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Abstract5

We study fast-slow versions of the SIR, SIRS, and SIRWS epidemiological models. The6

multiple time scale behavior is introduced to account for large differences between some of7

the rates of the epidemiological pathways. Our main purpose is to show that the fast-slow8

models, even though in nonstandard form, can be studied by means of Geometric Singular9

Perturbation Theory (GSPT). In particular, without using Lyapunov’s method, we are able to10

not only analyze the stability of the endemic equilibria but also to show that in some of the11

models limit cycles arise. We show that the proposed approach is particularly useful in more12

complicated (higher dimensional) models such as the SIRWS model, for which we provide a13

detailed description of its dynamics by combining analytic and numerical techniques.14

Keywords: fast-slow system, epidemic model, non-standard form, entry-exit function, bifurca-15

tion analysis, numerical continuation.16

1 Introduction17

Epidemic modelling has grown from the pioneering 1927 article by Kermack and McKendrick [21]18

into a wide body of theory and applications to several diseases [1, 14, 19, 9, 28], used also for19

developing appropriate control strategies.20

The model by Kermack and McKendrick [21] was of S-I-R type, meaning that individuals are21

classified as Susceptibles (S), Infected (I) or Recovered (R), and that the only possible transitions22

are S → I (new infection) and I → R (recovery with permanent immunity). As that model does not23

consider new births or deaths (other than because of the disease), it is appropriate for an epidemic24

that develops on a time-scale much faster than demographic turn-around. The epidemic SIR model25

was extended by Soper who added [34] (constant) birth and death rates to the model, obtaining the26

so-called SIR endemic model, that has been extensively analysed in the following decades, especially27

to investigate how to explain the apparent periodicities in the notifications of childhood diseases28

[33, 20]. The SIR endemic model can be seen as the basis, over which more complex and realistic29

models have been built.30
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The difference in time-scales between epidemic spread and demographic turnaround has been31

observed by several authors. Smith [33] introduced a small parameter ε as the ratio between the32

average lengths of the infection period and of life; he proved that, if the contact rate is a sinusoidal33

function of period 1 and ε is sufficiently small, a subharmonic bifurcation of a 2-periodic stable34

positive solution can occur. Andreasen [2] showed that, for ε small enough, the endemic equilibrium35

is always stable in a certain class of age-dependent SIR models. Diekmann, Heesterbeek and Britton36

[9] have exploited the fact that ε is a small parameter in an informal argument about the minimum37

community size in which a measles-like infection can persist. However, to our knowledge very few38

authors have systematically used geometric singular perturbation theory as a tool to investigate39

properties of epidemic models. We only know of the paper by Rocha et al. [31] that used singular40

perturbation methods for the analysis of a SIRUV model for a vector-borne epidemic.41

Our main objective in this paper is to show that under certain assumptions of the system pa-42

rameters (namely the transition rates between states), tools from Geometric Singular Perturbation43

Theory (GSPT) are suitable to describe the intricate dynamics that such models exhibit due to the44

presence of multiple time scales.45

The first part of the paper is devoted to the classical SIR and SIRS epidemic models, that we46

analyse in the limiting case of ε → 0. For such models, it is well known that, when R0 > 1, there47

exists a unique endemic equilibrium, which is globally asymptotically stable.48

49

In the second part, we instead consider a model, named SIRWS, introduced for pertussis in [27],50

and partially analysed in [4]. In the model it is assumed that immunity wanes in two stages: after51

recovering from infection individuals are totally immune, but then immune memory starts to fade:52

if they are challenged by the pathogen when they are in the stage of partial immunity, they recover53

a complete immunity; otherwise, they completely lose immunity, and re-enter the susceptible stage.54

Our main results can be summarized as follows:55

� For the fast-slow SIR and SIRS models we capture the transient behaviour from an initial intro-56

duction of the infection, and show that, when R0 > 1, the dynamics leads, in the slow time-scale,57

to a neighbourhood of the endemic equilibrium, see Sections 3.1 and 3.3. Then convergence to58

the equilibrium can be established by local methods.59

� For the fast-slow SIRWS model, in particular, we confirm the result obtained numerically in [4]60

that stable periodic epidemic outburst can exist. Moreover, we give a detailed description of the61

system parameters for which such behaviour occurs and the corresponding time scales involved,62

see Section 3.4.63

Our mathematical analysis is largely based on GSPT, see more details in Section 2.64

In such a context, it is worth mentioning that the models we study are not immediately, nor65

globally, in a standard singularly perturbed form, but in each model the fast-slow decomposition66

appears only in specific regions of the phase space, similarly to what is considered in e.g. [22, 25].67

As it is usually the case in such biological models, the main difficulty for analysis is due to the68

loss of normal hyperbolicity of the critical manifold. To overcome this obstacle, we use here the69

so called entry-exit function, as presented by De Maesschalck and Schecter [6], which gives details70

regarding the behaviour of an orbit in regions where the critical manifold changes its stability71

properties. Moreover, for the modified SIRWS system we present a combination of analytical and72

numerical studies regarding the dependence of the dynamics with respect to some of the parameters,73

and compare our results with the ones obtained in [4]. In particular, we focus on the interplay74
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between life expectancy (or birth/death rate) and boosting rate, and on how different values of75

these parameters can give rise to damped or sustained oscillations. Finally, the novelty of our76

analysis is not confined to the usage of GSPT in the context of the well-known SIR model, but we77

also show that our techniques can be potentially used in higher dimensional systems (as the SIRWS78

model). This is rather important since the well-studied SIR and SIRS models often depend on79

Lyapunov’s method to show stability of trajectories [29], and it is known that Lyapunov functions80

are difficult to obtain. Our GSPT analysis does not require global Lyapunov functions.81

The remainder of this paper is arranged as follows: in Section 2 we provide some necessary82

mathematical preliminaries which will be later used for the analysis of the models. Afterwards,83

we present in Section 3 the mathematical analysis of the SIR, SIRS, and the SIRWS epidemiolog-84

ical models. We finish in Section 4 with a summary and an outlook of open-problems regarding85

modelling and analysis of epidemiological models with fast-slow dynamics.86

2 Preliminaries87

In the main part of this paper we study three compartment models whose dynamics evolve at distinct88

time scales. Therefore, we now provide a brief description of Geometric Singular Perturbation89

Theory (GSPT), and in particular of the entry-exit function [6], which is fundamental in our90

analysis.91

2.1 Fast-slow systems92

The term “fast-slow systems” is commonly used to model phenomena which evolve on two (or93

more) different time scales [3, 24]. Often such behaviour can be described by a singularly perturbed94

ordinary differential equation (ODE), that is95

εẋ = f(x, y, ε),

ẏ = g(x, y, ε),
(1)

where x = x(τ) ∈ Rm, y = y(τ) ∈ Rn, with m,n ≥ 1, are the fast and slow variables respectively,96

f and g are functions of class Ck, with k as large as needed, and 0 < ε � 1 is a small parameter97

which gives the ratio of the two time scales. Here the overdot ( ˙ ) indicates d
dτ . The system (1) is98

formulated on the slow time scale τ . When studying fast-slow systems we often define a new fast99

time t = τ/ε with which (1) can be rewritten as100

x′ = f(x, y, ε),

y′ = εg(x, y, ε),
(2)

where now the prime ( ′ ) indicates d
dt . Clearly, since we simply rescaled the time variable, sys-101

tems (1) and (2) are equivalent for ε > 0.102

Fast-slow systems given by (1)-(2) are said to be in standard form. In a more general context,103

it is possible to have a fast-slow system given by104

z′ = F (z, ε), (3)

where the time scale separation is not explicit. In fact, many biological models [22, 25], among105

others, and in particular the models we study in this paper are in such non-standard form.106
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The main idea of GSPT is to consider (1)-(2) in the limit ε → 0 and then use perturbation107

arguments to describe the dynamics of the full fast-slow system. The motivation behind this108

strategy is that one expects that the analysis of the limit systems (ε = 0) is simpler compared to109

the analysis of (1)-(2) with ε > 0.110

Taking the limit ε→ 0 in systems (1) and (2) yields, respectively111

0 = f(x, y, 0),

ẏ = g(x, y, 0),
(4)

and112

x′ = f(x, y, 0),

y′ = 0,
(5)

where (4) is called reduced subsystem (or slow subsystem), and (5) is called the layer equation (or
fast subsystem). We note that the reduced subsystem describes a dynamic evolution constrained
to the set

C0 = {x ∈ Rm, y ∈ Rn | f(x, y, 0) = 0},

which is called the critical manifold. On the other hand, we note that C0 defines the set of equilib-113

rium points of the layer equation.114

Fenichel’s theorems, which are the basis of GSPT, require certain assumptions on C0. Namely, we115

suppose there exists an n-dimensional compact submanifoldM0, possibly with boundary, contained116

in C0. Moreover, the manifoldM0 is assumed to be normally hyperbolic and locally invariant, which117

mean, respectively, that the eigenvalues of the Jacobian Dxf(x, y, 0)|M0 are uniformly bounded118

away from the imaginary axis, and that the flow can only leave M0 through its boundary. In such119

a setting, the following can be proved (see [10]):120

Theorem 2.1. For ε > 0 sufficiently small, there exists a manifold Mε, called slow manifold,121

which lies O(ε) close to M0, is diffeomorphic to M0 and is locally invariant under the flow of (2).122

We note that the manifold Mε is usually not unique, but all the possible choices lie O(ε−K/ε)-123

close to each other, for some K > 0. Therefore, in most cases the choice of slow manifoldMε does124

not change the analytical and numerical results.125

With the usual definitions for stable and unstable manifolds (see, for example, equations (6.3)
in [24])

W s(M0) = {(x, y) : φt(x, y)→M0 as t→ +∞},
W u(M0) = {(x, y) : φt(x, y)→M0 as t→ −∞},

where φt denotes the flow of system (5), Fenichel’s second theorem ensures that W s(M0) and126

W u(M0) persist under perturbation as well:127

Theorem 2.2. For ε > 0 sufficiently small, there exist manifolds W s(Mε) and W u(Mε) which lie128

O(ε) close to and are diffeomorphic to W s(M0) and W u(M0) respectively, and are locally invariant129

under the flow of (2).130

In practical terms, Fenichel’s theorems show that for ε > 0 sufficiently small, the dynamics of131

(1)-(2) are a regular perturbation of the limit dynamics (4)-(5) within a small neighbourhood of132

the critical manifold.133
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When the manifold M0 is not normally hyperbolic, some more advanced tools, such as the134

blow-up method (see [18]), may need to be invoked. All of the systems we analyse below have one135

non-hyperbolic point in the biologically relevant region. Thus, in order to describe the relevant136

dynamics we need to use extra techniques besides Fenichel’s theorems. Due to the properties of the137

models to be studied, it turns out that the entry-exit function [5, 6] is suitable.138

2.2 Entry-exit function139

The entry-exit function gives, in the form of a Poincaré map between two sections in phase space,140

an estimate of the behaviour of the orbits near the point in which the critical manifold changes141

stability (from attracting to repelling), in a class of singularly perturbed systems. Intuitively, the142

result can be interpreted as a “build up” of repulsion near the repelling part of the slow manifold,143

which needs to compensate the attraction which was built up near the attracting part before the144

orbit can leave an O(ε) neighbourhood of the critical manifold.145

More specifically, this construction applies to systems of the form146

x′ = f(x, y, ε)x,

y′ = εg(x, y, ε),
(6)

with (x, y) ∈ R2, g(0, y, 0) > 0 and sign(f(0, y, 0)) = sign(y). Note that for ε = 0, the y-axis consists147

of normally attracting/repelling equilibria if y is negative/positive, respectively.

y

x

x = x0

y0 pε(y0)

Figure 1: Visualization of the entry-exit map on the line x = x0

148

149

Consider a horizontal line {x = x0}, which is O(ε)-close to the y-axis. An orbit of (6) that150

intersects such a line at y = y0 < 0 (entry) re-intersects it again (exit) at y = pε(y0), as sketched151

in Figure 1. De Maesschalck [5] shows that, as ε → 0, the image of the return map pε(y0) to the152

horizontal line x = x0 approaches p0(y0) given implicitly by153 ∫ p0(y0)

y0

f(0, y, 0)

g(0, y, 0)
dy = 0. (7)

In the following sections, the entry-exit function p0 plays a crucial role in the analysis of three154

different epidemiological models. In particular, the analysis of the SIRWS model relies on a multi-155

dimensional version of the entry-exit map, provided in a recent paper by Hsu and Ruan [16].156

3 Analysis of the SIR, SIRS and SIRWS models157

In this section we analyse three different epidemiological models, giving a short interpretation of the158

equations and then proceeding to use the techniques of GSPT, especially the entry-exit function,159
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to deduce information about the behaviour of each one.160

3.1 SIR model161

We consider a SIR compartment model (presented in a similar form in [14] and with the same162

underlying dynamics in [21]) as depicted in Figure 2 and with corresponding equations given as in163

(8)164

S I

R

β
ε I

γ
ε

ξ

ξ

ξ

ξ

Figure 2: Flow diagram for (8).

Ṡ = ξ − ξS − β

ε
SI,

İ =
β

ε
SI − γ

ε
I − ξI,

Ṙ = −ξR+
γ

ε
I,

(8)165

166

where S(τ), I(τ), R(τ) denote the susceptible, infected and recovered proportion of the population167

respectively. Since the (S, I,R) variables represent fractions of a population, they are assumed to168

be non-negative for all τ ≥ 0. Observe that the non-negative octant of R3, to be denoted by R3
≥0,169

and in particular the set
{

(S, I,R) ∈ R3
≥0 | 0 ≤ S + I +R ≤ 1

}
, are invariant under the flow of (8).170

The parameter ξ in (8) refers to the birth rate and is assumed to be equal to the death rate.171

Furthermore, as depicted in Figure 2, we also assume that all individuals are born susceptible.172

Similarly, the parameter β and γ refer, respectively, to the rates at which susceptible individuals173

are infected and the latter are recovered. In our analysis the parameters ξ, β and γ are of order174

O(1). Note that we introduce a small positive parameter 0 < ε � 1, which gives rise to the175

difference in magnitude between the large infection rate β/ε, the large recovery rate γ/ε and the176

birth/death rate. Such a difference represents a highly contagious disease with a short infection177

period.178

As stated above, S(τ), I(τ) and R(τ) represent proportions of the population. Consistently the179

plane {S + I + R = 1} is invariant for system (8) . Hence, we can assume R = 1 − S − I, which180

allows us to reduce (8) to181

Ṡ = ξ − ξS − β

ε
SI,

İ =
β

ε
SI − γ

ε
I − ξI.

(9)

By rescaling time, system (9) can also be written as182

S′ = εξ(1− S)− βSI,
I ′ = I(βS − γ − εξ).

(10)

Note that system (10) is a fast-slow system in non-standard form, as it often occurs in biological183

models [22, 25]. Later we perform a convenient rescaling that brings (10) into a standard form.184

The corresponding critical manifold is the set C0 = {(S, I) ∈ R2 | I = 0}, and the slow flow185

along it is given by Ṡ = ξ(1− S), which implies flow towards the point S = 1. In the ε→ 0 limit,186

we recover from (10) the basic dynamics for the (S, I) couple in a standard SIR system (see [14]),187
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namely188

S′ = −βSI,
I ′ = I(βS − γ).

(11)

In particular, it follows from linearization of (11) along C0 that the critical manifold is attracting189

for S < γ
β , repelling for S > γ

β , and loses normal hyperbolicity at S = γ
β .190

From here on, we assume the basic reproduction number to be R0 = β/γ > 1. This means that191

the disease is able to spread through the population. In particular, as stated in the well known next192

Lemma [15, 21], the previous assumption implies that, for every initial condition S(0) = S0 > 1/R0,193

there exists a unique S∞ < 1/R0 such that a trajectory of (11) with initial conditions (S0, I0)194

converges towards (S∞, 0) as t→ +∞.195

Lemma 1. Γ(S, I) = γ ln(S)− β(S + I) is a constant of motion for system (11), and all its orbits196

in the first quadrant are heteroclinic to two points on the S-axis.197

I

1
S

S0

1
R0S∞

Γ(S, 0) S
1

(S0, I0)

I = εξ(1−S)
βSS = 1

R0

S∞

O(ε)︷︸︸︷

Figure 3: Left: function Γ(S, 0), intersection with horizontal lines give the starting and ending
points of a heteroclinic orbit of the layer equation (11). Right: qualitative comparison between
perturbed and unperturbed SIR systems in fast time scale. In red we show an orbit of (11) given
by Γ(S, I) = Γ(S0, I0) and in blue a small perturbation of it corresponding the related orbit of (10).

From Lemma 1 we define S∞ ∈ (0, 1
R0

) to be the unique non-trivial solution of the equation198

Γ(S, 0) = Γ(S0, 0) where S0 >
1
R0

.199

For future use, let us define the map200

Π1 : {S ∈ (1/R0, 1]} → {S ∈ (0, 1/R0)} (12)

that maps S0 into S∞, and which is induced by the flow of (11), or is equivalently given by Γ.201

So far, we know that the solutions of (10) away from the critical manifold are closely given by202

Γ(S, I) as shown in the right side of Figure 3. Therefore, the next step is to focus on a small region203

close to C0. That is, for the analysis that follows, we assume I to be O(ε)-small. In particular,204

and following Lemma 1, if we choose I0 ∈ O(ε2), we have an explicit relation (up to a O(ε) error)205

between S∞ and S0, namely, Γ(S∞, 0) ≈ Γ(S0, I0) = Γ(S0, 0) +O(ε).206

Considering the signs of the derivatives in the perturbed system (10), we see that orbits spiral207

counterclockwise. Moreover, system (10) has a two equilibria, namely (S, I) = (1, 0) and one208
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which is O(ε)-close to the point (1/R0, 0), as shown in Figure 4, given by (S, I) = (SE , IE) :=209

( 1
R0

+ ε ξβ , αε(SE)), where210

αε(S) =
εξ(1− S)

βS
(13)

is obtained from the nullcline for S in (8). Regular perturbation arguments imply that an orbit211

of the perturbed system (10), starting from a point (S0, I0) with I0 ∈ O(ε) and S0 > SE , follows212

O(ε)-closely from below, since the O(ε) contribution is negative, a power level of Γ(S, I), until it213

reaches the nullcline of S given by I = εξ(1−S)
βS , as shown on the right half of Figure 3, at a point214

with S coordinate O(ε)-close to S∞.

I

(SE , IE)

1 S

I = αε(S)

Ṡ < 0, İ > 0Ṡ < 0, İ < 0

S′ < 0, I ′ < 0S′ > 0, I ′ > 0

O(ε) {

Figure 4: Schematic representation of the orbits of (10) on the two time scales. Red: fast orbit;
blue: slow orbit; green: non-hyperbolic point.

215

It is also well known [15, 29] that the endemic equilibrium (SE , IE) is globally asymptotically216

stable, as stated below.217

Theorem 3.1. Consider (10). All trajectories with initial conditions 0 ≤ S(0) ≤ 1, 0 < I(0) ≤ 1218

with S(0) + I(0) ≤ 1 converge asymptotically towards the (endemic) equilibrium point (SE , IE).219

The theorem can be proved using the Lyapunov function220

L1(S, I) = S + I − SE ln(S)− IE ln(I)− CE , (14)

with CE = SE + IE − SE ln(SE) − IE ln(IE), together with Lasalle’s invariance principle [26]; or221

with [29, 32]222

L2(S, I) = I − IE − IE ln(I/IE) +
β

2(2µ+ γ)
(S + I − SE + IE)2. (15)

Here we are going to describe how solutions approach the equilibrium, for ε > 0 small. Once223

it is shown that solutions are in a neighbourhood of the equilibrium, local methods can be used to224

prove convergence to the equilibrium. Such an approach will be used for the other models as well.225
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Our motivation is to present a method of analysis that does not depend on finding a Lyapunov226

function, which is, in general, a difficult task.227

A convenient step, which is justified by the following Lemma, is to bring (10) to a standard228

form, in order to then apply the entry-exit formula.229

Lemma 2. Consider (10) and an initial condition (S0, I0) with 0 < S0 ≤ γ
β −∆ < SE and I0 > 0,230

where ∆ ∈ O(1) and I0 ∈ O(ε). Let 0 < ∆1 < ∆, ∆1 ∈ O(1), and (S∗, I∗) denote the point231

where the corresponding trajectory intersects the line ` =
{

(S, I) ∈ R2 |S = γ
β −∆1

}
. Then, for232

sufficiently small ε > 0 we have that I∗ is exponentially small. Furthermore, the first point at which233

the trajectory intersects the line πε =
{

(S, I) ∈ R2 | I = I0ε
k
}

satisfies S = S0 + O(ε log(ε)) for234

ε→ 0.235

Proof. We first note that the assumption on S0 simply means that S0 is bounded away from SE236

uniformly in ε. For the proof it is convenient to define new coordinates (S, v) by (S, I/ε) = (S, v).237

Then (10) becomes238

S′ = ε(ξ(1− S)− βSv),

v′ = v(βS − γ − εξ).
(16)

A trajectory of (16) with initial condition (S0, v0) with S0 < γ
β and v0 = I0/ε ∈ O(1) quickly

converges towards and stays O(ε)-close to the S-axis for some time. We know from the reduced
system that S′ > 0 on the critical manifold, this guarantees that the trajectory crosses the line ` in
a small neighbourhood of the critical manifold. Let T denote the (slow) time it takes the trajectory
to reach `. During such time, βS − γ ≤ −β∆1 < 0 and therefore

v′ ≤ −Kv =⇒ v

(
T

ε

)
≤ v0ε

−K T
ε =⇒ I

(
T

ε

)
≤ εv0ε

−K T
ε ,

with K = β∆1 > 0.239

The last claim follows immediately from v(t) ≤ v0ε
−Kt.240

Note in particular from Lemma 2 that, before the trajectory intersects `, its corresponding241

I-coordinate is eventually O(ε2), which is what we need for the forthcoming arguments.242

3.2 Applying the entry-exit function243

We are now going to apply the entry-exit formula to describe the way trajectories pass near the244

non-hyperbolic point (S, I) = (1/R0, 0).245

From Lemma 1 and 2, we can consider an initial point for system (10) with S0 < 1/R0 and246

I0 = O(ε2). Next, we apply a change of variables defined by247

S =
u+ 1

R0
, I = εv, (17)

which brings the system to a standard form, with u slow and v fast, that is248

v′ = γ(u− εξ)v,
u′ = ε(ξ(R0 − u− 1)− βv(u+ 1)).

(18)
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So, using the notation of Section 2.2,249

f(v, u, ε) = γ(u− εξ),
g(v, u, ε) = ξ(R0 − u− 1)− βv(u+ 1),

(19)

which satisfy the hypotheses of the entry-exit function. Indeed, S < 1 implies u < R0 − 1, which250

means g(0, u, 0) > 0 in the relevant region. Moreover, f(0, u, 0) = γu, which clearly has the same251

sign as u.252

Since v0 = I0/ε = O(ε), we can now apply the entry-exit formula, which gives p0(u0) as the253

only positive solution of254 ∫ p0(u0)

u0

u

R0 − 1− u
du = 0. (20)

The integral (20) can be solved explicitly, giving p0(u0) as the positive solution of255

−p0(u0) + u0 − (R0 − 1) ln

(
R0 − 1− p0(u0)

R0 − 1− u0

)
= 0. (21)

We now change back to the original (S, I) variables, and introduce, beyond Π1 defined in (12),256

the map257

Π2 : {S ∈ (0, 1/R0)} → {S ∈ (1/R0, 1)} (22)

defined by
p0(u0) + 1

R0
, where u0 = R0S0−1. Combining together the previous results, we can state258

the following:259

Proposition 1. Consider the solution of (9) with an initial condition S0 > 1/R0 and I0 = O(ε2).
Then the orbit {Sε(t), Iε(t), t ∈ [0, T ]} converges for ε→ 0 to the union of the orbit under the fast
flow

{(S, I) : Γ(S, I) = Γ(S0, 0), Π1(S0) ≤ S ≤ S0}

and under the slow flow
{(S, 0) : Π1(S0) ≤ S ≤ Π2(Π1(S0))}

where T is such that the solution of S′ = ξ(1− S), S(0) = Π1(S0) satisfies S(T ) = Π2(Π1(S0)).260

The limit orbit is sketched in Figure 5. Considering the composition of Π1 and Π2 gives the
Poincaré map

Π : {S ∈ [SE , 1), I = I0} → {Π2(Π1(S)) ∈ [SE , 1), I = I0}.

In this notation, we define P0 = Π1(S0), S1 = Π2(P0) = Π(S0). These correspond, in the
u-coordinate, to

u0 = R0P0 − 1 ≈ R0S∞ − 1, p0(u0) = R0S1 − 1.

We rewrite (21) as

P0 − S1 −
(

1− 1

R0

)
ln

(
1− S1

1− P0

)
= 0.

Which means that S1, the exit point, is the only root greater than P0 of261

F (x) = x− P0 +

(
1− 1

R0

)
ln

(
1− x
1− P0

)
. (23)
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I = I0
S1P0

S0

S

I
Π1

Π2

(SE , IE)

Figure 5: Sketch of the fast and slow dynamics defining the maps Π1 and Π2. The fact that S1 < S0

is shown below.

It is clear that when the trajectory is in a neighbourhood of (S1, I0), as implied by the entry-262

exit map, one can reapply Proposition 1, obtaining P1 = Π1(S1) (reached through the fast flow),263

S2 = Π2(P1) (slow flow), and so on, obtaining two sequences264

S0, S1 = Π2(P0), . . . , Sn = Π2(Pn−1), . . . P0 = Π1(S0)), . . . , Pn = Π1(Sn), . . . (24)

Lemma 3. The sequence {Sn} is decreasing and bounded below by 1/R0; the sequence {Pn} is265

increasing and bounded above by 1/R0.266

Proof. We recall S1 = Π2(P0) = Π(S0), so if, for any S0 ∈ (1/R0, 1), such value is smaller/greater267

than S0, {Sn} is decreasing/increasing.268

We notice that Π(S0) < S0 if and only if Π2(P0) < Π−1
1 (P0), where Π−1

1 (P0) > P0 is the only such269

root of270

G(x) = x− P0 +
1

R0
ln

(
P0

x

)
, (25)

which comes from Γ(x, 0) = Γ(P0, 0); we recall that Γ describes the trajectories of the layer equation.271

The functions F and G are sketched in Figure 6.272

1

F (x)

1

S1P0 P0

G(x)

Figure 6: Sketch of the functions F and G, which implicitly define Π2 and Π−1
1 , respectively.

Then, since G is increasing for x > 1/R0,

Π2(P0) < Π−1
1 (P0) ⇐⇒ G(Π2(P0)) < 0.

The fact that S1 < S0 can be shown as a particular case of the following, more general propo-273

sition, by taking a = P0, b = 1/R0, x∗ = S1.274
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Lemma 4. Let 0 < a < b < 1, F (x) = x − a + (1 − b) ln( 1−x
1−a ), G(x) = x − a + b ln(ax ). Let275

x∗ ∈ (a, 1) be the only zero greater than a of F . Then G(x∗) < 0.276

Proof. We use the auxiliary function H(x) = F (x) + b
1−bG(x), which, under the hypotheses, is

decreasing for x ∈ (0, 1). Next we have that H(a) = F (a) + b
1−bG(a) = 0 which implies

0 > H(x∗) = F (x∗) +
b

1− b
G(x∗) =

b

1− b
G(x∗) =⇒ G(x∗) < 0.

277

S0S1

S2P1

P0

I = αε(S)

S

S = SE

Figure 7: αε(S) = O(ε); the red parts of the orbit are fast for both variables, the blue parts are
fast for I, slow for S.

Since Π1 is a decreasing function, from the fact that {Sn} is decreasing, it follows that {Pn} is278

increasing.279

Proposition 2. The sequences {Sn} and {Pn} defined in (24) both converge to 1/R0.280

Proof. The convergence can be shown reasoning by contradiction, for example by looking at the281

sequence Si. We know it is decreasing, and bounded below by 1/R0, so if it is not converging282

to this value, it must be converging to some other value Slim > 1/R0. But if this is the case,283

Π(Slim) < Slim, which contradicts the nature of Slim.284

Completely analogously we can see that Pi → 1/R0.285

Extending Proposition 1, one can easily show that, if S0 > 1/R0 and I0 = O(ε2), the orbits286

{Sε(t), Iε(t), t ∈ [0, T ]} for any T converge for ε→ 0 to a finite union of orbits (under the fast flow)287

from (Sn, 0) to (Pn, 0), and slow flows on the S-axis from (Pn, 0) to (Sn+1, 0).288

The same can be shown for any initial condition, since starting from any (S0, I0) with I0 > 0,289

the solutions will approach a point (S∞, 0) with S∞ < 1/R0, so that setting P0 = S∞, one can290

repeat the above argument.291

What can we say of the orbits {Sε(t), Iε(t)} for ε small but fixed as t→∞? When 1/R0−Pn =292

O(ε), the argument of Lemma 2 does not work. Hence, we cannot say, and indeed it is no longer293

true, that I(t) becomes O(ε2) afterwards, and we cannot apply the entry-exit Lemma as above.294

However, the previous argument shows that {Sε(t), Iε(t)} reaches an ε-neighbourhood of the295

equilibrium (SE , IE). Linearization at the equilibrium then shows that all trajectories of (10)296

starting in the set {(S, I) ∈ R2 |S ≥ 0, I > 0, S + I ≤ 1} converge towards (SE , IE), as already297

known (Theorem 3.1). This analysis provides an alternative proof, valid for ε > 0 sufficiently small.298
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Biologically, the above analysis tells us that between two consecutive peaks of infection there is299

a long (O(1/ε)) time during which the fraction of infected population is exponentially small. On the300

other hand, the duration of high infected portion of the population is rather small (it occurs on the301

fast time scale). Ultimately, however, under the setting of this section the only possible asymptotic302

outcome is convergence towards the endemic equilibrium (SE , IE) via damped oscillations.303

3.3 SIRS model304

We now consider a SIRS compartment model. The SIRS model is a slight modification of the SIR305

model and thus we keep the same notation. The SIRS model is given by the following system:306

S I

R

β
ε I

γ
ε

δ

Figure 8: Flow diagram for (26).

Ṡ = −β
ε
SI + δR,

İ =
β

ε
SI − γ

ε
I,

Ṙ =
γ

ε
I − δR.

(26)307

308

309

In this model there is no birth nor death, so the population remains constant. The small310

positive parameter 0 < ε � 1 gives rise to the difference in magnitude between the large infection311

rate β/ε, the large recovery rate γ/ε and the rate of loss of immunity δ. This difference models312

a highly contagious disease with a short infection period with possibility of reinfection. The main313

distinctions with the SIR system presented in Section 3.1 are the absence of demographic dynamics314

(no birth/death) and the possible loss of immunity (meaning that individuals can move from R315

to S). As we will see shortly, however, this important biological difference does not modify the316

qualitative behaviour of the system.317

As we noticed in Section 3.1, Ṅ = Ṡ+ İ+ Ṙ = 0, that is, the total population remains constant,318

so we assume without loss of generality N(0) = 1, which implies N(τ) ≡ 1 for all τ ≥ 0; this allows319

us, using R = 1− S − I, to reduce the system to320

Ṡ = −β
ε
SI + δ(1− S − I),

İ =
β

ε
SI − γ

ε
I.

(27)

Proceeding as in the first model, we introduce the fast time variable t = τ/ε, which gives321

S′ = −βSI + εδ(1− S − I),

I ′ = I(βS − γ),
(28)

where now the prime ( ′ ) indicates the derivative with respect to t.322

The critical manifold is, as before, the set C0 = {(S, I) ∈ R2 | I = 0}, and the slow flow along it323

is given by Ṡ = δ(1− S), which implies flow towards the point (S, I) = (1, 0).324

The ε→ 0 limit system corresponding to (28) is325

S′ = −βSI,
I ′ = I(βS − γ),

(29)

13



which is exactly the limit system we obtained in Section 3.1. Hence, we can apply the same326

qualitative reasoning as before, with some small changes: in the perturbed system the nullcline for327

S is slightly different, giving I = α(S) = (εδ(1−S))/(βS+εδ), and the value of SE is exactly 1/R0.328

The previous ansatz for the Lyapunov function does not work here; we could find another one,329

following what was done in [29], but we instead follow the analysis with the entry-exit function330

which, as we show below, does not change.331

The trajectory starting from (S0, I0), with I0 ∈ O(ε2), follows the same qualitative behaviour:
after it intersects I = α(S) at a point (S∞+O(ε),O(ε)), it eventually intersects the horizontal line
I = I0. At that moment, we change the variables as before:

S =
u+ 1

R0
, I = εv,

and we obtain a system in standard form:332

v′ = γuv,

u′ = ε(−βv(u+ 1) + ξ(R0 − u− 1− εv)).
(30)

In the notation of the entry-exit function, then,333

f(v, u, ε) = γu,

g(v, u, ε) = −βv(u+ 1) + ξ(R0 − u− 1− εv),
(31)

which satisfy the hypotheses in the relevant region; hence, we can compute p0(u0) with exactly the334

same integral equation335 ∫ p0(u0)

u0

u

R0 − 1− u
du = 0, (32)

and the procedure we followed for the SIR model can be applied to this SIRS one identically to336

show the global convergence to the unique equilibrium.337

By following a similar analysis as the one performed so far one can also show that considering338

a SIRS model with demography would not change the qualitative behaviour of the system.339

The results obtained so far for the SIR and SIRS models are summarized in the following340

Proposition.341

Proposition 3. The SIR, SIRS without and with demographic dynamics, with infection and recov-342

ery rates O(1/ε) big compared to the other parameters, are all qualitatively equivalent. Their main343

common features are:344

� boundedness of solutions in the set
{

(S, I,R) ∈ R3
≥0 | 0 ≤ S + I +R ≤ 1

}
,345

� population either constant, or converging uniformly and exponentially fast to a constant, which346

allows to reduce the number of compartments from 3 (S, I,R) to 2 (S, I),347

� existence of an endemic equilibrium point of the form (SE , IE) = ( 1
R0

+O(ε),O(ε)),348

� fast-slow decomposition in the I and S coordinate, respectively, O(ε)-close to the critical manifold349

C0 =
{

(S, I) ∈ [0, 1]2 | I = 0
}

,350

� counterclockwise spiralling of the orbits towards (SE , IE), and consequent absence of periodic351

orbits.352
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These common features mean that, in the long run, the population in each of these models converges353

to an equilibrium O(ε) close to (S, I,R) = (1/R0, 0, 1− 1/R0), in the first octant of R3; each of the354

three variables have damped oscillations around the equilibrium value.355

In the next section we study a more complete (but also more complicated) epidemic model,356

where the techniques developed so far shall be extended.357

3.4 SIRWS model358

We consider the SIRWS compartment model suggested by Dafilis et al. in [4]. As in the previous359

models, we assume that some parameters are O(ε) small compared to others, making the corre-360

sponding processes slow, and the remaining ones fast (the changes correspond to every occurrence361

of ε in system (33)). This allows us to build on the analysis done in sections 3.1 and 3.3, and to362

apply the entry-exit function to a more challenging model.363

The model we are concerned with in this section is given by:364

S I

RW

β
ε I

γ
ε

ξ
ξ

ξ

ξ

2κ

ξ 2κ

ν βε I

Figure 9: Flow diagram for (33)

Ṡ = −β
ε
SI + 2κW + ξ(1− S),

İ =
β

ε
SI − γ

ε
I − ξI,

Ṙ =
γ

ε
I − 2κR+ ν

β

ε
IW − ξR,

Ẇ = 2κR− 2κW − ν β
ε
IW − ξW.

(33)365

As in the previous models, susceptible individuals (S(τ)) become infectives (I(τ)) upon contact366

with infectious individuals, who, at rate γ/ε become immune at their first stage (R(τ)), and then,367

at a rate 2κ, become second-stage (‘weakly’) immune (W (τ)). Weakly immune individuals may368

then lose totally their immunity at rate 2κ, or, upon contact with infectious individuals, revert369

back to fully immune individuals (R(τ)), thanks to the so-called immunity boosting. The constant370

ν is the ratio between the rate at which immunity boosting occurs in weakly immune individuals,371

and the rate at which susceptibles become infected. Finally, we assume a constant birth rate ξ,372

equal to the death rate, and that all individuals are born susceptible. Through the introduction of373

the small parameter ε we consider a highly contagious disease with a very short infection period,374

compared to other typical times of the system; indeed, the average length of the infectious period375

is ε/γ, while the average length of life is 1/ξ and the total average length of the immune period376

is 1/κ for individuals whose immunity is not boosted. Such relation between the parameters has377

been assumed, for example, for diseases such as pertussis, as described in [27], where the authors378

estimated β = 260, γ = 17, ξ = 0.01, κ = 0.1, ν = 20; hence, the analysis which follows may be379

useful in the modelling of such diseases.380

Analogous to the previous models, the set
{

(S, I,R,W ) ∈ R4
≥0 | 0 ≤ S + I +R+W ≤ 1

}
is381

invariant. We can thus scale the total population to 1, so that we can use R = 1− S − I −W . We382

notice that system (8) can be recovered from system (33) by setting κ = ν = 0, and ignoring the383

consequently decoupled W coordinate.384
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As we shall describe in our analysis below, incorporating the waning state W modifies consider-385

ably the dynamics of the model; in fact, it induces the possibility of periodic limit cycles, a feature386

that the previous simpler models did not have. This is particularly important when comparing the387

dynamics of the SIRWS model with that of the SIRS model where, even if recovered portions of388

the population may become again susceptible, there is still no “long run periodic behaviour”.389

As we have done before, introducing the fast time variable t = τ/ε brings the system into the390

form391

S′ = −βSI + ε(2κW + ξ(1− S)),

I ′ = βSI − γI − εξI,
R′ = γI + νβIW − ε(2κR+ ξR),

W ′ = −νβIW + ε(2κR− 2κW − ξW ).

(34)

Remark 1. Note that the critical manifold is (similarly to the previous models) given by392

C0 =
{

(S, I,R,W ) ∈ [0, 1]4 | I = 0
}
. (35)

Furthermore, in the ε → 0 limit, S and I become independent of R and W , and orbits follow393

the same behaviour we have seen in the fast phases of the first two models. In other words, the394

(S, I)-orbits of the layer equation follow a power level of Γ(S, I) = γ ln(S)−β(S+ I), and converge395

towards (S∞, 0)1. These observations motivate the following lemma.396

Lemma 5. Consider the layer equation corresponding to (34). Then, as (S, I)→ (S∞, 0) one has397

W →W∞ := W0 exp−νR0(S0+I0−S∞), where W0 = W (0).398

Proof. We note that∫ ∞
0

(
S′(u) + I ′(u)

)
du = −γ

∫ ∞
0

I(u)du =⇒ S0 + I0 − S∞ = γ

∫ ∞
0

I(u)du,

due to the fact that limt→+∞ I(t) = 0. Next, note from (34) that in the limit ε = 0 one has399

W ′

W = −νβI, which implies W (t) = W0 exp−νβ
∫ t
0
I(u)du. Letting t→∞ leads to the result, recalling400

that R0 = β
γ .401

Since we have already shown that the layer equation is in the (S, I)-coordinates the same as402

before, we proceed just in the same way, that is, we apply first the change of coordinates403

S =
u+ 1

R0
, I = εv,

which gives a system in standard singular perturbation form, with u,W slow and v fast, namely404

v′ = (γu− εξ)v =: f(v, u, ε)v,

u′ = ε(−βv(u+ 1) + 2κR0W + ξ(R0 − u− 1)) =: εg(v, u,W, ε),

W ′ = ε(−νβvW + 2κ− 2κ
u+ 1

R0
− 4κW − ξW ) +O(ε2).

(36)

1We recall that S∞ is defined as the nontrivial solution of Γ(S, 0) = Γ(S0, 0).
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And, accordingly, in the slow time scale τ :405

εv̇ = (γu− εξ)v,
u̇ = −βv(u+ 1) + 2κR0W + ξ(R0 − u− 1),

Ẇ = −νβvW + 2κ− 2κ
u+ 1

R0
− 4κW − ξW +O(ε).

(37)

Naturally, the critical manifold in these new coordinates is C0 =
{

(u, v,W ) ∈ R3 | v = 0
}

.406

In order to use the entry-exit formula, as described in [16, equation (12)], we first check that407

indeed408

g(0, u,W, 0) = 2κWR0 + ξ(R0 − u− 1) > 0,

f(0, u, 0) = γu ≶ 0 ⇐⇒ u ≶ 0.
(38)

However, the presence of W in the equation for u̇ makes the entry-exit integral409 ∫ p0(u0)

u0

u

2κW (u)R0 + ξ(R0 − u− 1)
du = 0 (39)

not immediately computable, as we would need to find and expression for W (u). To deal with this410

issue, let us look at the (S,W )-dynamics in the slow time variable t on the critical manifold I = 0:411

Ṡ = 2κW + ξ(1− S),

Ẇ = 2κ(1− S)− (4κ+ ξ)W.
(40)

This system of ODEs can be solved explicitly, assuming initial conditions412

(S(0),W (0)) = (S∞,W∞), the limit values of the fast loop, we have:413

S(τ) = 1 + [S∞ − 1 + 2κ(S∞ +W∞ − 1)τ ] exp(−(2κ+ ξ)τ),

W (τ) = [W∞ − 2κ(S∞ +W∞ − 1)τ ] exp(−(2κ+ ξ)τ)

= 1− S(τ)− (1− S∞ −W∞) exp(−(2κ+ ξ)τ).

(41)

The phase-portrait of (40) is illustrated in Figure 10, where the only feasible region is the triangle414

0 ≤ S +W ≤ 1, S,W ≥ 0, and all trajectories converge to (S,W ) = (1, 0).415

S

W

Figure 10: Phase plane for the S,W couple; values for κ = 0.1 and ξ = 0.0125 taken from [4]
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Note that, in general, the integral (39) is not explictly computable. Hence, let du = [2κR0W +
ξ(R0 − u − 1)]dτ ; then one can transform (39) into an integral equation which provides the exit
time TE , namely, after substituting du = [2κR0W + ξ(R0 − u− 1)]dτ in (39) one has∫ TE

0

u(τ)dτ = 0.

In other words, TE is defined as the time it takes to go from u = u0 to u = p0(u0), and therefore416

it is also the time during which a trajectory of (34) stays O(ε2)-close to the critical manifold. This417

implies, remembering u(τ) = R0S(τ)− 1, that418 ∫ TE

0

(R0S(τ)− 1)dτ = 0. (42)

Using the explicit equation for S(τ) given in (41), and introducing, for ease of notation, A := 2κ+ξ,
B := 2κ(S∞ +W∞ − 1), C := S∞ − 1 so that

S(τ) = 1 + C exp(−Aτ) +Bt exp(−Aτ),

the equation for the exit time TE (42) becomes419

−R0 exp(−ATE)(ABTE +AC +B)

A2
+ (R0 − 1)TE +

R0(AC +B)

A2
= 0. (43)

Clearly TE = 0 is a solution. Moreover, there is only one strictly positive solution, since S(τ) is420

strictly increasing and tends to 1 as τ → +∞. Such solution provides the exit time.421

Substituting the positive solution TE of (43) it in (41) we obtain the exit point (S(TE),W (TE)).422

However, due to the implicit formulae we have obtained above, such a computation is only suitable423

numerically (see Section 3.4.1). Despite the previous obstacle, we can still check how the exit points424

depend on certain parameters. For example, from the first equation of (41) we observe that425

∂S

∂ξ
(τ, ξ) = −τ [S∞ − 1 + 2κ(S∞ +W∞ − 1)τ ] exp−(2κ+ξ)τ > 0, (44)

which immediately suggests that the exit time is decreasing in ξ. Namely, let TE,i denote the exit426

time with ξ = ξi and i = 1, 2. If ξ1 < ξ2 then, using (44), one sees that TE,1 > TE,2.427

To provide more insight on the dynamics of the SIRWS model, we are now going to complement428

our previous study with a numerical analysis, where the computed exit time TE shall play an429

essential role.430

3.4.1 Periodic orbits431

Recall that in the SIR and SIRS models no periodic trajectories are possible. In this section we432

show that the SIRWS does have periodic solutions, and of particular biological relevance, stable433

limit cycles. Our motivation is that if a stable limit cycle exists, then a disease would have periodic434

outbursts. Furthermore, due to the time scales present in the model, there is the danger of missing435

such periodicity if only short time scale analysis is considered. Moreover, information regarding436

the parameter regions in which damped/sustained oscillations occur can give directions as to which437

parameter(s) to modify in order to have a desired control of the epidemic.438
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As it is usual in GSPT, the general idea to show existence of limit cycles of the perturbed439

(fast-slow) system is to first find a singular cycle, see for example [22, 36]. A singular cycle is440

a concatenation of limiting slow and fast orbits that form a cycle. Afterwards, given that some441

conditions are met, we argue that such singular cycle gives rise to a limit cycle of the fast-slow442

system. We further remark that a mixture of analytical and numerical methods is relevant since443

we have to combine local analytical results with global numerical results, which is a key theme in444

multiple time scale systems [12, 13, 23].445

The steps to form a singular cycle of the SIRWS model are as follows:446

1. Choose a section J1 =
{

(S, I,W ) = (S0, 0,W ) |S0 >
1
R0
, W ∈ (0, 1− S0)

}
. This section is447

transversal to the reduced slow flow and is located on the unstable region of the critical manifold.448

2. Consider the map Π1 defined by the layer equation. Under such a map one obtains a new section449

on the critical manifold J2 := Π1(J1). The coordinates of J2 are given by (S∞, 0,W∞), as in450

Lemma 5.451

3. Consider the map Π2 defined by the slow flow for a time TE implicitly given by (43), i.e.452

Π2(J2) = (S(TE),W (TE)) with (S(τ),W (τ)) given by (41), and let J3 := Π2(J2). Recall from453

the last part of section 3.4 that we can tune the exit time, for example, by changing the parameter454

ξ, without changing the map Π1.455

4. If J3 intersects transversally J1, then we have a robust singular cycle given precisely by the orbit456

corresponding to a fixed point of Π2 ◦ Π1, see Figure 11 for a schematic representation of these457

four arguments.458

In the present context, robust means that the singular cycle persists under small smooth pertur-459

bations as a periodic orbit of the fast-slow system precisely due to the transverse intersection of460

J1 and J3 [37] (if it occurs).461

It is clear that for the particular SIRWS model, there is a priori no guarantee that such a
transverse intersection occurs for a particular set of parameters and initial conditions. To clarify
that indeed such a fixed point exists upon variation of parameter values, we refer to the situation
shown in Figure 12 varying the parameter ξ, we argue as follows: let F ξ = (F ξ1 , F

ξ
2 ) = Π2 ◦Π1 :

C0 → C0 using the parameter ξ, and X = {ξ : J3 ∩ J1 6= ∅}. We can then define, for ξ ∈ X,

w̄(ξ) as the value of w such that F ξ1 (S0, w) = S0. Note moreover that for all w, the inequalities

0 < F ξ2 (S0, w) < 1− S0 hold, as can be seen by (41).
Consider finally

g : X → R, g(ξ) = w̄(ξ)− F ξ2 (S0, w)

If X = [ξ1, ξ2], we have w̄(ξ1) = 0 and w̄(ξ2) = 1 − S0, or vice versa. Hence g(ξ1) < 0 < g(ξ2),462

or vice versa. In either case, there exists ξ̄ ∈ (ξ1, ξ2) such that g(ξ̄) = 0, i.e. F ξ̄1 (S0, w̄(ξ̄)) = S0463

and F ξ̄2 (S0, w̄(ξ̄)) = w̄(ξ̄) as claimed.464

465

Moreover, since we know that both Π1 and Π2 are contractions in the W -direction (refer to466

(34) and to Figure 10), such a singular cycle is locally attracting. Hence it persists as a locally467

attracting periodic orbit for ε > 0 sufficiently small. We remark, however, that this does not468

mean that there are no other limit cycles for ε > 0 sufficiently small. As we show in our numerical469

analysis of the forthcoming section, there is in fact a range of parameter for which a stable and470
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an unstable limit cycle co-exist. The existence of the unstable limit cycle, however, does not471

follow from our previous perturbation arguments.472

S

I

W

J1

J3

J2

Ca
0

Cr
0

Figure 11: Schematic representation of the singular cycle, shown in magenta. The red arrows
depict the map Π1 : (S0,W0) 7→ (S∞,W∞) so that Π1(J1) = J2. The blue arrows depict the map
Π2 given by the reduced flow on C0 and induced by (40) (for a finite time TE(S∞,W∞)) so that
Π2(J2) = Π2(Π1(J1)) = J3. If the sections J1 and J3 intersect, then such an intersection defines
closed singular orbits. If J1 and J3 intersect transversally, then such intersection persists for ε > 0
sufficiently small giving rise to a periodic orbit of the SIRWS model.

Naturally, the above procedure is only sufficient to show existence of limit cycles that pass close473

to the critical manifold and provides no information on other possible limit cycles of the fast-slow474

system, compare with [35]. Yet our attention is precisely focused on describing those limit cycles475

arising from the time scale separation.476

An example of the above procedure is shown in Figure 12 where we set {β = 260, γ = 17, κ =477

0.1, ξ = 0.0125, ν = 5}, values taken from [4]. Figures in the left column show the evolution of J1478

(dashed red) in the fast system (red) and of J2, too small to be visible, in the slow system (blue).479

Figures in the right column zoom to the interval J3 (blue) for each parameter value, and its position480

relative to J1 (dashed red). Note that481

� For ξ = 0.01 (Figures 12 (a) and (b)) the interval J3 lies to the right of J1, so there might be a482

larger limit cycle further away from J1.483

� For ξ = 0.0125 (so Figures 12 (c) and (d)) the interval J3 intersects transversally J1, and the484

intersection certifies the existence the singular periodic orbit.485

� For ξ = 0.015 (so Figures 12 (e) and (f)) the interval J3 lies to the left of J1, so there might be a486

smaller limit cycle further away from J1, or the system might converge to the unique equilibrium487

point in the first octant.488
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It is worth noting that we chose to investigate the role of ξ, the birth/death rate, due to its489

biological relevance. However, by the same method one is able to numerically approach the existence490

of limit cycles upon variation of any other parameter. It is important to note that, in the limit491

systems, there is a clear separation between “fast parameters” (β, γ, ν) and “slow parameters” (ξ,492

κ); changing a single parameter will only influence either the layer or the reduced dynamics, and493

not both.494

(a) (b)

(c) (d)

(e) (f)

Figure 12: Numerical illustration of the effect of changing ξ on the slow dynamics. This numerical
analysis shows that there is an interval around ξ ∼ 0.0125 for which periodic orbits of (34) exists,
for ε > 0 sufficiently small.

Since we have already demonstrated the existence of limit cycles, the next question to investigate495

is the possible bifurcations that may arise upon variation of the parameters. Such analysis is496

presented in the forthcoming section.497
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I

ν

H2H1

L

(a) One-parameter (ν) bifurcation diagram for
(34): blue stars labelled H1 and H2 corre-
spond to Hopf points; blue dot labelled L cor-
responds to the Limit Point of Cycles (LPC);
red lines correspond to stable (solid) and unsta-
ble (dashed) limit cycles; the stable (solid) and
unstable (dashed) equilibrium point is depicted
by the black line.

ε

ν

H2

H1

L

(b) The blue lines represent the Hopf points H1

and H2, and the LPC point L, plotted in Fig-
ure (13a), which are then continued while de-
creasing ε; compare with Figure 13a. We observe
that H1 does not tend to ν = 0 as ε → 0 while
H2 and L diverge.

Figure 13: One and two parameter bifurcation diagrams for (34).

3.4.2 Bifurcation analysis498

In this section we carry out a bifurcation analysis, motivated by the one developed in [4], which we499

perform with MatCont [8]. Our goal is to investigate the way the bifurcation diagrams change as ε is500

decreased, i.e., we want to understand via numerical continuation how the fast-slow singular limit is501

approached; see also [7, 11, 17] where such a strategy has considerably improved our understanding502

of several fast-slow models. In our context, decreasing ε means, from a biological point of view,503

modelling an epidemiological system in which the difference in duration between life expectancy and504

infectious episodes becomes large. In the limit as ε→ 0, infectious episodes become instantaneous,505

and the analysis of this limit case helps to understand the behaviour of the system for ε > 0 small506

enough.507

In fact, we note that the system studied in [4] is system (34), for the particular choice of ε = 1.508

In what follows, we set β = 260, γ = 17, κ = 0.1, as in [4], and vary ε, ξ, ν, and later β as509

well. Notice that the values of the parameters β, γ, κ and ξ already appear of different order of510

magnitude. It would be possible to use a different parametrization, letting β̃ = 0.26, γ̃ = 0.017 and511

ε = 0.001. All the following analysis would be identical, except that the values obtained for ε, β512

and γ would be multiplied by 10−3.513

For consistency, we start by replicating Figure 5 from [4], by setting ε = 1 and ξ = 0.01, in514

Figure 13a. For all parameter values there is a unique equilibrium in R4
≥0, as can be easily proved,515

but its stability changes varying ν through a subcritical and a supercritical Hopf bifurcation.516

Next, in order to get the dependence of the bifurcation points with respect to ε, we continue the517

two Hopf points H1 and H2 and the Limit Point of Cycles (LPC) L in a (ν, ε) bifurcation diagram,518

obtaining the diagram shown in Figure 13b.519
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We notice from Figure 13b that H1 converges to a positive value for ν ∼ 1.32 as ε → 0, while520

H2 and L diverge; the latter much faster than the former. Moreover, we know from the analysis521

performed in Section 3.4 that as ε→ 0 the equilibrium curve (black curve in Figure 13a) approaches522

the {I = 0} axis. These two observations suggest that as ε→ 0 the bifurcation diagram on Figure523

13a gets stretched. One must also point out that the computation of the bifurcation diagrams for524

small ε becomes considerably expensive due to the high stiffness of the problem.525

We next produce the analogous to Figure 13a, but for a smaller value of ε, namely ε = 0.05, in526

Figure 14. In order to do so, due to stiffness of the problem, it is necessary to rescale the system527

by introducing a new variable v = ln(I). We emphasize that this rescaling is motivated by the528

fact that trajectories get exponentially close to the critical manifold, recall Lemma 2. Moreover,529

this rescaling might be useful for bifurcation analysis of systems with similar dynamics in which530

an exchange of stability of the critical manifold occur at a non-hyperbolic point, and trajectories531

of interest pass exponentially close to such a singularity. With the aforementioned rescaling one532

obtains the following system of ODEs:533

S′ = −βSεv + ε(2κW + ξ(1− S)),

v′ = v(βS − γ − εξ),
W ′ = −νβWεv + ε(2κ(1− S − εv −W )− 2κW − ξW ).

(45)

v

ν

H2H1

Figure 14: One-parameter (ν) bifurcation diagram for (45): blue stars labelled H1 and H2 corre-
spond to Hopf points; red lines correspond to stable (solid) and unstable (dashed) limit cycles; the
stable (solid) and unstable (dashed) equilibrium point is depicted by the black line.

Thus, the bifurcation diagram in Figure 14 is obtained from (45) and confirms the behaviour534

anticipated in Figure 13b: as ε decreases, the distance between H1 and H2 increases, thus stretching535

the parameter region in which stable periodic solutions are to be observed. Most importantly, as is536

already evident in Figure 13b, we have that for ε sufficiently small the LPC is undetectable, implying537

that an eventual transition to stable (endemic) equilibrium due to increase of the immunity boosting538

rate ν is not possible any more.539

Another important parameter is β, which regulates the infection rate. Thus, in order to further540

investigate the role of ε in the model, we next present in Figure 15 a (ν, β) bifurcation diagram.541
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β
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GH2

Figure 15: Two parameter bifurcation diagram for (34). Left and right represent ε = 1 and ε = 0.05,
respectively. The red points labelled GHi are generalised Hopf points. The blue (resp. magenta)
branch is a curve of subcritical (resp. supercritical) Hopf bifurcation while the green branches
correspond to limit point of cycles. We label the regions in the diagram according to the attractor
as 1: Limit cycles, 2: Bistability, and 3: Point attractor. The insets in the right picture are “zoom-
ins” near the two GH points.

For ease of notation, let us denote by ν(P ) the value of ν corresponding to a point P . From Figure542

15 we have that ν(GH1) ≈ 9.96 and ν(GH2) ≈ 106.9 for ε = 1. Furthermore, for ν ≤ ν(GH1), the543

system only exhibits stability of the equilibrium or of the limit cycle (zones 1 and 3). For ν(GH1) <544

ν ≤ ν(GH2) there are two intervals of values for β which correspond to a stable equilibrium, one545

to a stable limit cycle and one to bistability (zones 1, 2, and 3). For ν(GH2) < ν ≤ νmax, with546

νmax ≈ 195.46, there are two intervals of values for β which correspond to a stable equilibrium, one547

to a stable limit cycle and two to bistability, one of them being very thin. At ν = νmax the two548

Hopf points H1 and H2 collide, and a codimension-2 Hopf-Hopf bifurcation occurs.549

For ε = 0.05, the diagram is qualitatively the same, but as already pointed-out before the550

diagram gets stretched both in β and in ν. The points GH1 and GH2 correspond now to ν ≈ 7.04551

and ν ≈ 2282.6, respectively. In particular, the bistability region 2 is enlarged.552

To complement the previous description, and similar to Figure 9 (a) to (d) in [4] in Figures 16a-553

16c, we present the β-bifurcation diagram for different values of ν and continue all the Hopf points554

for decreasing ε, as shown in Figures 16d-16f.555

As before, and for ease of notation, we denote by β(P ) the value of β corresponding to a point556

P . For each value of ν considered, we find two values 17 < β(H1) < β(H2) (17 was the fixed value557

of γ in each simulation; recall R0 = β/γ) corresponding to Hopf points, and we continue them in558

ε, as shown in Figures 16d-16f. For 17 ≤ β ≤ β(H1) the equilibrium point is stable, and there is no559

limit cycle. For β(H1) < β ≤ β(H2) the equilibrium point is unstable, and the limit cycle stable.560

For ν > ν(GH1) (resp. ν > ν(GH2)), there is an interval (resp. there are two intervals) of values561

of β(H2) < β ≤ β(L) (with L a LPC, whose existence and position depend on the choice of ν) for562

which the system exhibits bistability; eventually these two limit cycles collapse, and for β > β(L)563

the system is characterized by a unique asymptotically stable equilibrium. Note, interestingly, that564

as the Hopf-Hopf bifurcation is approached, a new LPC (L2 in Figure 16c) becomes visible.565

We note that in the limit ε → 0, one has β(H1) → 17. This is due to the influence on566

the dynamics of the basic reproduction number R0 = β/γ, which should remain greater than567
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Figure 16: First row: one-parameter (β) bifurcation diagram for (34): blue stars labelled H1

and H2 correspond to Hopf points; blue circles labelled L1 and L2 correspond to Limit Point of
Cycles; red lines correspond to stable (solid) and unstable (dashed) limit cycles; the stable (solid)
and unstable (dashed) equilibrium point is depicted by the black line. The insets correspond to
zoom-in near β = 17. Second row: continuation of the Hopf and LPC points while decreasing ε.
We observe that H1 (and L2, when it exists) tends to β = 17 as ε→ 0, while H2 (and L1, when it
exists) diverges. The inset in (f) shows a zoom-in at the continuation of H1 and L2 from ε = 1 to
ε = 0.8.
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1 for the endemic equilibrium to exist. Related to this, one has that β(L2) → 17 as ε → 0,568

whenever ν > ν(GH2). The values β(H2) and β(L1), instead, diverge to +∞ as ε→ 0; the region569

corresponding to the stable limit cycle stretches, as in the ν case. Lastly, we compute a (ξ, ν)-570

diagram and compare them for ε = 1 and ε = 0.05 in Figure 17, as we did for (β, ν) in Figure571

15.572

ν

ξ

1

2

3

GH1GH3

ν

ξ

1

2

3

GH1GH3

Figure 17: Two parameter bifurcation diagram for (34). Left and right represent ε = 1 and
ε = 0.05, respectively. The red points labelled GHi are generalised Hopf points. The blue (resp.
magenta) branch is a curve of subcritical (resp. supercritical) Hopf bifurcation while the green
branch corresponds to a limit point of cycles. Thus, we label the regions in the diagram according
to the attractor as 1: Limit cycles, 2: Bistability, and 3: Point attractor.

We observe in Figure 17 that not only the bifurcation diagram is stretched as ε decreases but573

also that the bistable region (region 2) is enlarged. GH1 corresponds to ξ ≈ 0.0147 for ε = 1 and to574

ξ ≈ 0.03871 for ε = 0.05. Furthermore, in Figure 17 we show the existence of another Generalized575

Hopf point GH3 (not considered in [4]), corresponding to ξ ≈ −0.1276 for ε = 1 and to ξ ≈ −0.1263576

for ε = 0.05. We do not show the 2-parameter continuation of GH3 since such a computation is577

not numerically feasible due to the high stiffness of the system in such parameter range. However,578

the previous observation suggests that all the bifurcation branches corresponding to GH3 are close579

to each other.580

The numerical analysis shown in this section supports the existence of stable limit cycles for an581

increasing parameter range as ε → 0. Nonetheless, the dependence of the behaviour of the orbits582

on the parameters stays the same for sufficiently small parameters. This means that as in the ε = 1583

case, one still observes parameter ranges corresponding to the stability of the endemic equilibrium,584

and other parameter ranges corresponding to stable periodic orbits.585

Based on the analysis performed so far, we can now give an interpretation of our results: first of586

all, the interplay between birth/death rate ξ and immune boosting ν remains qualitatively similar587

to the one described in [4], for small ε. However, the Hopf point H2 moves according to the588

increasing difference in the time scales involved in the respective dynamics. H1 does not converge589

to 0, supporting the result obtained in [4], where the authors showed that, for ν small enough,590

the dynamics are close to a SIRS system. The main difference, however, is that as ε decreases the591

role of the parameters can drastically change due to the changes in the bifurcation diagram. For592

example, for ε = 1, a life expectancy of 50 years (ξ = 0.02) corresponds to convergence to the593
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endemic equilibrium for all the possible values of ν. In contrast, for smaller values of ε the same ξ594

could correspond to stability of the limit cycle, bistability, or stability of the endemic equilibrium,595

depending on the value of ν (see Figure 17). Moreover, the effect of increasing life expectancy,596

i.e. decreasing ξ, results in the transition from point stability to stability of a limit cycle, possibly597

passing through a region of bistability. This means that, the higher the life expectancy of a certain598

population, the larger the interval for ν for which a stable limit cycle exists. Biologically, this599

means that ν must be sufficiently small to obtain a stable endemic equilibrium, otherwise periodic600

epidemic outbursts turn out to be robust.601

4 Summary and Outlook602

We have analysed the behaviour of three models given as a nonstandard singularly perturbed ODE.603

The first two models presented in Sections 3.1 and 3.3 proved to behave, under mild hypotheses604

on the parameters, qualitatively in the same way. In particular, their trajectories converge to605

the only (endemic) equilibrium in the open first quadrant, as long as the initial population of606

infected individuals is strictly positive. The SIRWS model, instead, proved to be much richer, with607

parameter regimes allowing for damped oscillations or sustained oscillations, or both.608

For our analysis we have combined techniques from Geometric Singular Perturbation Theory,609

and in particular the entry-exit function, introduced in section 2.2. One must point-out that GSPT610

is usually employed for singular perturbation problems in standard form, and just recently it has611

been shown that non-standard problems can also be dealt with. More precisely, GSPT allowed us612

to show the existence of stable limit cycles for certain parameter ranges. Based on such analysis, we613

further performed numerical studies and computed several insightful bifurcation diagrams, which614

allowed us to provide a complete qualitative description of the perturbed SIRWS model.615

We concluded comparing previous results appearing in [4], and extending them by taking into616

account the role of the (small) parameter ε, which does not change the overall qualitatively behaviour617

of the system, but it does drastically change the parameter ranges corresponding to each dynamic618

regime. Finally, our studies show that GSPT together with numerical tools seem to be suitable to619

analyze and comprehend epidemiological models with vastly different rates.620

Once the bifurcation structure of epidemic models is known, one can then be more ambitious621

and aim to not only control epidemic outbreaks better after they have occurred but even try to622

anticipate them using early-warning signs [30, 38]. Therefore, our results on bifurcation structure623

presented here are strongly expected to contribute to the design of these warning signs.624
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