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Nonlinear Magneto-Quasistatic Simulation of Superconducting
Tapes With a − ψ Algebraic Formulation

Fabio Freschi 1, 2, Laura Savoldi 1, and Sofia Viarengo 1

1Department of Energy “Galileo Ferraris,” Politecnico di Torino, 10129 Turin, Italy
2School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia

The study of superconducting tapes requires specialized formulations to account for the high aspect ratio of the tapes and the
extremely high conductivity of the thin superconducting layer. This article presents a new formulation coupling the line integral of
the magnetic vector potential a defined in the whole domain to the stream function ψ defined on the nodes of the superconducting
layer. Results on two benchmarks show that the proposed a −ψ formulation is effective in solving problems where the currents are
limited to thin layers also in case of a strong material nonlinearity.

Index Terms— Algebraic formulation, conductor on round core (CORC), high-temperature superconducting (HTS), multi-scale,
nonlinear materials, stream function, superconducting tapes.

I. INTRODUCTION

H IGH-TEMPERATURE superconducting (HTS) materials
represent a new frontier in high-energy applications:

operating at elevated temperatures, when compared with
low-temperature superconductors, they are able to withstand
stronger magnetic fields and guarantee high transport current
with minimal loss of energy [1]. In this context, ReBCO coated
conductors are a promising choice which could fulfill both
technical and economical issues. ReBCO refers to composite
material based on rare-earth elements, available in thin tape
form in a layered structure, enveloped by a copper support
layer. In this work, Yttrium-based tapes, namely, YBCO tapes,
are considered (Fig. 1). The high tolerance of HTS tapes
to the tensile strength and compressive strain due to the
presence of the hastelloy substrate allows the development
of the conductor on round core (CORC) technology: the
tape is wounded around a central copper core, guaranteeing
mechanical and electrical isotropy [2], which makes them
suitable for high magnetic field applications. Due to the high
aspect ratio of the tape, between the extremely thin thickness
(from 40 to 100 µm) and the width, they can suitably be
represented with infinitely thin sheets [3]. Instead, when 3-D
models of the tapes are considered, objects are discretized with
volume elements (usually tetrahedra or hexahedra), with two
major drawbacks.

1) A large number of elements are required for the dis-
cretization, increasing the number of unknowns.

2) The elements are characterized by a large aspect ratio,
affecting the efficiency of the numerical solution [4].

This article presents a new formulation based on the cell
method that couples a 2-D discretization of the supercon-
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Fig. 1. Exploded view of the YBCO tape (not to scale).

TABLE I
THICKNESS AND CONDUCTIVITY OF THE DIFFERENT LAYERS

OF THE YBCO TAPE UNDER STUDY

ducting layer with a 3-D discretization of the surrounding
environment. Particular attention is devoted to the treatment
of the electrical resistivity, to avoid singularities of the final
system when it reaches the typical infinitesimal values of
superconductors.

II. MATERIAL MODELING

The YBCO tape under study is a second-generation coated
conductor made by different layers as shown in Fig. 1. The
tape width is 4 mm, whereas the thicknesses of the different
layers are reported in Table I along with the electrical con-
ductivities at 77 K [5]. The tape conductivity is homogenized
considering that all the layers are connected in parallel.
The linear conductivities, due to the copper (Cu) stabilizer,
the silver (Ag) layer, and the Hastelloy (Ha) substrate, are
averaged using their thicknesses δ as weights

σlin =
σCuδCu + σAgδAg + σHaδHa

δCu + δAg + δHa
. (1)
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Fig. 2. Primal and dual meshes for (a) 3-D and (b) 2-D discretization.

This value is then scaled to reference the conductivity to the
thickness of the superconductive (sc) YBCO layer

σ ′lin = σlin
δCu + δAg + δHa

δsc

=
σCuδCu + σAgδAg + σHaδHa

δsc
. (2)

Finally, the linear contribution is averaged with the nonlinear
conductivity of YBCO, assuming the conventional power law
with constant critical current Jc [6]

σsc(Jsc) =
Jc

E0

(
|Jsc|

Jc

)1−n

(3)

where E0 = 0.1 mV/m, Jc = 2.85 × 1010 A/m2, and
n = 30.5 [6]. By exploiting the electrical parallel between
the superconducting YBCO layer and the equivalent linear
materials, it is possible to apply the current divider rule. Due to
the scaling (2), the equivalent cross section of the two layers is
identical, so the current divider rule holds in terms of current
densities

Jsc =
σsc(Jsc)

σsc(Jsc)+ σ
′

lin
J (4)

where J is the total equivalent current density in the tape.
Equation (4) can be solved for different values of J obtain-
ing the homogenized characteristic σ = σsc(J ) + σ ′lin of
the tape.

III. DOMAIN DISCRETIZATION AND
INTEGRAL VARIABLES

Following the principles of the cell method [7], the domain
under study is subdivided into two complementary regions: the
conductive domain, with negligible thickness compared with
other dimensions, represented by 2-D layers, and the surround-
ing 3-D nonconductive domain. The latter is discretized with
a tetrahedral mesh G, while the former is discretized with a
surface triangular mesh Gs , created with the constraint that
the faces of Gs are also faces of G. From the tetrahedral mesh,
a barycentric dual mesh G̃ is derived [7], where dual nodes are
located in correspondence of the tetrahedra barycenters, dual
edges connect adjacent nodes and pass through the primal face
mid-points, and dual faces hinge around primal edges and are
created from a closed loop of dual edges, Fig. 2(a). Similarly,
a surface dual mesh G̃s is built starting from Gs , as shown
in Fig. 2(b).

A. a Formulation in the 3-D Domain

In the 3-D subdomain, the electromagnetic variables associ-
ated with the spatial entities of G and G̃ are [see also Fig. 2(a)]:
the line integral of the magnetic vector potential a along
primal edges, the magnetic flux b through primal faces, the
magneto-motive force h̃ along the dual edges, and the electric
current ĩ through the dual faces (the bold notation is used for
the vectors that collect these quantities). According to [8], the
following equations hold:

b = Ca (5)

h̃ =Mνb (6)

ĩ = C̃h̃ (7)

where C and C̃ are the face-to-edge incidence matrices defined
on G and G̃, respectively, and Mν is the constitutive reluctance
matrix. Using the identity CT

= C̃, the previous equations can
be combined in

CT MνCa = ĩ. (8)

Standard tree gauging can be applied to guarantee the unique-
ness of the solution [9].

B. ψ Formulation in the 2-D Domain

On the spatial entities of the surface mesh Gs and G̃s , the
following quantities are defined [see also Fig. 2(b)]: the stream
function ψ on primal nodes, the electric current i through
primal edges, the electric voltage ẽ along dual edges, and the
magnetic flux b̃ through dual faces. As detailed in [10], after
defining the classical constitutive resistance matrix Mρ and
using the edge-to-node Gs and dual face-to-edge C̃s surface
incidence matrices, it is possible to write the current field
equations

i = Gsψ (9)

ẽ =Mρ(i)i =Mρ0 i+ R (10)

C̃s ẽ = −
d
dt

b̃. (11)

In (10), the nonlinear Ohm’s law is linearized using the
fixed-point scheme with residual R and fixed point resistiv-
ity ρ0. Using the identity C̃s = GT

s , the previous equations
are combined in

GT
s Mρ0 Gsψ = −

d
dt

b̃−GT
s R. (12)

C. Coupling Terms

It is worth noting that the assignment of physical variables
to the space elements defined in Section III-B does not
follow the conventional association rules [7]. For example,
the stream function is associated with primal nodes instead of
the conventional assignment to dual nodes. In this way, the
total current in a conductor can be defined as the difference in
stream functions values using (9). The coupling (8) and (12)
requires to express the current through dual faces ĩ in terms of
ψ and the magnetic flux through the dual faces b̃ in terms of a.



FRESCHI et al.: NONLINEAR MAGNETO-QUASISTATIC SIMULATION OF SUPERCONDUCTING TAPES 9000204

Fig. 3. Graphical representation of the interpolation matrices. (a) Construc-
tion of T′. (b) Construction of T.

1) ψ − ĩ Relation: To map the vector of stream functions
ψ defined on the primal nodes to the corresponding vector
of stream functions defined on the dual nodes ψ̃ , two steps
are necessary. First, the dual grid is augmented by adding the
mid-edge nodes to the list of dual nodes [11]. In this way,
ψ̃ can be easily interpolated using the face-to-node incidence
matrix T and the edge-to-node incidence matrix G+s , where
all the entries are taken as positive, as shown in Fig. 3(a)

ψ̃ =

[
ψ̃n

ψ̃e

]
=

 1
3

T
1
2

G+s

ψ = T′ψ. (13)

The current vector through the dual edges of the surface mesh
is then obtained using the discrete gradient on the augmented
dual grid G̃s,aug

ĩ = PG̃s,augψ̃ = PCT
s,augT′ψ (14)

where the matrix P projects the currents defined on the 2-D
surface mesh into the corresponding currents defined on the
3-D mesh. From a geometrical point of view, P is the matrix
that maps the edges of the 2-D mesh into the edges of the 3-D
mesh.

2) a − b̃ Relation: The mapping between the magnetic
vector potential circulations a to the magnetic flux densities
b̃ is obtained in a similar fashion. Initially, the flux densities
through the faces of the 3-D mesh that belong also to the
2-D mesh are selected using the selection matrix S. Then the
flux through a triangular face is divided in three contributions
associated with the dual faces, as shown in Fig. 3(b), using
again the face-to-node incidence matrix T

b̃ =
1
3

TT Sb =
1
3

TT SCa. (15)

D. Final Equations

Combining the equations of the 3-D and 2-D domains (8)
and (12) with the coupling (14) and (15), the final system
becomes

M
d
dt

[
a
ψ

]
+K

[
a
ψ

]
=

[
0
0

]
+

[
0

−GT
s R

]
(16)

where

M =

[ 0 0
1
3

TT SC 0

]
, K =

[
CT MνC −PCT

s,augT′
0 GT

s Mρ0 Gs

]
.

The source term is set by suitable Dirichlet boundary condi-
tions on a (external field) or ψ (transport current).

Fig. 4. Geometry of the static benchmark with current flux tubes’ subdivision
(not to scale).

The nonlinear transient problem is solved using the
θ -method (here θ = 0.5) with a fixed time step. At each time
step, a fixed-point nonlinear problem is solved. This coupled
scheme exploits the initial factorization of the solution matrix
that is then used either for the nonlinear iterations or for the
time stepping scheme.

The choice of the initial conductivity σ0 = (1/ρ0) is crucial
for the convergence of the nonlinear iterations. A prelimi-
nary study, not reported here for brevity, showed that using
J = 1.2 Jc in (4) provides a good convergence in all the
benchmarks. Another key strategy for the convergence is the
under-relaxation of the update of the residual term Rk . In fact,
due to the large variation in the conductivity values of YBCO,
the residual term is subject to large variations, especially when
the solution is far from the convergence at the initial iterations.
For this reason, a dumping factor α = 10−4 is used to update
the residual

Rk ← Rk−1 + α(Rk − Rk−1). (17)

IV. RESULTS

A. Verification With a Nonlinear Static Benchmark

The first benchmark is used to test the behavior of the
proposed formulation with the high nonlinearity of the con-
ductivity (3). It consists of a circular ring made by YBCO
tape having the inner and outer radii equal to Ri

= 50 mm and
Ro
= 54 mm, respectively. A transport current I0 ranging from

0.1 to 1.1 times the critical current Ic is imposed. The mesh
consists of ∼207k tetrahedra (surrounding air) with average
quality index 0.7430, and ∼24k triangles (superconducting
tape) with average quality index 0.9963. The average number
of nonlinear iterations to reach a relative error on the solution
vector below 10−6 is 129 for a total simulation time of 28.1 s
(factorization: 5.6 s, nonlinear iterations: 22.5 s). Timings refer
to a pure MATLAB implementation of the algorithm, running
on a workstation equipped with two Intel Xeon Gold 6154
18-core at 3.0 GHz and 512 GB of RAM.

The reference solution of this benchmark can be obtained
by subdividing the ring in Nt flux tubes (see Fig. 4), where
the nonlinear conductance of each tube is

Gk =
1

2π
δscσ(J ) log

(
ro

k

r i
k

)
. (18)

The current in each flux tube ik is calculated by solving the
system of nonlinear equations

ik =
Gk(ik)∑Nt

j=1 G j
(
i j

) I0 k = 1, . . . , Nt . (19)

Fig. 5 shows comparison of the power losses calculated with
the a − ψ formulation with those calculated with (19) using
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Fig. 5. Power losses for the circular ring static benchmark.

Fig. 6. 2-D mesh of the single-layer three-tape CORC cable embedded in
the 3-D mesh.

Fig. 7. Comparison of the computed ac losses with measurements [12] and
H -formulation [13].

Nt = 20. A perfect agreement can be observed, showing
the good convergence of the nonlinear scheme also when the
transport current is in the order of the critical one.

B. Validation With a Nonlinear Transient Benchmark

The second benchmark is a single-layer, three-tape CORC
cable. The three tapes are wounded around a former (not
included in the simulation) having 4.76 mm diameter with
a pitch of 40 mm [12]. The mesh, shown in Fig. 6,
consists of ∼67k tetrahedra with average quality index
0.7631, and ∼7k triangles with average quality index 0.9976.
The external excitation is a 50 Hz uniform magnetic flux
density, orthogonal to the cable axis, with intensity ranging
from 10 to 90 mT. The transient simulation is run for three
periods, with a fixed step size of 0.1 ms. The numerical results

are compared with the experimental measurements reported
in [12] and the simulation results obtained in [13] using an
H -formulation in terms of ac losses per unit length. Losses
are computed in the last of the three periods (60 ms) simulated.
The average simulation time for each solution is 1.13 h. The
results of Fig. 7 show a good agreement for all the values of
applied magnetic field up to 60 mT. Beyond this value, heating
effects that lead to the reduction in the value of Jc are reported
in [12], with a consequent reduction in the measured losses.

V. CONCLUSION

In this article the a − ψ formulation in terms of algebraic
quantities is presented. The coupling between the 3-D and
2-D equations makes it possible to keep the mesh quality also
in case where the aspect ratio is critical. The formulation is
verified with a semi-analytical problem and validated versus
measurements available in the literature. The results show that
the method is effective and efficient in solving problems with
superconductive tapes also in case of strong nonlinearities.
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