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Abstract—Quantum Computing (QC) provides the possibility
to develop new approaches to tackle complex problems. Real-
world applications, however, cannot yet be managed directly due
to the limitation of present and near-future noisy intermediate-
scale quantum (NISQ) computers. Decomposition into smaller
and manageable subproblems is often needed to take advantage
of QC even when using hybrid (classical-quantum) solvers or
solvers that already apply decomposition techniques. In this
paper, heuristic decomposition algorithms to solve the Physical
Cell Identifier (PCI) problem in 4G cellular networks in a way
suitable for QC are presented. The PCI problem can be viewed as
a map coloring problem with additional constraints and has been
represented in a Quadratic Unconstrained Binary Optimization
(QUBO) model, a form that, for instance, a quantum annealing
machine could crunch. We propose two strategies, with variable
decomposition granularity. The first one solves the problem
recursively through bisection (max-cut problem), to use only
one qubit to represent the status of the objects, avoiding one-
hot encoding and thus minimizing the qubit requirement. The
second is a multi-step approach, finally solving sets of randomized
modified max-k-cut problems of customizable qubit size. We
executed the algorithms on real cellular networks of one of the
main Italian national telecom operators (TIM). The results show
that all proposed QUBO approaches can be effectively applied
to very large problems with similar or better performance of
the reference classical algorithm, paving the way for the use on
NISQ computers.

Index Terms—PCI, quantum computing, heuristic, LTE, 4G,
TelCo

I. INTRODUCTION

As the number of smartphones increases around the world,
wireless communication networks become more massive and
denser, with the consequence that providing good connectivity
quality is not an easy task. Long Term Evolution (LTE/LTE-
A) standard aims to tackle these issues, satisfying the data
demands for User Equipment (UE). LTE is based on the
Orthogonal Frequency Division Multiple Access (OFDMA)
for downlink (DL), necessary to guarantee the reliable trans-
mission of data to a UE anywhere inside the network [1], [2].

The OFDMA method has been applied to reduce inter-cell
interference (ICI) and intersymbol interference (ISI) problems
in the downlink network. Physical Cell Identifiers (PCI), if

properly assigned, can help improve the quality of service,
in particular, to manage the mobility procedures of the user
equipment (UE) to move from one cell to an adjacent one [2],
[3].

PCI planning aims to assign every cell in the network a
pseudo-unique identification number, depending on a set of
conditions which will be detailed later in the text. This problem
is usually formulated as a graph coloring problem in the
computer science domain.

The graph coloring problem belongs to the category of non-
deterministic polynomial-time (NP-hard) optimization prob-
lems [3]. Such kinds of problems have been addressed by
heuristic and metaheuristic approaches [4]–[6].

Several studies have analyzed the PCI planning problems
with respect to collision and confusion between cells [7], [8].
Quantum Annealing (QA) is a metaheuristic technique which
naturally (quantum-mechanically) looks for the global mini-
mum to a given objective function [9].

The leading company in the QA domain is D-Wave. Their
Quantum Processing Unit (QPU) is particularly suited to solve
optimization problems that can be formulated in a Quadratic
Unconstrained Binary Optimization (QUBO) form.

Regardless of problem formulation into QUBO form, there
is the issue of fitting the problem size to a dimension that
fits the number of qubits available nowadays on a D-wave
quantum annealer.

Our contribution in this paper is to formulate the PCI
problem into sets of QUBO problems (decomposition), which
could potentially be solved more easily by current and near
term quantum computer (NISQ) with limited number of qubits
and limited connectivity. We explore the effect of the granular-
ity of the sub-problem and the effectiveness of this approach
on very large PCI networks.

The paper is organized as follows: Section II describes
the main aspects of QUBO; the PCI planning problem and
models are presented in Section III; the new quantum inspired
algorithms are described in detail in IV; Section V deals
with the comparison of the algorithms with respect to some
performance indicators, benchmarking them with the existing



TIM’s approach; finally, some concluding and future works
remarks are presented in Section VI.

II. QUBO MODEL

Quantum machines can be used to find the ground state of a
target objective function, which is expressed in the Quadratic
Unconstrained Binary Optimization (QUBO) model.

This function is made of variables that represent the qubits
of the QPU. The best solution for a problem is represented
by the set of variables values that lead to the lowest possible
value of the objective function, which corresponds to the least
possible energy of the system [10] [11].

The QUBO model can be expressed in this way:

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj (1)

where Q is an upper triangular matrix of weights, and x is
the array of binary variables to be assigned. The Q matrix is
made by qubit biases coefficients as diagonal terms, and by
qubit couplers as off-diagonal terms.

The following is an equivalent, more compact matrix QUBO
formulation of the problem:

min
x∈{0,1}n

xTQx (2)

III. PCI PLANNING PROBLEM

This section describes the PCI problem, describing the
situation faced in reality by TelCo operators and giving a math-
ematical representation of the model itself and its constraints.

A. PCI planning - Definition

In the telecommunication domain, a cell is a land area cor-
responding to one transceiver antenna and a specific frequency
band. The identification of the cell, via the PCI planning, al-
lows mobile devices to handle the so-called handover between
cells which are geographically adjacent. The PCI number is
assigned to each of the cells in a mobile network, and it is
chosen inside a predefined set of values. As stated in [12], the
PCI is thus defined:

PCI = 3× IDgroup + IDcell (3)

where IDgroup is a number characteristic of the site, and
IDcell is a number characteristic of the cell within the site.
IDcell and IDgroup can be also described in the literature
as Primary Synchronization Signal (PSS) and Secondary Syn-
chronization Signal (SSS). A site groups from 1 up to 3 cells.
Values for IDgroup and IDcell for 4G need to be in the range
[0; 167] and [0; 2] respectively, which results in the PCI number
being in the range [0; 503].

B. PCI planning - Modelling

This subsection describes the mathematical model adopted
to represent the PCI problem. The cost representation is a
straightforward and easy way of evaluating the quality of
a PCI plan. These costs depend on both the geographical
conformation and coverage of the territory and the importance

given by the TelCo operator to the unfulfilled requirement
based on the know-how and experience.

For the sake of simplicity, it is supposed that each site is
composed by at most three cells. Taking two generic cells, i
and j, we have two costs binding them:
• Ci,j : cost of assigning the two cells the same PCI number;
• Si,j : cost of assigning the two cells the same IDgroup.

The total cost to be minimised is thus defined:

Totcost =
∑
i

∑
j

Ci,j ∗ Vi,j +
∑
i

∑
j

Si,j ∗Wi,j (4)

where:

Vi,j =

{
1 if the same PCI is assigned to both cells
0 otherwise

Wi,j =

{
1 if the same IDgroup is assigned to both cells
0 otherwise

For the sake of comparing the performance of the different
algorithm, we tried to minimise the number of different
IDgroup satisfying the following constraints:
• each cell of the same site must have:

– the same IDgroup,
– a different IDCell;

• the cost
∑

i

∑
j Ci,j ∗ Vi,j must be zero.

For the same amount of used IDgroup, Totcost must be
minimized.

IV. DESCRIPTION OF PCI SCHEDULING ALGORITHMS

In this sectio the QUBO-based different approaches to the
PCI scheduling problem are defined.

A. Single-Phase QUBO

A direct and straightforward implementation of the PCI
problem in section III is possible in the following way:
we assign simultaneously IDgroup and IDCell using k =
3 · nIDgroup

colors in a weighted max-k-cut problem (Single-
Phase QUBO - SP). Then, for each cell, we assign IDgroup =
floor(j/3) and IDCell = mod(j, 3) where j = 1, ..., k is the
color assigned to the cell. How to formulate a weighted max-
k-cut problem in QUBO format with one-hot bit encoding can
be found in [10], [11]. As formulated so far, the problem does
not guarantee that all cells of a single site (typically 3 cells)
are assigned a different IDCell (see section III-B). This is
an hard constraint and we need to add a penalty constraint
when this situation is not satisfied in the solution. Using X
as the binary solution matrix (of dimension [#cells; k]) where
Xi,j = 1 if the cell i is assigned the color j the extra linear
constraints can be written as:

Σk=1,3

(
Xi,pj+k − 2Xi+1,pj+k +Xi+2,pj+k

)
= 0 (5)

pj = j ∗ 3, ∀i = 1, ...,#sites, ∀j = 1, ..., f loor(k/3) (6)

Combined with the standard single color occupancy require-
ments, Eq. 5 is satisfied only when the three cells of the same
site i, i + 1 and i + 2 are assigned the same IDgroup. The
QUBO unknown vector x in eq. 2 is simply defined as the



(a) The tree that represents a step of divid-
ing the sites among the IDGroup (green
nodes).

(b) The tree of Fig.1a after a bisection.
(c) The Retroaction phase.

vectorisation of X, x = vec(X). General linear constraints in
the form A · x = b can be introduced in a QUBO model as
additional quadratic penalties [10], [11].

B. Bisection Blossom approach

The main idea of the Bisection Blossom (BB), is to solve
the problem through bisection, in order to use only one qubit
to represent the status of one system variable avoiding one-hot
encoding. This choice minimises the number of needed qubits
but requires to solve a large number of QUBO problems.
The IDGroup assignment is completed before performing the
IDCell assignment, dividing the optimisation in two main
phases.

1) IDGroup assignment: The goal of this task is to assign a
IDGroup to any site, reducing the violations of the constraints
described in Section III-B. To facilitate this assignment an
extra cost is introduced representing the Incompatibility con-
straint.

a) Incompatibility: In addition to the costs Ci,j and
Si,j , a third cost Fi,j was introduced to represent the direct
incompatibility between two sites to have the same IDgroup.
For each pair of sites, if there is no PCI combination such
that the cells of the two sites can have the same IDgroup with
Ci,j ∗ Vi,j = 0, then Fi,j = 1 for all cells of the two sites.
Otherwise, Fi,j = 0.

The procedure begins by minimizing only the incompatibil-
ity. When

∑
i

∑
j Fi,j = 0, the procedure begins minimising

Ci,j . At the beginning, all the groups have the same IDGroup

and the cost can be represented by a graph with all sites as
nodes and all costs (F or C) as edges. Then each bipartition
splits the sites of one IDGroup into two groups with two
different IDsGroup.

In this way, a binary tree is generated, in which the root is
the original single IDGroup with all the sites, and the leaves
are the selected groups of sites with a common IDGroup.
The nodes between the root and the leaves are no more used,
and are defined as branch. At each new level of the tree, the
problem gets simpler, since the previous graph representing
the cost has been split in two separate graphs, and each graph
has about half of the nodes and about a quarter of the edges.

In order to decide which leaf must be split, a bipartition is
applied on all the leaves and the new potential nodes are called

flowers, which are at the moment only considered potential
leaves.

This task is composed by a setup phase, a loop and a
retroaction.

b) Setup: At the beginning, all the groups have the same
IDGroup. Then sites are divided into two channels, minimiz-
ing the cost through the quantum annealer or a decomposing
solver crunching a QUBO like qbsolv. The cost of both
channels is calculated, and each new channel with a cost
greater than 0 is divided into two potential channels. Finally,
the cost of the flowers is calculated, and the gain due to a leaf
”bloom” is calculated like the cost of the leaf minus the cost
of the two flowers.

c) Loop: As long as the number of leaves is less than the
number of IDGroup available and the sum of the cost of the
leaves is greater than 0, the following steps are iterated: (i) the
leaf with the greatest gain ”blossoms”, (ii) the leaf becomes
branch (yellow), (iii) its flowers become leaves and generate
four new flowers, (iv) new costs and gains are calculated.

d) Retroaction: Each group of sites with the same
IDGroup that involves a cost

∑
i

∑
j Ci,j ∗ Vi,j > 5 or∑

i

∑
j Fi,j > 0 could not be solvable during the IDCell

assignment, so is modified during the retroaction.
At the end of the loop, if there are too high costs, a

retroaction of one level is applied. Each pair of leaves which
include a leaf with a too high cost are merged and biparted.
If the cost is decreased the new leaves are hold, otherwise the
older ones. If at the end of the retroaction of level one some
costs are still too high, a retroaction of level two is executed.
In this case, four IDGroup are merged and then 3 bipartitions
are applied. Finally, a retroaction of level one is performed in
order to minimize Totcost.

2) IDCell assignment: Each site must assign a different
IDCell, so each site has a maximum of 6 possible states:

( 0,1,2 ) , ( 0,2,1 ) , ( 1,0,2 ) , ( 1,2,0 ) , ( 2,0,1 ) , ( 2,1,0 )
The problem was solved using 6 qubits with one-hot encod-

ing. A new cost matrix is calculated based on the six possible
configurations of each site with the same IDGroup.

The problem is initially split in clusters of n sites in
numerical order. This partition is applied only at the initial
level of the tree, since at each level the number of sites
decreases. The results presented here were obtained using



Fig. 2: Schematic of IDgroup assignment in MCMP algorithm.

n = 64 so that each subproblem could be fit (or embedded)
in a machine like D-Wave 2000Q. Experiments on different
partition strategies did not highlight relevant improvements.
By using 6 qubits for the IDCell assignment, 10 sites can be
processed at a time. However, the number of sites with the
same IDGroup is limited.

C. Monte Carlo Multi-Phases

A more sophisticated and complex algorithm, named Monte
Carlo Multi-Phases (MCMP), starts by assigning the IDgroup,
while the IDcell is assigned at later phase (multi-phases). It ap-
plies an iterative solution refinement considering randomised
subproblems (Monte Carlo) of smaller and tunable size. Each
subproblem is formulated as standard max-cut, max-k-cut,
or modified max-k-cut as described in the previous section.
Another major difference is that the IDgroup assignment is
done exclusively at ‘site level’ using the particular property
of the S cost matrix: Si,j = Si′ ,j′ with i, i

′ ∈ same site ν

and j, j
′ ∈ same site ν

′
. This allows to consider the cost of

having two sites instead of two cells with the same IDcell

and, for constant number of QUBO variables, to increase the
number of sites per subproblem (roughly by a factor of 3)
helping the search of a more global solution for the IDcell

assignment. The S cost matrix can be reduced to a smaller
Ssite without loss of generality. The drawback is that we need
to define, arbitrarily and with some loss of information, a C
cost matrix at a site level, the Csite. We make the following
choice defining the matrix element Csite

i,j = 0 if the two-
sites IDcell assignment subproblem (defined by the submatrix
Ck,l with k cell id of the i site and l cell id of the j
site) can be successfully solved with zero residual cost and
Csite

i,j = max(Ck,l) otherwise. Since we have only up to 6
nodes and at most a 3 by 3 adjacency matrix, there are only 9
different basic cases to be considered. We have solved exactly
and tabulated the results for all cases, thus allowing for a quick
construction of Csite without having to solve numerically each
subproblem.

1) Phase 1, IDgroup assignment: the cost function to be
minimised in this phase can be written in a compact form as:

Tot
IDgroup

cost = trace
(
X> ·

(
αCsite + βSsite

)
·X
)

(7)

where X is the binary solution matrix of dimension
[#sites; #IDgroups], α and β are free weighting parameters
which can be used to prioritise either the costs of PCI or
IDgroup conflict. The IDgroup assignment phase is further
divided in two steps (see figure 2). First, an initialisation
assigns IDgroup by successive bisection (or max-cut) prob-
lems starting from the entire set of sites. At the beginning,
the number of QUBO variables is large, thus only suitable
for classical or hybrid solvers. When the site groups become
smaller, a pure QPU solution can be envisaged. The process
is terminated either when there are no more residual costs
or when all available IDgroup have been assigned. At this
point, the second step refines the solution with an iterative
Monte Carlo process; we randomly select a finite set k of
IDgroup values. To each IDgroup corresponds a group of sites
(or simply referred as a ‘group’) with unresolved conflicts.
We then attempt to improve part of the solution by solving
a max-k-cut problem with all selected sites as nodes. If the
new solution has a lower number of residual conflicts, then
it becomes the current best solution. The process continues
until all conflicts are solved or an iteration limit is hit or the
convergence criteria are satisfied. Finally, and if a minimisation
of the IDgroup usage is requested, the previous process is
applied with a minor modification: each max-k-cut problem is
solved with k − 1 colors so that, if successful, an IDgroup is
freed. Again, the process terminates when the predetermined
criteria are met. The site IDgroup is transferred to the cells
belonging to a certain site completing this phase and the
minimisation of the S costs.

2) Phase 2, IDCell assignment: We now consider as nodes
in the equivalent graph formulation all cells sharing the same
IDgroup. For each current IDgroup we build a max-3-cut
problem to minimise the related PCI conflict costs in C with
IDCell = 1, 2, 3 as ‘colors’ of the nodes. If the assignment
produces zero residual cost, the scheduling optimisation ends
here. However, even if after phase 1 the residual cost Ssite

was zero, some conflicts may remain and a third final step is
attempted.

3) Phase 3, solve residual PCI conflicts: We select the cells
belonging to the, normally few, IDgroup values with residual
PCI conflicts and we cluster them into smaller subgroups.
For each subgroup of typically few hundreds nodes we assign
simultaneously IDgroup and IDCell using the Single Phase
model (see section IV-A). The process is repeated with an
increased number of IDgroup until a zero C cost solution is
found or no more IDgroup values are available.

D. TIMqual

TIMqual is a Fast Greedy algorithm such as [13]. This
algorithm is proprietary of TIM S.p.A., and is the one actually
used in the framework of TIM’s Open SON framework.

V. COMPARISON OF THE ALGORITHMS

For the comparison of the QUBO algorithm we have used
a 8-core, 32GB RAM classical computer, using the qbsolv
tabu QUBO solver included in the Ocean Python suite. All



codes are single threaded. The focus of the present work
is on the solution quality rather than the computation time,
and the ability to reuse the PCIs. From the standpoint of
calculation time to elaborate a PCI plan, it is not easy to
make a ”homogeneous” comparison since the stop criteria of
the three algorithms are profoundly different. Thus, all codes
are assumed to be run until a suitable convergence criteria is
satisfied.

A. IDGroup minimisation for medium size PCI networks

We seek a PCI planning for medium size networks with
a minimum number of IDGroup (PCIs reuse) that nullifies
the residual cost associated with the C matrix disregarding
eventual S type conflicts.

Fig. 3: Comparison chart of the approaches detailed in section
III applied to several network sets (up to 322 cells).

The application of QUBO algorithms in the context of
PCI planning has provided encouraging results, as can be
inferred from the comparison in Fig.3. This chart describes the
minimum number of IDgroup that the four algorithms where
able to find. On the X-axis the bars are grouped by the size of
the cell set they refer to. All QUBO formulations perform here
significantly better than the classical algorithm in TIMqual
being able to find a good solution with a lower IDgroup.
The SP algorithm, however, can only find a high quality
solution for the smallest case, whereas for larger networks
it struggles to find a valid solution. This is due to the very
large QUBO problem that needs to be solved with tens of
thousands variables. It is clear that QUBO algorithms with
problem decomposition, such as MCMP and BB, have a good
prospect for PCI scheduling of very large networks and only
these latter will be considered in the following.

B. Total cost minimisation for large PCI networks

We now turn to the PCI scheduling of macro regions,
with urban and non-urban areas. These macro regions have
thousands of cells, but the relative percentage of conflicts is
lower because of the larger average distance between cells.

As a result, the sparsity of C cost matrix is above 90%
whilst for S is around 80%. Locally, however, there are still
dense regions which correspond to cities such Milan and
other densely populated areas. The optimisation goal is to
nullify the residual PCI conflicts (C residual cost) with a
minimum number of groups and lowest possible IDgroup type
of conflicts (S residual cost) which have a negative impact

Fig. 4: Macro area with 5718: C residual cost in dB as function
of the available groups.

Fig. 5: Macro area with 5718: S residual cost in dB as function
of the available groups.

on the network as outlined in section III-A. To explore the
algorithm behaviour we have scanned the available IDgroup

and looked at the residual costs. The results are plotted in
Figures 4 and 5 for the case of 5718 cells networks. The BB
algorithm requires substantial CPU time so that no statistics
was performed. For the MCMP case, a band representing the
variance is displayed (light blue) whereas the blue crosses
represent the median value of 10 otherwise identical runs. Both
QUBO algorithms can nullify all costs using fewer groups
than the available ones (168 for 4G). As expected, the general
trend is that the lower the available groups, the higher are the
residual cost. With group minimisation turned on, the MCMP
can find a solution with zero C residual cost and only 90
groups but with relatively high S residual cost. With group
minimisation off, a few PCI conflicts may be left unresolved
since the third and last optimisation phase (see section IV-C)
is ineffective in this case (no free IDgroup available). The
BB code finds a good scheduling with more groups, although,
in some cases, with a lower C residual cost. The very small
subproblem solved in the BB code probably does not allow for
an efficient exploration of the very large configuration space
of this network.

These findings have to be compared with the TIMqual
solution that nullifies the PCI conflicts with a minimum of
119 groups and C cost of 26.8dB. For this large and sparse
network, it is quite evident the ability of the QUBO-based
planners in using fewer groups, especially for the MCMP case.

menegolli

menegolli

menegolli

menegolli



Fig. 6: Macro area with 3085 cells and 10% border cells: C
residual cost in dB as function of the available groups.

Fig. 7: Macro area with 3085 cells and 10% border cells: S
residual cost in dB as function of the available groups.

This feature is very promising in view of extremely large areas
or for 5G, where many more cells are foreseen, without even
yet considering the leverage of quantum acceleration.

1) Managing border cells: When planning PCIs for finite
areas, one has often to consider additional constraints, such as
the cells at the borders with adjacent areas. In these ‘border
cells’ the PCIs are predefined and fixed to allow a smooth
handover of the user. We have implemented the possibility of
PCI planning with border cells in both the BB and MCMP
code and tested them on a network with a total of 3085 cells
and 10% of border cells.

The outcome is shown in figures 6 and 7. The algorithms
behave more similarly in this smaller example and both need
less groups for a satisfactory solution. More interestingly, they
both need a few more groups to nullify the PCI conflicts with
respect to the case with no boundary cells (not shown). This
result may be understood considering the effect of the bound-
ary cells: on one side they reduce the number of variables
but, on the other, introduce many more constraints, de facto
reducing the possibility of PCI reuse.

VI. CONCLUSIONS

This work has proposed heuristic algorithms formulated as
Quadratic Unconstrained Binary Optimization (QUBO) model
applied to the PCI assignment problem in the TelCo domain.
QUBO-based PCI solver implementations have been proven
to often provide better solution quality than classical state-of-
the-art solvers and to maximise PCIs reuse.

We have shown, however, that a problem decomposition
(either recursive or layered or both) is needed not only
for NISQ devices (which are, to date, inherently limited in
qubits and connectivity) but also for classical computers when
dealing with realistic use cases. Since the decomposition into
very small subproblems results in an inefficient resolution
for large networks, a possible suggestion could be to use
hybrid solvers/decomposers that autonomously determine the
best size of problems that can be mapped to a QPU.

Quantum speed-up is hoped and expected when running on
the latest D-Wave Pegasus architecture and will be subject of
future tests exploiting the proposed problem decomposition.
Future work will also include the application of the described
approaches to the case of 5G networks.
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[6] F. A. T. Montané and R. D. Galvao, “A tabu search algorithm for the
vehicle routing problem with simultaneous pick-up and delivery service,”
Computers & Operations Research, vol. 33, no. 3, pp. 595–619, 2006.

[7] H. Kavlak and H. Ilk, “Pci planning strategies for long term evolution
networks,” in NETWORKING 2012 Workshops (Z. Becvar, R. Bestak,
and L. Kencl, eds.), (Berlin, Heidelberg), pp. 151–156, Springer Berlin
Heidelberg, 2012.

[8] J. Gui, Z. Jiang, and S. Gao, “PCI Planning Based on Binary Quadratic
Programming in LTE/LTE-A Networks,” IEEE Access, vol. 7, pp. 203–
214, 2019.

[9] T. Kadowaki and H. Nishimori, “Quantum Annealing in the Transverse
Ising Model,” Physical Review E - Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics, vol. 58, pp. 5355–5363, apr 1998.

[10] F. Glover, G. Kochenberger, and Y. Du, “A Tutorial on Formulating and
Using QUBO Models,” nov 2018.

[11] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, pp. 1–14, feb 2014.

[12] S. Nyberg, “Physical Cell ID Allocation in Cellular Networks,” tech.
rep., 2016.

[13] B. Charlier and B. Charlier, “The Greedy Algorithms Class: Formaliza-
tion, Synthesis and Generalization,” 1995.


