of the parti-
cles of the combined system S + E may be described by the following
Hamiltonian:

H(Γ; λ) = HS(x; λ) +HE(y) + hint(x, y). (1)

For the sake of simplicity, and as commonly done, let us assume that
the external agent acts on such a mechanical system by exerting on
the particles of S forces that derive from an external potential Φ,

Fi = −
∂Φ
∂qi

, i = 1, . . . , N. (2)

The Hamiltonian system S + E is initially in thermodynamic equi-
librium with a heat bath B at temperature T. Hence, its initial phases
are distributed according to the canonical ensemble with parameter
λ(0) = α,

fα(Γ) =
e−βH(Γ;α)

QS+E(α)
,

with

QS+E(λ) = ∫ e−βH(Γ;λ)dΓ, (3)

where β = 1/kBT and QS+E(λ) is the canonical partition function of
a system at temperature T, with Hamiltonian H(Γ; λ). At time t = 0,
when the phase of S + E is Γ0 = (x0, y0), the energy is H(Γ0; α) and
S + E is separated from B. Then, λ is allowed to change for t ∈ (0,τ).

Let St
λ : M→M denote the evolution operator for time t for

the phases in M, meaning that an initial phase Γ ∈M turns into
St

λΓ ∈M at time t. The process stops at time t = τ, when λ(τ) = ω,
and the Hamiltonian of S + E is expressed by H(Γ; ω). On the other
hand, the energy of the realization of the process with initial condi-
tion Γ0 is given by H = H(Γτ ; ω), where Γτ = (xτ , yτ) = Sτ

λΓ0 denotes
the final phase. Although obvious, it is important to remark the dif-
ference between the energy of the system at the end of the process,
which is H(Γτ ; ω), and the Hamiltonian with parameter λ = ω at a
generic phase point Γ, which is H(Γ; ω). The former, indeed, is not
the Hamiltonian, but the composition of the Hamiltonian with the
time evolution up to time τ, Sτ

λ.
Let qi(t; Γ) be the coordinates of particle i at time t, along the

phase space trajectory starting at Γ, and pi(t; Γ) be the correspond-
ing momenta. Then, in the time interval [0, τ], the external agent
determining the variation of λ performs a mechanical work on S,
expressed by

W[St
λΓ; 0 ≤ t ≤ τ] = ∫

τ

0
ds

N

∑
i=1

q̇i(s; Γ) ⋅ Fi(Ss
λΓ), (4)

which, in this deterministic framework, depends only on the initial
condition Γ and on the chosen function λ = λ(t). For such a pro-
cess, W can take positive, null, and also negative values depending
on Γ. In the Jarzynski theory, the term “work” is used, instead, for a
different quantity, which we denote as WJ and is defined by

WJ[St
λΓ; 0 ≤ t ≤ τ] = ∫

τ

0
ds λ̇(s)

∂HS

∂λ
(xs; λ(s)). (5)
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Obviously, this corresponds to mechanical work when λ represents
a position in space and the derivative of HS with respect to λ is a
force.23 Because the following equation holds:

∂HS

∂t
= λ̇

∂HS

∂λ
= λ̇

∂H
∂λ
=
∂H
∂t
=

dH
dt

, (6)

one obtains

WJ[St
λΓ; 0 ≤ t ≤ τ] = H(Sτ

λΓ; ω) −H(Γ; α). (7)

Equation (7), exponentiated and averaged over the canonical
ensemble at temperature T and parameter λ = α, straightforwardly
leads to

⟨e−βWJ⟩
α
=

1
QS+E(α) ∫

e−βWJ(Γ)e−βH(Γ;α) dΓ

=
QS+E(ω)
QS+E(α)

= e−β[FS+E(ω)−FS+E(α)], (8)

where ΔFS+E = [FS+E(ω) − FS+E(α)] is the difference of the free
energies of S + E in the canonical equilibrium at temperature T and
parameters ω and α, respectively. Given the exponential form of the
quantity to be averaged in Eq. (8), it is readily seen that large nega-
tive values of WJ give important contributions, even if they are very
unlikely in the canonical ensemble fα.

As far as we understand, the desired result in Refs. 9 and 10 is
not ΔFS+E, but the free-energy difference for system S alone, defined
by

ΔFS = [FS(ω) − FS(α)], FS(λ) = −β−1 lnQS(λ),

QS(λ) = ∫ dx e−βHS(x;λ).
(9)

The quantity FS is the “intrinsic” free energy of S; it is particularly
interesting when hint vanishes. Jarzynski, indeed, originally assumed
that hint is negligible compared to HS and HE.9 In this case, and
under the assumption that S remains isolated, consequently,

FS+E(λ) = FS(λ) + FE, λ = α, ω

and

ΔFS+E = ΔFS, (10)

since in the difference, the free energy of E cancels out. However,
this framework is not satisfactory for the kinds of experiments that
the JE is mainly supposed to describe. When hint is not negligible,
it becomes appropriate, as argued also by Jarzynski,24 to consider a
quantity that accounts for such an interaction, and this is called sol-
vated free energy. The derivation of the JE then proceeds introducing
the following Hamiltonian:

H∗S (x; λ) = HS(x; λ) −
1
β

ln ∫
dye−β[HE(y)+hint(x,y)]

∫ dye−βHE(y) (11)

which was proposed by Kirkwood25 to treat subsystems of macro-
scopic dense fluids in thermodynamic equilibrium.26 This is the
energy of S, HS, referred to the interaction energy averaged over
the variables of E, which essentially amounts to a potential of mean

force. Its meaning can be understood in terms of the marginal
probability of the particles of S in E,

pS(x; λ) = ∫ dy fλ(x, y)

=
e−βHS(x;λ)

QS+E(λ) ∫
dy e−β{HE(y)+hint(x,y)}, (12)

whose associated Landau free energy takes the form

−
1
β

log pS(x; λ)

= −
1
β

log[
e−βHS(x;λ)

QS+E(λ) ∫
dy e−β{HE(y)+hint(x,y)}

]

= FS+E(x; λ). (13)

This shows that H∗S is the effective Hamiltonian of S in S + E. Indeed,
we can write

H∗S (x; λ) = FS+E(x; λ) −
1
β

log
QS+E(λ)

QE

= FS+E(x; λ) + constant, (14)

where the constant is absorbed by the normalization condition. The
associated canonical partition function takes the form

Q∗S (λ) = ∫ dx e−βH∗S (x;λ)dx

= ∫ dx e−βHS(x;λ) ∫ dy e−β[HE(y)+hint(x,y)]

∫ dy e−βHE(y)

=
∫ e−βH(Γ;λ) dΓ
∫ e−βHE(y) dy

=
QS+E(λ)

QE
. (15)

The logarithm of Q∗S (λ)multiplied by −β yields

F∗S (λ) = FS+E(λ) − FE, i.e. FS+E(λ) = F∗S (λ) + FE, (16)

where F∗S (λ) = −β−1 ln Q∗S (λ) is the “solvated” free energy that can
be interpreted as the free energy of a hypothetical system S∗ with
Hamiltonian H∗S or of “S in E,” and

FE = −β ln∫ e−βHE(y) dy (17)

is the free energy of E alone in thermodynamic equilibrium at tem-
perature T. Now, the free energy of S + E is given by the sum of
the two contributions, taken separately, as if S∗ and E were not
interacting or the interaction was negligible. Consequently,

[FS+E(ω) − FS+E(α)] = [F∗S (ω) − F∗S (α)] ≡ ΔF∗α→ω, (18)

because in this investigation, FE does not depend on λ. Therefore,
denoting by ⟨⋅⟩α, a canonical average with respect to the initial
ensemble fα, one can finally write

⟨e−βWJ⟩
α
= e−βΔF∗α→ω , (19)

which is the JE. Could one assume

ΔF∗α→ω = FS(ω) − FS(α), (20)
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with FS standing for the intrinsic free energy of S defined in Eq. (9),
the JE would then provide the difference of such physically relevant
free-energy variation from the statistics of WJ. However, the pre-
vious derivation reveals that F∗S and FS are far from equivalent. In
fact, when λ = α, F∗S depends on the environment in a different fash-
ion than when λ = ω. On the contrary, FS should not depend on E
whatsoever. Apart from such an unneglectable fact, the derivation
of the JE is formally quite general and applicable to any particle sys-
tem, under any kind of perturbation of an initial equilibrium state
at a given temperature T. Indeed, no restrictions are imposed on
the time dependence of λ. Summing up, we note that the Jarzynski
approach does not separate the degrees of freedom of S and E unless
the interaction term hint is negligible or absent. Then, different envi-
ronments lead to different estimates of the solvated free energy F∗S ,
which, in general, differ from the intrinsic free energy FS. In the early
Hamiltonian derivations, the focus was on FS. Later, the solvated free
energy has become the focus of the Hamiltonian derivations, which
is relevant under strong coupling between S and E.

A related observation concerns WJ. In general, this quantity is
directly related neither to mechanical nor to thermodynamic work;
cf. Ref. 18 and references therein. It is not related to mechanical
work since, without further specification, the derivative of HS with
respect to λ is not a force, and dλ = λ̇dt is not an associated ele-
mentary displacement. In particular, the Hamiltonian may depend
on a time dependent parameter in many different fashions that do
not correspond to displacements of the external driving mechanism.
Moreover, averaging WJ with respect to the initial ensemble, one
obtains

⟨WJ⟩α = ∫ H(Sτ
λΓ; ω)

e−βH(Γ;α)

QS+E(α)
dΓ

− ∫ H(Γ; α)
e−βH(Γ;α)

QS+E(α)
dΓ

= U∗(τ, ω) −U(α). (21)

Here, the second integral, U(α), is the initial internal energy of
S + E, because of the average of the initial Hamiltonian with respect
to the initial canonical ensemble. On the other hand, the first inte-
gral, U∗(τ, ω), is the average of the Hamiltonian of S + E with
parameter ω computed in a τ-dependent position,

uω,τ(Γ) = [H(⋅; ω) ○ Sτ
λ](Γ) = H(S

τ
λΓ; ω),

so that it is not the Hamiltonian with parameter ω, but a func-
tion of function, with H(⋅; ω) as an external function, averaged with
respect to the initial ensemble fα.27 Only the average of the exponen-
tial of WJ, not of WJ itself, appears to be directly associated with a
known physical quantity. Although computable in numerical simu-
lations, WJ and ⟨WJ⟩α, are hardly relevant in experiments except, in
particular, situations to be identified case by case.18

The numerical simulations discussed in Secs. III–V correspond
to a case intentionally chosen so that WJ results in a measurable
mechanical work. Then, we investigate the presumed process inde-
pendence of the JE, remaining within the bounds of the Jarzynski
theory. We show that the process affects the results, as natural in
physics. In particular, we investigate a Hamiltonian system describ-
ing indentation on a small crystal made of O(104

) particles. We
realize closed work loops, i.e., processes for which λ(0) = λ(τ),

where the right-hand side of Eq. (19) should take unity. Thus, we
consider the case involving elastic deformations of the crystal, which
is reversible and should lead to no surprise. In addition, we study the
irreversible case of plastic deformations, in which the impossibility
for the system to close the loop shows an emergent property of (even
relatively small) Hamiltonian systems.28 In both the cases, we find
that it is impossible to verify the JE, although we remain within the
Jarzynski framework. As for the claims that the JE should be invoked
in the case of small systems only, we note that the number of parti-
cles in our system is not larger than those of proteins and DNA used
in the experiments assessing the JE.29

III. CRYSTAL INDENTATION
A. The simulation

In the following, we systematically investigate the properties
of a small solid indented by a spherical nanoscopic tip. The solid
of interest is a (001)-oriented Ta crystal of size 10.8 × 10.8 × 6 nm3

made of Ntot = 40, 293 particles, whose coordinates are denoted by

qi = (xi, yi, zi) i = 1, . . . , Ntot. (22)

The particles in the top layer of the solid are free to move, whereas
those in the bottom layer are fixed and constitute a rigid flat sur-
face that prevents the downward displacement of the system during
indentation. Periodic boundary conditions are applied on the lateral
sides of the crystal; see Fig. 1(a). In the Jarzynski theory, in con-
tact with the rigid flat can be taken to represent an external field,
which does not contribute to the number Ntot. Because only the top
layers of the crystal are affected by the action of the indenter, we
may indifferently consider the solid as a whole or just the top N
particles as system S without any expected change in the numer-
ical results. The remaining M = Ntot −N particles, which are not
brought into contact with the indenter, will then be considered as the
environment E. One way or the other, the dynamics is determined
by a Hamiltonian of the likes of Eq. (1), which turns H = HS in the
first case. Note, however, that the JE is, in principle, an immedi-
ate consequence of the Hamiltonian dynamics and of the canonical
statistics for N = Ntot, while further assumptions are required for
N < Ntot. This ambiguity is consistent with the fact in that the JE
only computes the free-energy variations of the whole S + E.

Our investigation comprises an extensive number of all-
atom molecular dynamics (MD) simulations performed with the
LAMMPS code.30 The indenter is modeled by a time-dependent
spherically symmetric, repulsive external potential of finite range,
with R = 3 nm and center C of coordinates qc(t) = (xc, yc, zc(t)),
defined by

Φ(q1, . . . , qN+M , qc(t)) =
N+M

∑
i=1

φ(qi, qc(t));

φ(qi, qc(t)) =
⎧⎪⎪
⎨
⎪⎪⎩

−kδi(t)3
/3, δi ≤ 0,

0, δi > 0,

(23)

where k is the indenter stiffness and

δi(t) =
√
(xi − xc)2 + (yi − yc)2 + (zi − zc(t))2 − R (24)
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FIG. 1. Simulation setup. (a) Schematic
representation of the indentation pro-
cess. The computational domain con-
tains the particle system of size 3.6R
× 3.6R × 2R and the repulsive spherical
indenter of radius R modeled by Eq. (23).
Periodic boundaries are applied to the
lateral sides of the cells. The indented
top surface is free while the atomic posi-
tions in the bottom atomic layer are fixed
to prevent the downward displacement
of the particle system during indentation.
The vertical coordinate of the indenter
center, zc, is plotted in (b) as a function
of the process time τ. (c) Evolution of
the quantity (λ − Δ)/R as a function of
t in the elastic and plastic cases with ∣λ̇∣
= 10 m/s whose process times are τel
= 70 ps and τpl = 190 ps, respectively.

is positive if particle i is outside the range of action of Φ and neg-
ative if it is inside. The indenter acts on the particles of the solid
that lie within a distance R from the center C, and there is no recoil
in the system because the atoms of the bottom layer are fixed. This
places our system in the laboratory frame. Here, k is set to 100 eV/Å3

(≈ 1.6 × 10−10 erg/Å3). This computational approach has been
largely employed in MD investigations of nano-indentation on
metal surfaces (cf. Refs. 31–34). Figure 1(a) depicts the computa-
tional domain of the indentation simulations, which contains the
particle system and the repulsive indenter.

In the present simulations, we take an initial state in which par-
ticles lie at their crystal lattice positions, and velocities are taken from
a normal distribution with 0 mean and a standard deviation chosen
to produce a temperature close to T = 300 K. Then, in order to gen-
erate the equilibrium canonical distribution in the phase space of
the system [Eq. (3)], we carry out a preliminary 20-ps thermaliza-
tion run during which the particles follow the NVT ensemble where
the system’s volume remains fixed and the Nosé–Hoover thermostat
controls the system’s temperature. This allows us to produce a large
set of n initial conditions that sample the canonical distribution fα
at T = 300 K, from which each load–unload indentation process is
carried out.

A closed indentation load loop is realized by letting zc move
vertically with constant downward and upward speeds, λ̇. The
vertical coordinate of the indenter center, zc(t), then follows

zc(t) = z0 − λ(t), with ∣λ̇∣ = const,

λ(t) =
⎧⎪⎪
⎨
⎪⎪⎩

∣λ̇∣t, t ∈ [0, τ/2),
∣λ̇∣(τ − t), t ∈ [τ/2, τ],

(25)

where λ reaches its maximum, λmax, at time t = τ/2, with zc(τ/2)
= z0 − λmax and τ = 2λmax/∣λ̇∣; see Fig. 1(b). Thus, we have λ(α)
= λ(ω). During the indentation run, the particle dynamics is
given by Hamilton’s equations of motion under the following
time-dependent Hamiltonian:

H(Γ) =
N+M

∑
i=1

1
2

mv2
i +Ω(q1, . . . , qN+M)

+Φ(q1, . . . , qN+M , qc(t)), (26)

where m is the mass of each Ta atom and vi =
√

v2
ix + v

2
iy + v

2
iz is the

speed of particle i. The constituting Ta particles of the crystal interact
with each other via the embedded-atom method (EAM) potential
built by Ravelo et al.35 This model is based on concepts from density
functional theory that stipulate that the (potential) energy of atom
i, Ωi, is a function of the spatially dependent electron density. The
potential energy of the system, Ω, is then prescribed by the following
EAM functions:

Ω =
N+M

∑
i=1

Ωi, Ωi = E∗(ρi) +
1
2

N+M

∑
i≠j=1

ϕ(rij),

ρi =
N+M

∑
i≠j=1

w(rij),

(27)

where rij is the distance between atoms i and j, ϕ is a pairwise, spheri-
cally symmetric interaction potential, ρi is the electron density at site
i, which is taken proportional to the atomic density surrounding the
site and given by a sum of spherically symmetric weightsw evaluated
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at the pairs distances, E∗(ρi) is the embedding energy, a nonlinear
function of the electron density, and ϕ is expressed by

ϕ(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−U0(1 + r∗ + β3r∗3
+ β4r∗4

)e−r∗ , 0 ≤ r ≤ rs,

U0(rc − r)s
∑

4
i=1ai(rc − r)i−1, rs < r ≤ rc,

0, r > rc,

(28)

where r∗ = αp(r/r1 − 1) and αp, r1, rc, rs, s, U0, β3, and β4 are the
fitting parameters adjusted to Ta atoms.35

Note that no thermostat is coupled to S + E during the indenta-
tion process, as required by Jarzynski’s theory. The integration time
step is set to 2 fs in all the MD simulations.

B. Computation of work fluctuations during
indentation

The simulated particles may be indifferently taken to constitute
S+ E, or just S, as the short range potential Φ only affects the first few
atomic layers of the solid, and the particles close to the bottom flat
do not approach those at the top layers in any physically imaginable
time. In particular, taking E as the bottom half of the solid, so that
N =M, is more than sufficient to make sure that the indenter does
not contact the environment; see Fig. 1.

The repulsive force exerted on particle i, Fi = −(∂Φ/∂qi),
where Φ is the only time-dependent term in the Hamiltonian, is
given by

(Fix, Fiy, Fiz) =

⎧⎪⎪
⎨
⎪⎪⎩

kδ2
i (xi − xc, yi − yc, zi − zc)/(δi + R), δi ≤ 0,

0, δi > 0.
(29)

The elementary mechanical work done by the indenter on S
is expressed in terms of the elementary particle displacements,
dqi = (dxi, dyi, dzi), through

dWI→S =
N

∑
i=1

Fi ⋅ dqi

=
N

∑
i=1

k δ2
i η(δi)

δi + R
[(xi − xc)dxi + (yi − yc)dyi

+ (zi − zc)dzi], (30)

where η is the step function: η(δi) = 1 for δi ≤ 0 and η(δi) = 0
for δi > 0. The elementary work done on the indenter by S, which
involves instead the elementary displacements of the indenter,
dqc = (0, 0, dzc), and the opposite forces, −Fi, is given by

dWS→I =
N

∑
i=1
(−Fiz) dzc

= −
N

∑
i=1

k δ2
i η(δi)

δi + R
(zi − zc) dzc ≠ −dWI→S, (31)

moreover, dzc = −dλ = −λ̇ dt; hence, (32)

dWS→I = −
N

∑
i=1

k δ2
i η(δi)

δi + R
(zi − zc) (−λ̇) dt

=
N

∑
i=1

Fiz λ̇ dt (33)

where the minus sign in the force of particle i on the indenter is
derived from the action–reaction principle. Note that the mechan-
ical works dWI→S and dWS→I differ not only in the sign, but
substantially. Therefore, an external operator cannot deduce the
work done on the system WI→S from (external) measurements of
WS→I . Under these conditions, the elementary Jarzynski work [from
Eq. (5)], in turn, takes the form

dWJ = λ̇
∂HS

∂λ
dt = λ̇

∂Φ
∂λ

dt =
N

∑
i=1
(−Fiz) λ̇ dt = −dWS→I . (34)

WJ equals, in this case, the opposite of the work done by the system
on the indenter.

IV. RESULTS
In the indentation protocols, we conveniently take z0 separated

by a vertical distance R + Δ from the crystal’s surface so that the con-
stituting particles are guaranteed to lie outside the range of Φ at t = 0
and t = τ; see Fig. 1(a). This effectively allows the particles to arrange
initially into an unperturbed Ta bcc crystal configuration during
the canonical thermalization run. The indenter then exerts a local-
ized repulsive force on the particles when they enter the indenter’s
range of action, thus mimicking the mechanical conditions of ultra-
low load indentation experiments using an infinitely rigid indenter
tip. For fixed λ̇ and τ, the imposed λmax value that characterizes
the indentation process prescribes the minimum value of zc, which
is [z0 − λ(τ/2)]; see Fig. 1. The load P = −∑N

i=1Fiz applied by the
indenter is defined as the sum of the vertical, repulsive force con-
tributions coming from the particles that satisfy δi ≤ 0. Finally, the
works defined by Eqs. (30), (33) and (34) are systematically com-
puted with a fixed range of values of λ, ∣Δλ∣ = 5 pm (=0.05 Å), where
dt = ∣Δλ∣/∣λ̇∣.

A. The elastic case
We perform an extensive number of load/unload indentations

with fixed λmax = 0.1R + Δ = 3.5 Å, which characterizes the herein
called elastic process. Our analysis includes a wide range of indenta-
tion velocities, ∣λ̇∣, from 1 to 100 m/s, which are, nevertheless, micro-
scopically quite slow processes (corresponding to 10−5–10−3 Å/fs
in microscopic units). Thus, the imposed indenter velocities are not
exceedingly violent for a particle system to endure, and the process
avoids the emergence of evident irreversibility.

The computation of single-realization runs of the elastic pro-
cess indicates that perturbations of the crystal with ∣λ̇∣ < 50 m/s
lead to elastic contacts of the indenter with the particle system.
Under these conditions, the unloading stage approximately traces
back the mechanical path followed during loading, thus manifest-
ing reversibility in the protocols. This is shown in Figs. 2(a) and
2(b), where the applied indentation load, P, is plotted against λ
and the normalized time t/τ, respectively. The elastic load–unload
curves adhere to the continuum Hertzian solution that follows
P ∼ (λ − Δ)3/2.36
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FIG. 2. Single realization of the elas-
tic process at ∣λ̇∣ = 10 m/s (τ = 70 ps),
where λmax = 3.5 Å. (a) and (b) P − λ
and P − t/τ curves, respectively. In
panel (a), the reversibility of the proto-
col is revealed by matching the load and
unload paths. “Loading” and “unloading”
mark the P direction during the loading,
t ∈ [0,τ/2), and unloading, t ∈ [τ/2, τ],
of the indenter.

The reversibility of the elastic perturbation also becomes evi-
dent in the work vs λ plots in Fig. 3(c). In the same vein, Fig. 3(d)
shows the symmetry of both WS→I and WJ as a function of t/τ. Note
that the sharp points at t = τ/2 in Figs. 2(b) and 3(d) are due to the
fact that the motion of the indenter is inverted, while the exerted
forces from the indenter at t = (τ/2)− and t = (τ/2)+ remain the
same. Thus, along the time interval [0, τ], the absolute values of WJ
and WS→I gradually increase from 0 to the maximum value at time
τ/2 and then decrease during unloading, matching the loading work
path. For comparison, the much more noisy time evolution of the
work done on S, WI→S, is drawn in Fig. 3(a). The inset of shows
the absolute values of WI→S, which are continuous increasing func-
tions of time. In this regard, the net values that WI→S takes as a
function of time largely diverge from those of WJ and WS→I , where
WI→S(t = τ) ≫ 0; compare Fig. 3(a) with Fig. 3(b).

The probability density function (PDF) describing the resulting
WJ-value statistics from n realizations of a given elastic indentation
can be approximated by the general form of the normal Gaussian
distribution,

g(WJ, μ, σ) =
1

σ
√

2π
exp[

−(WJ − μ)2

2σ2 ], (35)

where μ is the average and σ2 is the variance of the WJ data. In all
instances, WJ stands for WJ(τ). Figure 4 shows the resulting PDF
of the elastic case, obtained from 1000 realizations. The results of
different values for the imposed indenter velocity, ∣λ̇∣, are consid-
ered next; see Fig. 4(a). With decreasing values of ∣λ̇∣, one gradually
obtains indentations in which the noise associated with P during
mechanical loading and unloading is substantially reduced. Accord-
ingly, the PDFs of the WJ data shift toward μ→ 0 with decreasing
∣λ̇∣; see Fig. 4(a). In the event that this yielded quasi-static indenta-
tion transformations, with increasingly narrower WJ distributions
(σ → 0), one would not need much statistics in the ∣λ̇∣ → 0 limit. For
the ∣λ̇∣ = 10 m/s case, Fig. 4(b) shows that increasing the sample size
(n > 500) does not lead to substantial changes in the resulting WJ
distribution.

FIG. 3. Evolution of the three works
defined in Eqs. (30)–(34). The plots refer
to a single realization of the elastic pro-
tocol at ∣λ̇∣ = 1 m/s, with τ = 700 ps. dW
stands for the work done in an infinites-
imal time dt = 5 ps. (a) dW I→S vs t/τ,
with the time average of about 9kBT (at
T = 300 K). The time evolution of W I→S
is given in the inset to (a). (b) dW J and
dWS→I vs t/τ. (c) and (d) Evolution of
W J and WS→I as functions of λ and t/τ,
respectively. In the inset to (a), in (c),
and in (d), the works are the cumulative
sum of the sequence of corresponding
elementary works.
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FIG. 4. W J statistics of the elastic case.
(a) W J histograms under ∣λ̇∣ = 1 and
10 m/s. (b) The resulting PDFs from
100, 500, and 1000 realizations at ∣λ̇∣
= 10 m/s, which shows the saturation of
moments with the ensemble size n.

Using the WJ data from the indentation realizations, the com-
puted average of the exponential, ⟨e−βWJ⟩ (where in present simula-
tions, β = 24.143 pico-erg−1), results in 3.4 and 42.3 for ∣λ̇∣ = 10 and
1 m/s, respectively; see Fig. 4(a). Using the same data, the free-energy
difference ΔF∗α→ω obtained from the JE [Eq. (19)] stabilizes (as visible
for n > 500) at ≈ − 0.4 pico-erg for ∣λ̇∣ = 1 m/s and at ≈ − 0.12 pico-
erg for ∣λ̇∣ = 10 m/s; cf. Fig. 9 below. We also observe stabilization of
the WJ data moments with increasing sample size; cf. Fig. 4(b). In
light of these results, we cannot expect the theoretical result, ΔF∗α→ω
= 0, to be obtained in any physically sensible observation scale.

Different indentation responses are obtained for indenter
speeds ∣λ̇∣ larger than 50 m/s. These indentations are characterized
by marked undulations in the P − λ curves; see the plots in Figs. 5(a)
and 5(b) obtained with ∣λ̇∣ = 100 m/s. This suggests that we have a
solid-to-solid impact rather than a continuous elastic contact. The
results from the single-realization runs shown in Fig. 5(a) reveal that
although the unloading force also vanishes at the end of the load-
ing loop, the load and unload P − λ paths are not identical. Thus,
although the elasticity threshold of the solid is not exceeded, some
kind of irreversibility progressively builds up as the speed of the
indenter is increased.

Finally, we note in Fig. 5(c) that the WJ distribution obtained
from 2000 realizations yields a much larger absolute value of
the average of WJ [μ = 31.3226 pico-erg, ≈756 in dimensionless
WJ/(kBT) units at T = 300 K] as compared to that obtained in the
indentations with smaller ∣λ̇∣ (Fig. 4). Then, under the fast elastic
protocols, Eq. (19) gives an even worse estimate of the free-energy
variation than that obtained in slow elastic processes.

B. Divertissement: The plastic case
Following the view that it does not matter how λ is taken from

its initial value to its final value, we have performed simulations
with greater imposed penetrations where the mechanical response
changes drastically. Rather than elastic reversible deformations, our
indentation process with λmax > 4.5 Å leads to (irreversible) crystal
plasticity, i.e., deformations of the crystal that persist in time due to
the formation of crystalline defects underneath the indenter.37 Then,
besides the difficulties encountered to verify the JE in the purely elas-
tic case, a new condition emerges that is complex to describe using
equilibrium statistical mechanics. Irreversibility, thus, emerges from
the reversible dynamics of a rather small Hamiltonian system when
λmax is increased.

FIG. 5. Elastic case performed at ∣λ̇∣
= 100 m/s (τ = 7 ps). (a) and (b) Load
evolution in a single realization. (c)
The PDF of the W J data from 2000
realizations.
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FIG. 6. Single realization of the plastic case at ∣λ̇∣ = 10 m/s (τ = 190 ps), where λmax = 9.5 Å. (a) and (b) P − λ and P − t/τ curves, respectively. The gray line in (a)
represents the elastic fit given by the Hertzian contact theory, where P ∼ (λ − Δ)3/2. The process is characterized by irreversibility due to the plasticity evidenced by the
utterly mismatched load and unload paths. Note in (a) that departure from the elastic behavior starts at a critical load Pc ≈ 0.11 μN at λc ≈ 4 Å.

The plastic indentation case studied here is a load/unload pro-
cess with λmax = 0.3R + Δ = 9.5 Å; see Fig. 1(c). In the simulations,
the elastic behavior is clearly violated at values of λ ≈ λmax/2 dur-
ing the loading stage; cf. Fig. 6. Therefore, the imposed λmax is well
within the λ range in which plastic features can be observed in the
P − λ curves. The load evolutions obtained in single-realization runs
are given in Fig. 6.

The resulting P − λ curves are characterized by an early elas-
tic response followed by a load drop at the inception of plasticity
(Fig. 6).38 With increasing λ, further load drops result from the
activation of additional plastic processes in the crystal, where the
P − λ evolution fundamentally diverges from the elastic fit. During
unloading, the force vanishes with λ values greater than Δ; e.g., see in
Fig. 6(a), where λf ≈ 3 Å. In this regard, steep unloading curves are
a fundamental manifestation of the generation of a plastic imprint
induced during the indentation process, which remains in the par-
ticle system upon the removal of the indenter tip from the surface.
In addition, this feature leads to an absolute value of the work done
during loading that is greater than that done during unloading, thus
resulting in relatively large WJ; see Fig. 7. For further details of such
indentation responses in metals using nanometer-sized indenter
tips, the reader is referred to Refs. 34 and 37.

When the WJ data are fitted, the resulting PDF reveals a clear
tendency to develop some skewness, while the average and the
variance take values of μ ≈ 0.576 nano-erg [≈13, 960 in dimension-
less WJ/(kBT) units] and σ2

≈ 4.8 nano-erg2. Figure 8 shows the
left-skewed WJ distribution of the plastic process.

In addition, note that in the elastic (reversible) case, we
obtained larger values for ⟨e−βWJ⟩

α that range from ≈3 to ≈37 (with
n = 1000), which are still computable in terms of Eq. (19). On the
contrary, in the case of the plastic (irreversible) indentations with
n = 2000, we have large positive values for WJ so ⟨e−βWJ⟩

α con-
verges to 0 and ΔF∗α→ω in Eq. (19) cannot be handled numerically.
For instance, we find that the quantity −β⟨WJ⟩α is of the order of
O(1022

) in the plastic process with n = 2000; see Fig. 8. Actually, the
numerical analysis of the right-hand side of Eq. (19), which should
be 1, drastically misses this target value in all indentation tests.

V. DISCUSSION
Our MD investigation of indentation on a Ta crystal composed

of O(104
) atoms completely fails to reproduce the correct value of

the left-hand side of Eq. (19) although

FIG. 7. Evolution of the works W J, WS→I , and W I→S, defined by Eqs. (33) and (34) and measured in erg, for single realizations of the indentation process at ∣λ̇∣ = 10 m/s
(τ = 190 ps). (a) illustrates the elementary works dWS→I and dW J done over an infinitesimal time of dt = 0.5 ps. (b) and (c) give the evolution of WS→I and W J as functions
of λ and t/τ, respectively.

J. Chem. Phys. 156, 114118 (2022); doi: 10.1063/5.0071001 156, 114118-9

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. PDF of the W J data from 2000 realizations of the plastic case with ∣λ̇∣
= 10 m/s. The curve g represents the Gaussian approximation of the normalized
histogram of the W J/kBT data.

1. the dynamics of S + E and of the indenter are cast in a
Hamiltonian formalism,

2. only the energy of S is affected by the moving potential
representing the indenter, and

3. the initial conditions on which we estimate the expected values
are sampled from a canonical distribution.

These are the conditions required in the formal derivation of
the JE. In addition, our system is not large, and in the case of the slow
elastic indentations, we avoid any evident onset of irreversibility.
Since our numerical analysis can compute WJ, the difficulty of veri-
fying the JE must then be of a subtler nature than what the formalism
readily reveals.

Our first observation is that the problem is not merely statisti-
cal. The sampling problem exists and has been evidenced in various
works, beginning with the original paper.9 In Ref. 19, it has also been
shown that even in the simple case of adiabatic expansion of an ideal
gas, the number of repetitions of the experiment required to verify
the JE grows exponentially with the size of the system. Consequently,

the JE rapidly turns unverifiable, for statistical reasons, even when
it correctly represents a property of the system. To check whether
this or more fundamental effects prevented the verification of the
JE, we have performed two tests suggested by one of the referees.
For the elastic indentation cases with ∣λ̇∣ = 1 and 10 m/s, we have
first computed the following quantity:

V =
⟨WJ⟩α − ΔF∗S

kBT
, (36)

where ΔF∗S = 0 corresponds to our cases. It is noted that large values
of this quantity indicate that the verification of the JE may be diffi-
cult, thus requiring larger statistics.17 We have obtained V ≈ 6 and
V ≈ 14 for ∣λ̇∣ = 1 and 10 m/s, respectively. This first test suggests
that the JE should be verifiable for ∣λ̇∣ = 1 m/s and that the outcome
should be closer to the JE prediction than for ∣λ̇∣ = 10 m/s. However,
we have not been able to verify the JE in either case. Moreover, the
estimation of the free-energy difference for ∣λ̇∣ = 1 m/s is worse than
that for ∣λ̇∣ = 10 m/s. This is illustrated in Fig. 9 in connection with
the second test, where we plot the estimated value of the free-energy
difference,

ΔF∗est
S (n) = −

1
β

ln(
1
n

n

∑
l=1

e−βWJ,l), (37)

as a function of the ensemble size n. For ∣λ̇∣ = 1 m/s, we find that
ΔF∗est

S gradually settles at ≈ − 0.16 pico-erg (and not at 0) as n grows
up to n = 1000. For ∣λ̇∣ = 10 m/s, ΔF∗est

S takes about −0.06 pico-erg,
which is thus closer to 0.

While in some cases improved statistics or statistical techniques
may solve the problem, in other cases, the predictions may be simply
incorrect. The latter seems to be the case regarding our numeri-
cal simulations of the plastic deformations, which the JE cannot
describe. In this context, it can be useful to consider Refs. 22 and
39, which refer to systems that, after a perturbation, by definition
cannot restore their original state.

It is, however, even more interesting to note that the JE may fail
even in the absence of the above extreme (irreversible) situations. In
the elastic cases, certain fluctuations of WJ produced by an external
intervention can never be observed despite being apparently allowed
by certain initial conditions. For instance, these fluctuations include
deformations of the crystal working against the action of the inden-
ter, which would translate into large negative values of WJ. Although
weighted with exceedingly low probabilities, these negative WJ val-
ues could give a substantial contribution as they are multiplied by

FIG. 9. Estimated values of the free-
energy difference associated with the
elastic indentation processes. The quan-
tity ΔF∗est

S defined by Eq. (37) is plotted
as a function of the ensemble size n,
using the data from the MD indenta-
tions with ∣λ̇∣ = 10 m/s (a) and 1 m/s
(b). The discontinuities in the values
of ΔF∗est

S (n) gradually decrease with
growing n, as expected.
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−β and exponentiated. However, a complete sampling of the canon-
ical ensemble would be needed, and that results unworkable. Even
when possible, in principle, it requires an infinite amount of time.
The fact is that the dynamics improperly explores the final canonical
equilibrium at temperature T and λ = ω. The trajectories sampled as
typical from the initial equilibrium ensemble are unsuitable to cor-
rectly span the range of typical values of the observables of interest
in the final equilibrium state.

These observations concern both elastic and plastic deforma-
tions occurring in the crystal. In the latter, energy is lost in the
unloading stage of the hysteresis cycle. In particular, plastic defor-
mations manifest the emergence of irreversible phenomena in the
system, within the reversible, fully conservative, classical mechani-
cal scheme of the Jarzynski theory. While this could, in principle,
be quantified and taken into account to restore the validity of the
JE, the limited exploration of the ensemble and the finite size effects
are exacerbated. Then, the fact that the system does not recover its
initial state directly implies, even in principle, not just in practice, a
violation of the JE: a violation that is not eased by any collection of
statistics, be it finite or infinitely large.

The notion that irreversible phenomena may violate the JE is
known, although the impact of irreversibility is not always disrup-
tive; see, e.g., Refs. 40–42. For instance, Ref. 7 notes that the JE fails
in chaotic dissipative systems,43 in active matter,44 and also for the
strongly irreversible systems of Refs. 22 and 39. Such scenarios, how-
ever, lie outside the framework of the JE. The question is whether
anything similar may happen within the JE framework. We show
that it does. In our indentation case irreversibility is an emergent
phenomenon of (reversible) Hamiltonian dynamics related not just
to the size of the system5 but also to the process being performed. It
is perhaps even more interesting that there is no need to reach such
degrees of irreversibility. All of our indentation processes violate the
JE, including the fully reversible elastic indentations.

To sum up, our main arguments highlight and clarify the
following:

1. It is impossible to verify the JE in indentation processes such
as ours, although they concern small systems fully complying
with the requirements under which the JE is formally derived.

2. The results depend on the work process because it is impos-
sible to sample the regions of phase space required by the
theory.

3. The JE does not compute, in general, the free-energy dif-
ference of the system; cf. Eq. (9). It computes the free-
energy difference of the system and environment together; cf.
Eq. (18).

4. Although in our investigation, the quantity WJ can be
identified with a mechanical or thermodynamic work, this
consideration is not universal.

5. Emergent, process-dependent plastic deformations of Hamil-
tonian systems with a fixed number of particles complying
with the JE framework violate the JE because the undeformed
state is not restored.

ACKNOWLEDGMENTS
L.R. acknowledges partial support from Ministero

dell’Università e della Ricerca (Italy), grant Dipartimenti di
Eccellenza 2018–2022 (Grant No. E11G18000350001). The work of

J.V. was supported by Ministerstvo Školství, Mládeže a Tělovýchovy
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